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On the property U-(G-PWP ) of acts

M. Arabtash, A. Golchin∗, and H. Mohammadzadeh

Abstract. In this paper first of all we introduce Property U -(G-PWP ) of
acts, which is an extension of Condition (G-PWP ) and give some general
properties. Then we give a characterization of monoids when this property
of acts implies some others. Also we show that the strong faithfulness (P -
cyclicity) and (P -)regularity of acts imply the property U -(G-PWP ). Finally,
we give a necessary and sufficient condition under which all cyclic (finitely
generated) right acts or all (strongly, <-) torsion free cyclic (finitely gener-
ated) right acts satisfy Property U -(G-PWP ).

1 Introduction

Throughout this paper S will denote a monoid and N will stand for the set
of natural numbers. We refer the reader to [5] and [6] for basic definitions
and terminology relating to semigroups and acts over monoids, to [7] and [9]
for definitions and results on flatness which are used here.

We use the following abbreviations,

weak pullback flatness = (WPF).

* Corresponding author
Keywords: S-act, Condition (PWP ), Condition (G-PWP ), Condition U -(G-PWP ).
Mathematics Subject Classification[2010]: 20M30.
Received: 23 December 2016, Accepted: 2 June 2017
ISSN Print: 2345-5853 Online: 2345-5861
© Shahid Beheshti University

51



52 M. Arabtash, A. Golchin, and H. Mohammadzadeh

weak kernel flatness = WKF.

principal weak kernel flatness = PWKF.

translation kernel flatness = TKF.

weak homoflatness = (WP).

principal weak homoflatness = (PWP).

weak flatness = WF.

principal weak flatness = PWF.

2 General properties

In this section first of all we introduce Property U -(G-PWP ) of acts and
give some general properties.

We recall from [9] that a right S-act AS satisfies Condition (PWP ) if
as = a′s, for a, a′ ∈ AS , and s ∈ S, implies that there exist a′′ ∈ AS
and u, v ∈ S, such that a = a′′u, a′ = a′′v, and us = vs. Also we recall
from [1] that a right S-act AS satisfies Condition (G-PWP ) if as = a′s, for
a, a′ ∈ AS and s ∈ S, implies that there exist a′′ ∈ AS , u, v ∈ S and n ∈ N
such that a = a′′u, a′ = a′′v, and usn = vsn. It is obvious that Condition
PWP implies Condition G − PWP but not the converse (see [1, Example
2.2]).

Definition 2.1. Let S be a monoid. A right S-act AS satisfies Property
U -(G-PWP ) if there exists a family {Bi | i ∈ I} of subacts of AS such that
A =

⋃
i∈I Bi and Bi, i ∈ I satisfies Condition (G-PWP ).

If I is a proper right ideal of S, then

AS = S

I∐
S = {(α, x)| α ∈ S \ I} ∪̇ I ∪̇ {(β, y)| β ∈ S \ I}

with

(α, z)s =

{
(αs, z) αs 6∈ I
αs otherwise

for every α ∈ S \ I, s ∈ S and z ∈ {x, y} is a right S-act.
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Recall from [6] that a right S-act AS is said to be decomposable if there
exist two subacts BS , CS ⊆ AS such that AS = BS ∪ CS and BS ∩ CS = ∅.
Otherwise, AS is called indecomposable.

Also recall that a right S-act AS is locally cyclic if every finitely generated
subact of AS is contained within a cyclic subact of AS .

Theorem 2.2. Let S be a monoid. Then
(1) ΘS and SS satisfy U -(G-PWP ).
(2) Every right S-act satisfying Condition (G-PWP ) satisfies U -(G-

PWP ).
(3) If {Bi | i ∈ I} is a family of subacts of a right S-act AS such that for

every i ∈ I, Bi satisfies U -(G-PWP ), then
⋃
i∈I Bi satisfies U -(G-PWP ).

(4) A right S-act AS satisfies U -(G-PWP ) if and only if for every a ∈ AS
there exists a subact B of AS such that a ∈ B and B satisfies Condition (G-
PWP ).

