Categories and General Algebraic Structures with Applications Volume 8, Number 1, January 2018, 61-80.

On property (A) and the socle of the *f*-ring $Frm(\mathcal{P}(\mathbb{R}), L)$

A.As. Estaji, E. Hashemi, and A.A. Estaji^{*}

Abstract. For a frame L, consider the f-ring $\mathcal{F}_{\mathcal{P}}L = Frm(\mathcal{P}(\mathbb{R}), L)$. In this paper, first we show that each minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ is a principal ideal generated by f_a , where a is an atom of L. Then we show that if L is an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame, then the socle of $\mathcal{F}_{\mathcal{P}}L$ consists of those f for which coz(f) is a join of finitely many atoms. Also it is shown that not only $\mathcal{F}_{\mathcal{P}}L$ has Property (A) but also if L has a finite number of atoms then the residue class ring $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).

1 Introduction

The socle of a ring R, denoted by $\operatorname{Soc}(R)$, is the ideal generated by the minimal ideals of R. In [19], the authors showed that for a completely regular Hausdorff space X, the socle of the ring C(X), which is denoted by $C_F(X)$, is the ideal consisting of all functions which are zero everywhere except on a finite number of points. In [8] it is shown that X is a P-space if and only if C(X) is an \aleph_0 -selfinjective ring or, equivalently, if and only if $C(X)/C_F(X)$

Received: 12 December 2016, Accepted: 19 April 2017

^{*} Corresponding author

Keywords: Minimal ideal, socle, real-valued functions ring, ring with property (A). Mathematics Subject Classification [2010]: 06D22, 06F25.

ISSN Print: 2345-5853 Online: 2345-5861

[©] Shahid Beheshti University

is \aleph_0 -selfinjective (also see [1]). In [6, 7] the authors showed that the socle of $\mathcal{R}L$, the ring of real-valued continuous functions on a completely regular frame L, is the ideal consisting of functions whose cozero elements are finite joins of atoms of L which is a pointfree version of C(X).

Let L be a frame and $F(L) := Frm(\mathcal{L}(\mathbb{R}), \mathcal{S}L)$, where $\mathcal{S}L$ is the dual of the co-frame of all sublocales of L. In [10], they showed that the lattice ordered ring F(L) is a pointfree counterpart of the ring \mathbb{R}^X with X a topological space (also see [9, 11]). They thus have a pointfree analogue of the concept of an arbitrary, not necessarily (semi) continuous, real function on L. In [25], they showed that $F(L) = C(\mathcal{S}_{\mathfrak{c}}(L))$ is always order complete, where $\mathcal{S}_{\mathfrak{c}}(L)$ is a frame of closedly generated sublocales. Also, Karimi Feizabadi et al. in [18] showed that $\mathcal{F}_{\mathcal{P}}L := Frm(\mathcal{P}(\mathbb{R}), L)$ is an f-ring, as a generalization of all functions from a set X into \mathbb{R} , because $\mathbb{R}^X \cong \mathcal{F}_{\mathcal{P}}(\mathcal{P}(\mathbb{X}))$. Also, they showed that $\mathcal{F}_{\mathcal{P}}L$ is isomorphic to a sub-f-ring of $\mathcal{R}(L)$, the ring of real-valued continuous functions on L.

One of the important properties of commutative Noetherian rings is that the annihilator of an ideal I consisting entirely of zero-divisors is nonzero [17, p.56]. However this result fails for some non-Noetherian ring, even if the ideal I is finitely generated [17, p.63]. Huckaba and Keller [15] introduced the following: A commutative ring R has Property (A) if every finitely generated ideal of R consisting entirely of zero-divisors has a nonzero annihilator. Property (A) was originally studied by Quentel [26]. The class of commutative rings with property (A) is quite large and has been studied by many authors [2, 12, 14, 15]. Polynomial rings, rings whose classical ring of quotionts is von Neumann regular, Noetherian rings [17, p. 56], and rings whose prime ideals are maximal [12] are well known examples of rings in this class. In [13], Hong et al. extend Property(A) to non-commutative rings as follows: A ring R has right (left) Property (A) if every finitely generated tow-sided ideal of R consisting entirely of left (right) zero-divisors has a right (left) non-zero annihilator. A ring R is said to have Property (A) if R has right and left Property (A).

