• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Categories and General Algebraic Structures with Applications
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 11 (2019)
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Issue Issue 1
Volume Volume 8 (2018)
Volume Volume 7 (2017)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2016)
Volume Volume 3 (2015)
Volume Volume 2 (2014)
Volume Volume 1 (2013)
Borzooei, R., Hosseini, F., Zahiri, O. (2018). Convex $L$-lattice subgroups in $L$-ordered groups. Categories and General Algebraic Structures with Applications, 9(1), 139-161.
Rajabali Borzooei; Fateme Hosseini; Omid Zahiri. "Convex $L$-lattice subgroups in $L$-ordered groups". Categories and General Algebraic Structures with Applications, 9, 1, 2018, 139-161.
Borzooei, R., Hosseini, F., Zahiri, O. (2018). 'Convex $L$-lattice subgroups in $L$-ordered groups', Categories and General Algebraic Structures with Applications, 9(1), pp. 139-161.
Borzooei, R., Hosseini, F., Zahiri, O. Convex $L$-lattice subgroups in $L$-ordered groups. Categories and General Algebraic Structures with Applications, 2018; 9(1): 139-161.

Convex $L$-lattice subgroups in $L$-ordered groups

Article 7, Volume 9, Issue 1, Summer and Autumn 2018, Page 139-161  XML PDF (728.04 K)
Document Type: Research Paper
Authors
Rajabali Borzooei email 1; Fateme Hosseini1; Omid Zahiri2
1Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran.
2University of Applied Science and Technology, Tehran, Iran
Abstract
In this paper, we have focused to study convex $L$-subgroups of an $L$-ordered group. First, we introduce the concept of a convex $L$-subgroup and a convex $L$-lattice subgroup of an $L$-ordered group and give some examples. Then we find some properties and use them to construct convex $L$-subgroup generated by a subset $S$ of an $L$-ordered group $G$ . Also, we generalize a well known result about the set of all convex subgroups of a lattice ordered group and prove that $C(G)$, the set of all convex $L$-lattice subgroups of an $L$-ordered group $G$, is an $L$-complete lattice on height one. Then we use these objects to construct the quotient $L$-ordered groups and state some related results.
Keywords
$L$-ordered group; convex $L$-subgroup; (normal) convex $L$-lattice subgroup
References
[1] Anderson, M. and Feil, T., “Lattice-ordered Groups”, D. Reidel Publishing Co., Dordrecht, 1988.
[2] Bˇelohlávek, R., “Fuzzy Relational Systems: Foundations and Principles”, Kluwer Academic Publishers, 2002.
[3] Blyth, T.S., “Lattices and Ordered Algebraic Structures”, Springer-Verlag, 2005.
[4] Borzooei, R.A., Dvureˇcenskij, A., and Zahiri, O., L-ordered and L-lattice ordered groups, Inform. Sci. 314(1) (2015), 118-134.
[5] Borzooei, R. A., Hosseini, F., and Zahiri, O., (Totally) L-ordered groups, J. Intell. Fuzzy Systems 30(3) (2016), 1489-1498.
[6] Darnel, M.R., “Theory of Lattice-Ordered Groups”, CRC Press, 1994.
[7] Fan, L., A new approach to quantitative domain theory, Electron. Notes Theor. Comput. Sci. 45 (2001), 77-87.
[8] Glass, A.M.W., “Partially Ordered Groups”, Word Scientific, 1999.
[9] Goguen, J.A., L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
[10] Johnstone, P.T., “Stone Spaces”, Cambridge University Press, 1982.
[11] Lai, H. and Zhang, D., Complete and directed complete-categories, Theoret. Comput. Sci. 88 (2007), 1-25.
[12] Martinek, P., Completely lattice L-ordered sets with and without L-equality, Fuzzy Sets and Systems 166 (2011), 44-55.
[13] Ovchinnikov, S.V., Structure of fuzzy binary relations, Fuzzy Sets and Systems 6 (1981), 169-195.
[14] Venugopalan, P., Fuzzy ordered sets, Fuzzy Sets and Systems 46 (1992), 221-226.
[15] Yao, W., Quantitative domains via fuzzy sets, part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems 161 (2010), 973-987.
[16] Yao, W., An approach to fuzzy frames via fuzzy posets, Fuzzy Sets and Systems 166 (2011), 75-89.
[17] Yao, W., A survey of fuzzifications of frames, The Papert-Papert-Isbell adjunction and sobriety, Fuzzy Sets and Systems 190 (2012), 63-81.
[18] Yao, W. and Lu, L.X., Fuzzy Galois connections on fuzzy posets, Math.Log. Q. 55 (2009), 105-112.
[19] Zhang, Q.Y. and Fan, L., Continuity in quantitative domains, Fuzzy Sets and Systems 154 (2005), 118-131.
[20] Zhang, D. and Liu, Y.M., L-fuzzy version of stonean representation theory for distributive lattices, Fuzzy Sets and Systems 76 (1995), 259-270.
[21] Zhanga, Q., Xie,W., and Fan, L., Fuzzy complete lattices, Fuzzy Sets and Systems 160 (2009), 2275-2291.

Statistics
Article View: 243
PDF Download: 360
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.