(5) If AS is a right S-act and I is a non-empty set such that Bi is a
subact of AS and satisfies Condition (G-PWP ) for every i ∈ I, then the
right S-act

⋃
i∈I Bi satisfies U -(G-PWP ).

(6) For every proper right ideal I of S, AS = S
∐I S satisfies U -(G-

PWP ), where it is indecomposable and is generated exactly by two elements,
but it is not locally cyclic.

(7) Every cyclic right S-act AS satisfies Condition (G-PWP ) if and only
if AS satisfies U -(G-PWP ).

Proof. The proofs of (1)-(5) and (7) are straightforward.
(6) Let I be a proper right ideal of S and

AS = S

I∐
S = {(l, x)| l ∈ S \ I} ∪̇ I ∪̇ {(t, y)| t ∈ S \ I},

B = {(l, x)| l ∈ S \ I} ∪̇ I, C = {(t, y)| t ∈ S \ I} ∪̇ I.
It is easy to show that B and C are cyclic subacts of AS such that

B = (1, x)S ∼= SS ∼= (1, y)S = C,

AS = 〈(1, x), (1, y)〉 = (1, x)S ∪ (1, y)S = B ∪ C.
Now, since SS satisfies Condition (G-PWP ), the subacts B and C satisfy
Condition (G-PWP ), too, and so AS = B ∪ C satisfies Property U -(G-
PWP ).
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Also since

AS = (1, x)S ∪ (1, y)S, (1, x)S ∩ (1, y)S = I,

it is easy to show that AS is indecomposable, but it is not locally cyclic.

3 Characterization of monoids by U-(G-PWP ) of right acts

We know that Condition (G-PWP ) implies torsion freeness, but from the
following example we can see that Property U -(G-PWP ) of acts does not
imply torsion freeness in general. So it is natural to ask for monoids over
which U -(G-PWP ) of acts implies torsion freeness and other properties. In
this section we answer these questions.

We recall from [6] that a right S-act AS is torsion free if for a, b ∈ AS
and a right cancellable element c of S, the equality ac = bc implies that
a = b.

Example 3.1. Let (N, .) be the monoid of natural numbers under multi-
plication, and consider AS = N

∐2NN. Then AS satisfies U -(G-PWP ), by
Theorem 2.2. But (1, x) 6= (1, y) and (1, x)2 = 2 = (1, y)2, so AS is not
torsion free.

This example shows also that for a commutative monoid S, there may
exists an indecomposable right S-act AS generated by exactly two elements,
such that AS satisfies U -(G-PWP ), but it is neither locally cyclic nor torsion
free.

Theorem 3.2. For any monoid S the following statements are equivalent:
(1) all right S-acts are torsion free;
(2) all right S-acts satisfying U -(G-PWP ) are torsion free;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are torsion

free;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are torsion free;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are torsion free;
(6) all indecomposable right S-acts satisfying U -(G-PWP ) are torsion

free;
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(7) all finitely generated indecomposable right S-acts satisfying U -(G-
PWP ) are torsion free;

(8) all indecomposable right S-acts generated by at most two elements
satisfying U -(G-PWP ) are torsion free;

(9) all indecomposable right S-acts generated by exactly two elements
satisfying U -(G-PWP ) are torsion free;

(10) all right cancellable elements of S are right invertible.

Proof. The implications (1)⇒(2)⇒ (3)⇒(4)⇒(5), (1)⇒ (6)⇒(7)⇒(8)⇒(9),
and (5)⇒(9) are obvious.

(9)⇒(10) Let c ∈ S be a right cancellable element such that cS 6= S
and consider AS = S

∐cS S. Obviously, AS is indecomposable which is
generated by two elements (1, x) and (1, y). So AS satisfies U -(G-PWP ),
by Theorem 2.2, and so, by assumption, it is torsion free. Hence the equality
(1, x)c = c = (1, y)c implies (1, x) = (1, y), which is a contradiction. Thus
cS = S and so c is right invertible, as required.

(10)⇒(1) It is clear by [6, IV, 6.1].