In this paper, for the *f*-ring $\mathcal{F}_{\mathcal{P}}L$, first we show that each minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ is a principal ideal generated by f_a , where *a* is an atom of frame *L*. Then we show that if *L* is an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame, then the socle of $\mathcal{F}_{\mathcal{P}}L$ consists of those *f* for which coz(f) is a join of finitely many atoms. Also it is shown that not only $\mathcal{F}_{\mathcal{P}}L$ has Property (A) but also if *L* has a finite number of atoms then the residue class ring $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).

2 Preliminaries

For a general theory of frames we refer to [16, 24]. Here we collect a few facts that will be relevant for our discussion. A *frame* is a complete lattice L in which the infinite distributive law

$$x \land \bigvee S = \bigvee \{x \land s : s \in S\}$$

holds for all $x \in L$ and $S \subseteq L$. We denote the top element and the bottom element of L by \top and \bot , respectively. The frame of all subsets of a set X is denoted by P(X). A *frame homomorphism* (or *frame map*) is a map between frames which preserves finite meets, including the top element, and arbitrary joins, including the bottom element.

Let L be a lattice and $a \in L$. Then a is said to be **atom** if $a \neq \bot$ and there exists no element x with $\bot < x < a$. Also, an element a of a frame L is said to be *rather below* an element b, written $a \prec b$, in case there is an element s, called a *separating element*, such that $a \land s = \bot$ and $s \lor b = \top$. On the other hand, a is *completely below* b, written $a \prec \prec b$, if there are elements (c_q) indexed by the rational numbers $\mathbb{Q} \cap [0, 1]$ such that $c_0 = a, c_1 = b$, and $c_p \prec c_q$ for p < q. A frame L is said to be *completely regular* if $a = \bigvee \{x \in L \mid x \prec \prec a\}$ for each $a \in L$.

We denote the frame of reals and the ring of continuous of real-valued functions on a completely regular frame L, by $\mathcal{L}(\mathbb{R})$ and $\mathcal{R}L$, respectively. Recall that $\mathcal{R}L$ is the collection of frame homomorphisms from $\mathcal{L}(\mathbb{R})$ into L(see [3, 4]). The cozero map (see [4, 5] for details) is the map $coz : \mathcal{R}L \to L$ given by

$$cozf = \bigvee \{ f(p,0) \lor f(0,q) \, | \, p,q \in \mathbb{Q} \} = f((-\infty,0) \lor (0,+\infty))$$

A cozero element of L in $\mathcal{R}L$ is an element of the form $coz(\alpha)$, for some $\alpha \in \mathcal{R}L$. A frame L is completely regular if and only if $Coz(\mathcal{R}L)$ generates L, where $Coz(\mathcal{R}L) = \{coz(\alpha) \mid \alpha \in \mathcal{R}L\}$.

A lattice-ordered ring (ℓ -ring) is a commutative ring A with the identity 1 whose underlying set is endowed with a lattice ordering such that for each $a, b, c \in A$, $(a \wedge b) + c = (a + c) \wedge (b + c)$, and $ab \ge 0$, whenever $a, b \ge 0$. An

f-ring is an ℓ -ring A which satisfies $(a \wedge b)c = (ac) \wedge (bc)$ for any $a, b \in A$ and $c \geq 0$ in A.