Recall from [6] that a right S-act AS satisfies Condition (P ) if as = a′t,
for a, a′ ∈ AS , and s, t ∈ S, there exist a′′ ∈ AS , and u, v ∈ S such that
a = a′′u, a′ = a′′v, and us = vt. Also we recall from [2] that a right S-
act AS satisfies Condition (P ′) if as = a′t and sz = tz, for a, a′ ∈ AS ,
and s, t, z ∈ S, imply that there exist a′′ ∈ AS and u, v ∈ S, such that
a = a′′u, a′ = a′′v, and us = vt. Also recall from [9] that a right S-act
AS satisfies Condition (WP ) if af(s) = a′f(t), for a, a′ ∈ AS , s, t ∈ S,
and homomorphism f : S(Ss ∪ St)→ SS, implies that there exist a′′ ∈ AS ,
u, v ∈ S, and s′, t′ ∈ {s, t} such that f(us′) = f(vt′), a⊗ s = a′′ ⊗ us′, and
a′ ⊗ t = a′′ ⊗ vt′ in AS ⊗ S(Ss ∪ St).

Theorem 3.3. For any monoid S the following statements are equivalent:
(1) all right S-acts satisfying U -(G-PWP ) are WPF ;
(2) all right S-acts satisfying U -(G-PWP ) are WKF ;
(3) all right S-acts satisfying U -(G-PWP ) are PWKF ;
(4) all right S-acts satisfying U -(G-PWP ) are TKF ;
(5) all right S-acts satisfying U -(G-PWP ) satisfy Condition (P );
(6) all right S-acts satisfying U -(G-PWP ) satisfy Condition (WP );
(7) all right S-acts satisfying U -(G-PWP ) satisfy Condition (PWP );
(8) all right S-acts satisfying U -(G-PWP ) satisfy Condition (P ′);
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(9) all right S-acts satisfying U -(G-PWP ) satisfy Condition (G-PWP );
(10) S is a group.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(7)⇒(9), (1)⇒(5)⇒(6)⇒(7),
and (5)⇒(8)⇒(7) are obvious.

(9)⇒(10) Suppose for s ∈ S, sS 6= S. Consider AS = S
∐sS S. By The-

orem 2.2, AS satisfies U -(G-PWP ), and so by the assumption, AS satisfies
Condition (G-PWP ). Thus the equality (1, x)s = (1, y)s implies that there
exist a ∈ AS , u, v ∈ S, and n ∈ N such that (1, x) = au, (1, y) = av, and
usn = vsn. Then the equalities (1, x) = au and (1, y) = av imply, respec-
tively, that there exist l, l′ ∈ S \ I such that a = (l, x) and a = (l′, y), which
is a contradiction. Thus sS = S and so S is a group, as required.

(10)⇒(1) It is true by [8, Proposition 9].

Notice that by the proof of Theorem 3.3 and also (6) of Theorem 2.2,
Theorem 3.3 is also true for finitely generated acts, acts generated by at
most two elements, and acts generated exactly by two elements.

Theorem 3.4. For any monoid S the following statements are equivalent:
(1) all right S-acts satisfying U -(G-PWP ) are free;
(2) all right S-acts satisfying U -(G-PWP ) are projective generator;
(3) all right S-acts satisfying U -(G-PWP ) are projective;
(4) all right S-acts satisfying U -(G-PWP ) are strongly flat;
(5) S = {1}.

Proof. The implications (1)⇒(2)⇒(3)⇒(4) and (5)⇒(1) are obvious.
(4)⇒(5) By the assumption, all right S-acts satisfying U -(G-PWP ) are

WPF . So S is a group, by Theorem 3.3. Thus all right S-acts satisfy Condi-
tion (PWP ), by [8, Proposition 9], and so all right S-acts satisfy Condition
(G-PWP ) and so they satisfy U -(G-PWP ). Hence, by the assumption, all
right S-acts are strongly flat and so S = {1} by [6], IV, 10.5].

Notice that, by the proof of Theorem 3.3 and also (6) of Theorem 2.2,
Theorem 3.4 is also true for all finitely generated acts, acts generated by at
most two elements, and acts generated exactly by two elements.

We recall from [6] that a monoid S is called regular if for every s ∈ S,
there exists x ∈ S such that s = sxs.
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Theorem 3.5. For any monoid S the following statements are equivalent:
(1) all right S-acts are PWF ;
(2) all right S-acts satisfying U -(G-PWP ) are PWF ;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are PWF ;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are PWF ;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are PWF ;
(6) S is regular.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are obvious.
(5)⇒(6) Let s ∈ S. If sS = S, then it is obvious that s is regular.

Thus we suppose that sS 6= S and let AS = S
∐sS S. By Theorem 2.2, AS

satisfies U -(G-PWP ), and so, by the assumption, AS is principally weakly
flat. Thus by ( [6], III, 12.19), sS is left stabilizing, and so there exists
l ∈ sS such that s = ls. Hence there exists x ∈ S such that l = sx, and so
s = ls = sxs, that is, S is regular.

(6)⇒(1) It is true by [6, IV, 6.6]

We recall from [11] that a right S-act AS is called GP -flat if a⊗s = a′⊗s
in AS ⊗ SS, for a, a′ ∈ AS and s ∈ S, implies that there exists n ∈ N such
that a ⊗ sn = a′ ⊗ sn in AS ⊗ SSs

n. Also, a monoid S is called generally
regular if for every s ∈ S and n ∈ N, there exists x ∈ S such that sn = sxsn.

Theorem 3.6. For any monoid S the following statements are equivalent:
(1) all right S-acts are GP -flat;
(2) all right S-acts satisfying U -(G-PWP ) are GP -flat;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are GP -flat;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are GP -flat;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are GP -flat;
(6) S is generally regular.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are obvious.
(5)⇒(6) Let s ∈ S. If sS = S, then it is obvious that s is generally

regular. Thus we suppose that sS 6= S and let AS = S
∐sS S. By Theorem

2.2, AS satisfies U -(G-PWP ), and so, by the assumption, AS is GP -flat.
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Thus, by ( [11], Lemma 2.4), for s ∈ sS there exist n ∈ N and j ∈ sS
such that sn = jsn. Hence there exists x ∈ S such that j = sx, that is,
sn = sxsn.

(6)⇒(1) Since S is generally regular, by [11, Theorem 3.4], all right S-
acts are GP -flat, and so all right S-acts satisfying U -(G-PWP ) are GP -flat,
as required.

We recall from [6] that a right S-act AS is divisible if for every element
a ∈ AS and any left cancellable element c ∈ S there exists b ∈ AS such that
a = bc.

Theorem 3.7. For any monoid S the following statements are equivalent:
(1) all right S-acts are divisible;
(2) all right S-acts satisfying U -(G-PWP ) are divisible;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are divisible;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are divisible;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are divisible;
(6) all left cancellable elements of S are left invertible.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are obvious.
(5)⇒(6) Let c ∈ S be any left cancellable element. If Sc = S, then

it is obvious that c is left invertible. Thus we suppose that Sc 6= S and
let AS = S

∐Sc S. By Theorem 2.2, AS satisfies U -(G-PWP ), and so, by
the assumption, AS is divisible. Since (1, x) ∈ AS , there exists α ∈ AS
such that (1, x) = αc. Hence for l ∈ S \ Sc we have α = (l, x) and so
(1, x) = αc = (l, x)c = (lc, x)⇒ 1 = lc. Thus c is left invertible.

(6)⇒(1) It is true by [6, III, 2.2].

We recall from [6] that a right S-act AS is called simple if it contains no
subacts other than AS itself, and AS is called completely reducible if it is a
disjoint union of simple subacts.

Theorem 3.8. For any monoid S the following statements are equivalent:
(1) all right S-acts are completely reducible;
(2) all right S-acts satisfying U -(G-PWP ) are completely reducible;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are com-

pletely reducible;
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(4) all right S-acts generated by at most two elements satisfying U -(G-
PWP ) are completely reducible;

(5) all right S-acts generated by exactly two elements satisfying U -(G-
PWP ) are completely reducible;

(6) S is a group.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are obvious.
(5)⇒(6) Let s ∈ S. If sS 6= S then let AS = S

∐sS S. By Theorem
2.2, AS satisfies U -(G-PWP ) and so, by the assumption, AS is completely
reducible. Hence AS is a disjoint union of simple subacts. But we know that
AS is indecomposable. Hence AS is simple such that sS is a subact other
than AS , which is contradiction. So sS = S and S is a group, as required.

(6)⇒(1) It is true by [6, I, 5.34].

Notice that, in the previous theorem, AS = θ1 ∪̇ θ2 satisfies U -(G-PWP )
right S-act generated by at most two elements, which is completely reducible.

We recall from [6] that a right S-act AS is faithful if for s, t ∈ S the
equality as = at, for all a ∈ A, implies that s = t, and AS is strongly faithful
if for s, t ∈ S the equality as = at, for some a ∈ A, implies that s = t. It is
obvious that every strongly faithful right S−act is faithful.

Notice that Property U -(G-PWP ) of cyclic acts does not imply faith-
fulness in general. For, if S is a non-trivial monoid, then it is obvious that
right cyclic S-act ΘS satisfies U -(G-PWP ), but it is not faithful, because
|S| > 1. Thus Property U -(G-PWP ) of cyclic acts does not imply strong
faithfulness in general.

Theorem 3.9. For any monoid S the following statements are equivalent:
(1) all right S-acts are (strongly) faithful;
(2) all right S-acts satisfying U -(G-PWP ) are (strongly) faithful;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are (strongly)

faithful;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are (strongly) faithful;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are (strongly) faithful;
(6) S = {1}.
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Proof. The implications (1)⇒(2)⇒(3)⇒ (4)⇒(5) are obvious.
(5)⇒(6) For any monoid S, AS = θ1 ∪̇ θ2 is a right S-act, generated by

exactly two elements, satisfies U -(G-PWP ). So, by the assumption, AS is
(strongly) faithful. If S 6= {1} then there exist s, t ∈ S such that s 6= t. But
it is obvious that for every a ∈ AS , as = at, which is a contradiction. So
S = {1}, as required.

(6)⇒(1) It is obvious.

We recall from [13] that a right S-act AS is strongly torsion free if the
equality as = bs, for all a, b ∈ AS and all s ∈ S, implies a = b.

Theorem 3.10. For any monoid S the following statements are equivalent:
(1) all right S-acts are strongly torsion free;
(2) all right S-acts satisfying U -(G-PWP ) are strongly torsion free;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are strongly

torsion free;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are strongly torsion free;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are strongly torsion free;
(6) S is a group.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are obvious.
(5)⇒(6) Let s ∈ S be such that sS 6= S and suppose AS = S

∐sS S.
By Theorem 2.2, AS satisfies U -(G-PWP ) and so, by the assumption, AS
is strongly torsion free. Now let

B = {(l, x)| l ∈ S \ sS} ∪̇ sS ∼= SS ∼= {(t, y)| t ∈ S \ sS} ∪̇ sS = C.

Then, by [13, Proposition 2.1], B as a subact of AS is strongly torsion
free, and so SS is strongly torsion free. Hence S is right cancellative by [13,
Proposition 2.1]. But in the case of cancellablity of S, strong torsion freeness
and torsion freeness coincide. So, by Theorem 3.2, every right cancellable
element of S is right invertible, hence sS = S, which is a contradiction.
Thus for every s ∈ S, sS = S and so S is a group, as required.

(6)⇒(1) It is true by [13, Theorem 6.1].

Theorem 3.11. Let S be a right cancellative monoid. Then the following
statements are equivalent:
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(1) all right S-acts are flat;
(2) all right S-acts satisfying U -(G-PWP ) are flat;
(3) all finitely generated right S-acts satisfying U -(G-PWP ) are flat;
(4) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are flat;
(5) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are flat;
(6) all right S-acts are WF ;
(7) all right S-acts satisfying U -(G-PWP ) are WF ;
(8) all finitely generated right S-acts satisfying U -(G-PWP ) are WF ;
(9) all right S-acts generated by at most two elements satisfying U -(G-

PWP ) are WF ;
(10) all right S-acts generated by exactly two elements satisfying U -(G-

PWP ) are WF ;
(11) S is a group.

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(10), also the implica-
tions (1)⇒(6)⇒(7)⇒(8)⇒(9)⇒(10) are obvious.

(10)⇒(11) Since, for right cancellative monoids, torsion freeness and
strong torsion freeness of acts coincide, and also weak flatness implies torsion
freeness, thus all right S-acts generated by exactly two elements satisfying
U -(G-PWP ) are strongly torsion free, and so S is a group, by Theorem 3.10.

(11)⇒(1) It is true by [8, Proposition 9].

We recall from [6] that an element s of a monoid S is called left e-
cancellable for an idempotent e ∈ S if s = se and kerλs ≤ kerλe. A monoid
S is called right PP if every element s ∈ S is left e-cancellable for some
idempotent e ∈ S. Also we recall from [6] that a right S-act AS satisfies
Condition (E) if as = at, for a ∈ AS and s, t ∈ S, implies that there exist
a′ ∈ AS and u ∈ S such that a = a′u and us = ut.

Notice that U -(G-PWP ) of cyclic acts does not imply regularity. Be-
cause, if S = {0, 1, x} with x2 = 0, then S is not right PP , and so, by [6, III,
19.3] and [6, IV, 11.15], SS is not a regular act, but it satisfies U -(G-PWP ).
Now it is natural to ask for monoids S for which U -(G-PWP ) of their acts
implies regularity.

Lemma 3.12. Let S be a monoid and A a right S-act. Then
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(1) If S is right PP and A satisfies Condition (E), then aS satisfies
Condition (E) for every a ∈ A.

(2) If aS satisfies Condition (E) for every a ∈ A, then A satisfies Con-
dition (E).

Proof. (1) Suppose that A satisfies Condition (E) and let as = at, for a ∈ A
and s, t ∈ S. Then there exist a′ ∈ A and u ∈ S such that a = a′u and
us = ut. Since S is right PP , there exists e ∈ E(S) such that kerλe = kerλu.
Thus es = et, u = ue, and so a = ae. Hence aS satisfies Condition (E), as
required.

(2) Let as = at, for a ∈ AS and s, t ∈ S. Since aS satisfies Condition
(E), there exist w1, w2 ∈ S such that a = (aw1)w2 and w2s = w2t . If
w1w2 = u, then a = au and us = ut, and so AS satisfies Condition (E).

Recall from [6] that a monoid S is called left collapsible if for any p, q ∈ S
there exists r ∈ S such that rp = rq, and S satisfies Condition (K) if every
left collapsible submonoid of S contains a left zero. Also an element a ∈ AS
is called act-regular, if there exists a homomorphism f : aS → S such that
af(a) = a, and AS is called a regular act if every a ∈ AS is an act-regular
element.

Theorem 3.13. For any monoid S the following statements are equivalent:
(1) All right S-acts satisfying U -(G-PWP ) are regular;
(2) S is right PP , satisfies Condition (K) and every right S-act satisfy-

ing Condition (G-PWP ) satisfies Condition (E).

Proof. (1)⇒(2) Since SS satisfies U -(G-PWP ), by the assumption, SS is
regular, and so, by [6, III, 19.3], all principal right ideals of S are projective.
Thus, by [6, IV, 11.15], S is right PP . Also, by the assumption, all strongly
flat cyclic right S-acts are regular. Thus, by [6, III, 19.3], all strongly flat
cyclic right S-acts are projective, and so, by [6, IV, 11.2], S satisfies Condi-
tion K. Since, by [6, III, 19.3], all cyclic subacts of a regular right S-act is
projective, then all cyclic subacts of a regular right S-act satisfy Condition
(E), and so, by Lemma 3.12, every regular right S-act satisfies Condition
(E). Thus, by assumption and Theorem 2.2, every right S-act satisfying
Condition (G-PWP ) satisfies Condition (E).

(2)⇒(1) Suppose that right S-act AS satisfies U -(G-PWP ) and let a ∈
AS . Then there exists a family {Bi | i ∈ I} of subacts of AS such that
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A =
⋃
i∈I Bi and Bi, i ∈ I, satisfies Condition (G-PWP ). Also there exists

i0 ∈ I such that a ∈ Bi0 . Since Bi0 satisfies Condition (G-PWP ), then, by
the assumption, Bi0 satisfies Condition (E). But S is right PP , and so, by
Lemma 3.12, every cyclic subact of Bi0 satisfies Condition (E), and hence
every cyclic subact of Bi0 is strongly flat, thus aS is strongly flat. Since S
satisfies Condition (K), by [6, IV, 11.2], aS is projective, and so by [6, III,
19.3], AS is regular.

4 When other properties imply U-(G-PWP )

In this section we consider monoids over which other properties of acts imply
U -(G-PWP ). Meanwhile we give some equivalent descriptions of all right
acts satisfying U -(G-PWP ).

Recall from [12] that an element a ∈ AS is called act-regular, if there
exists a homomorphism f : aS → S such that af(a) = a, and AS is called a
regular act if every a ∈ AS is an act-regular element. Also we recall from [3]
that AS is called P -regular, if all cyclic subacts of AS satisfy Condition (P ).
In [3] we gave a characterization of monoids by P -regularity of their acts.
AS is called strongly (P )-cyclic if for any a ∈ AS there exists z ∈ S such that
kerλa = kerλz and zS satisfies Condition (P ). Since from kerλa = kerλz,
it can be seen that aS ∼= zS, thus aS satisfies Condition (P ), and so strong
P -cyclicity implies P -regularity. In [4] we gave a characterization of monoids
by strongly P -cyclic right S-acts.

Theorem 4.1. Let S be a monoid. Then:
(1) all strongly faithful right S-acts satisfy U -(G-PWP ).
(2) all P -regular right S-acts satisfy U -(G-PWP ).
(3) all strongly P -cyclic right S-acts satisfy U -(G-PWP ).
(4) all regular right S-acts satisfy U -(G-PWP ).

Proof. (1) Let AS be a strongly faithful right S-act. For every α ∈ AS
define the mapping ψα : αS → SS as ψα(αs) = s. It is obvious that ψα is an
isomorphism and so for every α ∈ AS , αS ∼= SS . Thus all cyclic subacts of
AS satisfy Condition (G-PWP ). But AS =

⋃
α∈AS αS, and so AS satisfies

U -(G-PWP ), as required.
(2) Let AS be a P -regular right S-act. By the definition, every cyclic

subact of AS satisfies Condition (P ). Thus for every α ∈ AS , αS satisfies
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Condition (G-PWP ) and so AS =
⋃
α∈AS αS, AS satisfies U -(G-PWP ),

as required.
The items (3) and (4) are implied from (2), because every strongly P -

cyclic or regular right S-act is P -regular.

Theorem 4.2. For any monoid S the following statements are equivalent:
(1) all right S-acts satisfy U -(G-PWP );
(2) all finitely generated right S-acts satisfy U -(G-PWP );
(3) all cyclic right S-acts satisfy Condition (G-PWP );
(4) (∀x, y, t ∈ S)(∃u, v ∈ S)(∃n ∈ N)(xρ(xt, yt)u ∧ yρ(xt, yt)v ∧ utn =

vtn).

Proof. (1)⇒(2) is obvious.
(2)⇒(3) It is true by (7) of Theorem 2.2.
(3)⇔(4) It follows from the proof of Proposition 3.1 of [10].
(3)⇒(1) It is clear.

We recall from [9] that for any monoid S and x, y ∈ S, ρTF (x, y) denotes
the smallest right congruence on S containing (x, y), where the cyclic right
S-act S/ρTF (x, y) is torsion free.

Theorem 2.2 and [1, Example 2.6] show that torsion freeness does not
imply U -(G-PWP ) in general.

Theorem 4.3. For any monoid S the following statements are equivalent:
(1) all torsion free right S-acts satisfy U -(G-PWP );
(2) all torsion free finitely generated right S-acts satisfy U -(G-PWP );
(3) all torsion free cyclic right S-acts satisfy Condition (G-PWP );
(4) (∀x, y, t ∈ S)(∃u, v ∈ S)(∃n ∈ N)

(
(x, u), (y, v) ∈ ρTF (xt, yt) ∧ utn =

vtn
)
.

Proof. The implication (1)⇒(2) is obvious.
(2)⇒(3) It is true by (7) of Theorem 2.2.
(3)⇒(1) Let the right S-act AS be torsion free. It is obvious that every

subact of AS is also torsion free. Thus, by the assumption, αS satisfies
Condition (G-PWP ) for every α ∈ AS . Hence AS = ∪α∈AS αS satisfies
U -(G-PWP ).

(3)⇒(4) Let x, y, t ∈ S. Then S/ρTF (xt, yt) is torsion free and so, by
assumption, it satisfies Condition (G-PWP ). Thus, by Proposition 3.1 of
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[10], xt ρTF (xt, yt) yt implies that there exist u, v ∈ S and n ∈ N such that
(x, u), (y, v) ∈ ρTF (xt, yt) and utn = vtn.

(4)⇒(3) Let S/ρ be torsion free for the right congruence ρ on S and
suppose (xt)ρ(yt), for x, y, t ∈ S. Then there exist u, v ∈ S and n ∈ N
such that (x, u), (y, v) ∈ ρTF (xt, yt) and utn = vtn. But ρTF (xt, yt) ⊆ ρ,
and so xρu, yρv. Thus, by Proposition 3.1 of [10], S/ρ satisfies Condition
(G-PWP ), as required.

We recall from [13] that ρSTF (x, y) denotes the smallest right congru-
ence on S containing (x, y) such that the cyclic right S-act S/ρSTF (x, y) is
strongly torsion free.

Similar to Theorem 4.3, we have the following.

Theorem 4.4. For any monoid S the following statements are equivalent:
(1) all strongly torsion free right S-acts satisfy U -(G-PWP );
(2) all strongly torsion free finitely generated right S-acts satisfy U -(G-

PWP );
(3) all strongly torsion free cyclic right S-acts satisfy Condition (G-

PWP );
(4) (∀x, y, t ∈ S)(∃u, v ∈ S)(∃n ∈ N)

(
(x, u), (y, v) ∈ ρSTF (xt, yt) ∧

utn = vtn
)
.

An act AS is called <-torsion free if for any a, b ∈ AS and right cancellabe
element c ∈ S, ac = bc and a<b imply that a = b (< is Green relation). It
is clear that torsion freeness implies <-torsion freeness.

Also ρ<TF (x, y) denotes the smallest right congruence on S containing
(x, y) such that the cyclic right S-act S/ρ<TF (x, y) is <-torsion free.

Lemma 4.5. For any monoid S the following statements are equivalent:
(1) all <-torsion free cyclic right S-acts satisfy U -(G-PWP );
(2) (∀x, y, t ∈ S)(∃u, v ∈ S)(∃n ∈ N)

(
(x, u), (y, v) ∈ ρ<TF (xt, yt) ∧

utn = vtn
)
.

Proof. (1)⇒(2) Suppose that all R-torsion free cyclic right S-acts satisfy
Condition (G-PWP ) and let x, y, t ∈ S. Then S/ρ<TF (xt, yt) is <-torsion
free and so, by the assumption, it satisfies Condition (G-PWP ). Thus, by
Proposition 3.1 of [10], xt ρ<TF (xt, yt) yt implies that there exist u, v ∈ S
and n ∈ N such that (x, u), (y, v) ∈ ρ<TF (xt, yt) and utn = vtn.
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(2)⇒(1) Let S/ρ be <-torsion free for the right congruence ρ on S and
suppose (xt)ρ(yt), for x, y, t ∈ S. Then there exist u, v ∈ S and n ∈ N
such that (x, u), (y, v) ∈ ρ<TF (xt, yt) and utn = vtn. But ρ<TF (xt, yt) ⊆ ρ,
and so xρu, yρv. Thus, by Proposition 3.1 of [10], S/ρ satisfies Condition
(G-PWP ), as required.

Similar to Theorem 4.3, we have the following.

Theorem 4.6. For any monoid S the following statements are equivalent:
(1) all <-torsion free right S-acts satisfy U -(G-PWP );
(2) all <-torsion free finitely generated right S-acts satisfy U -(G-PWP );
(3) all <-torsion free cyclic right S-acts satisfy Condition (G-PWP );
(4) (∀x, y, t ∈ S)(∃u, v ∈ S)(∃n ∈ N)

(
(x, u), (y, v) ∈ ρ<TF (xt, yt) ∧

utn = vtn
)
.
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