A real-valued function on a frame L is a frame homomorphism f: $P(\mathbb{R}) \to L$, where one assumes $(P(\mathbb{R}), \subseteq)$ to be a Boolean frame. The set of all real-valued functions on a frame L is denoted by $\mathcal{F}_{\mathcal{P}}L$. In [18] the authors showed that, the set $\mathcal{F}_{\mathcal{P}}L$ by operation $\diamond : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a sub-f-ring of $\mathcal{R}L$ in which for all $f, g \in \mathcal{F}_{\mathcal{P}}L$, $f \diamond g : P(\mathbb{R}) \to L$ defined by

$$(f \diamond g)(X) = \bigvee \{ f(Y) \land g(Z) : Y \diamond Z \subset X \},\$$

where $\diamond \in \{+, -, \land, \lor\}$ and $Y \diamond Z = \{y \diamond z : y \in Y, z \in Z\}$. For any frame L, the mapping $\mathcal{F}_{\mathcal{P}}L \to \mathcal{R}L$ taking any f to $f \circ j$ is an f-ring monomorphism, where $j : \mathcal{L}(\mathbb{R}) \to \mathfrak{O}(R)$ taking (p,q) to $]p,q[:= \{x \in \mathbb{R} : p < x < q\}$ is an isomorphism (see [18, Theorem 6.1]).

The constant real-valued function on a frame L in $\mathcal{F}_{\mathcal{P}}L$ is

$$\mathbf{c}(X) = \begin{cases} \top & \text{if } c \in X \\ \bot & \text{if } c \notin X \end{cases},$$

for every $X \in P(\mathbb{R})$ and $c \in \mathbb{R}$. According to [27], for every $f \in \mathcal{F}_{\mathcal{P}}L$, $f(\{0\})$ is denoted by z(f) and is called a *zero-element*. Any element in Lwhich is a zero-element of some frame map in $\mathcal{F}_{\mathcal{P}}L$ is called a zero-element of L. Thus, z is a mapping from the ring $\mathcal{F}_{\mathcal{P}}L$ onto the set of all zero-elements in L. Also a cozero-element of L in $\mathcal{F}_{\mathcal{P}}L$ is defined by $coz(f) \coloneqq f(\mathbb{R} \setminus \{0\})$ for some $f \in \mathcal{F}_{\mathcal{P}}L$. It is clear that z(f) = (coz(f))'. Now we recall some properties of $\mathcal{F}_{\mathcal{P}}L$ which will be used in the sequel.

Theorem 2.1. [27] For every $f, g \in \mathcal{F}_{\mathcal{P}}L$, we have

(1) for every n ∈ N, z(f) = z(-f) = z(|f|) = z(fⁿ),
 (2) z(fg) = z(f) ∨ z(g),
 (3) z(f + g) ≥ z(f) ∧ z(g),
 (4) z(f + g) = z(f) ∧ z(g), while f, g ≥ 0,
 (5) z(f) = ⊤ if and only if f = 0,
 (6) z(f) = ⊥ if and only if f is a unit element of F_PL.

Proof. We prove the last assertion. Suppose that f is a unit of $\mathcal{F}_{\mathcal{P}}L$. Then there exists $g \in \mathcal{F}_{\mathcal{P}}L$ such that $fg = \mathbf{1}$. So by part (2), $\bot = z(1) = z(fg) = z(fg) = z(f) \lor z(g)$, and hence $z(f) = \bot$. Conversely, assume that $f \in \mathcal{F}_{\mathcal{P}}L$ and $z(f) = \bot$. Define

$$g(X) := \bigvee \{ f\{\frac{1}{x}\} \mid x \in X - \{0\} \}.$$

We show that g belongs to $\mathcal{F}_{\mathcal{P}}L$ which is the multiplicative inverse of f in $\mathcal{F}_{\mathcal{P}}L$. The proof consists of four steps to check:

Step 1. The first step is verifying that $g(\mathbb{R}) = \top$. Since $f\{0\} = \bot$, we have

$$g(\mathbb{R}) = \bigvee \{f\{\frac{1}{x}\} \mid x \in \mathbb{R} - \{0\}\}$$

$$= \bot \lor \bigvee \{f\{\frac{1}{x}\} \mid x \in \mathbb{R} - \{0\}\}$$

$$= f\{0\} \lor \bigvee \{f\{\frac{1}{x}\} \mid x \in \mathbb{R} - \{0\}\}$$

$$= f(\mathbb{R})$$

$$= \top.$$

Step 2. Let $\{X_i\}_{i \in I} \subseteq P(\mathbb{R})$. If for all $i, X_i = \emptyset$ or $\{0\}$, then obviously,

$$g(\bigcup_{i\in I} X_i) = \bot = \bigvee_{i\in I} g(X_i),$$

or else there is an *i* which $X_i \neq \emptyset, \{0\}$, then

$$g(\bigcup_{i \in I} X_i) = \bigvee \{ f\{\frac{1}{x}\} \mid x \in (\bigcup_{i \in I} X_i) - \{0\} \}$$

= $\bigvee \{ f\{\frac{1}{x}\} \mid x \in \bigcup_{i \in I} (X_i - \{0\}) \}$
= $\bigvee_{i \in I} \bigvee \{ f\{\frac{1}{x}\} \mid x \in X_i - \{0\} \}$
= $\bigvee_{i \in I} g(X_i).$

Step 3. Let $X, Y \in P(\mathbb{R})$. If $X, Y \in \{\emptyset, \{0\}\}$, then obviously,

$$g(X \cap Y) = \bot = g(X) \land g(Y),$$

or else we have

$$\begin{split} g(X \cap Y) &= \bigvee \{ f\{\frac{1}{x}\} \mid x \in (X \cap Y) - \{0\} \} \\ &= \bigvee \{ f\{\frac{1}{x}\} \mid x \in (X - \{0\}) \cap (Y - \{0\}) \} \\ &= \bigvee \{ f\{\frac{1}{x}\} \wedge f\{\frac{1}{y}\} \mid x \in X - \{0\}, y \in Y - \{0\} \} \\ &= \bigvee \{ f\{\frac{1}{x}\} \mid x \in X - \{0\}\} \wedge \bigvee \{ f\{\frac{1}{y}\} \mid y \in Y - \{0\} \} \\ &= g(X) \wedge g(Y) \,. \end{split}$$

Step 4. In the last step, we show that fg = 1. We have

$$\begin{aligned} (fg)(\{1\}) &= \bigvee \{f(\{x\}) \land g(\{y\}) \mid xy = 1\} \\ &= \bigvee \{f(\{x\}) \land g(\{\frac{1}{x}\}) \mid 0 \neq x \in \mathbb{R}\} \\ &= \bigvee \{f(\{x\}) \land f(\{x\}) \mid 0 \neq x \in \mathbb{R}\} \\ &= \bigvee \{f(\{x\}) \mid 0 \neq x \in \mathbb{R}\} \\ &= f(\{0\}) \bigvee \{f(\{x\}) \mid 0 \neq x \in \mathbb{R}\} \\ &= f(\mathbb{R}) \\ &= \top \end{aligned}$$

and

$$\begin{aligned} (fg)(\{0\}) &= & \bigvee \{f(\{x\}) \land g(\{y\}) \mid xy = 0\} \\ &= & \bigvee \{f(\{x\}) \land g(\{y\}) \mid x = 0\} \lor \bigvee \{f(\{x\}) \land g(\{y\}) \mid y = 0\} \\ &= & \bigvee \{ \bot \land g(\{y\})\} \lor \bigvee \{f(\{x\}) \land \bot\} \\ &= & \bot. \end{aligned}$$

Also, if $r \neq 0, 1$, then

$$\begin{aligned} (fg)(\{r\}) &= \bigvee \{f(\{x\}) \land g(\{y\}) \mid xy = r\} \\ &= \bigvee \{f(\{x\}) \land g(\{\frac{r}{x}\}) \mid 0 \neq x \in \mathbb{R}\} \\ &= \bigvee \{f(\{x\}) \land f(\{\frac{x}{r}\}) \mid x \neq 0\} \\ &= \bigvee \{f(\emptyset) \mid x \neq 0\} \\ &= \bot \end{aligned}$$

and thus fg = 1. The proof is now complete.

3 On minimal ideals of $\mathcal{F}_{\mathcal{P}}L$

We recall from [20, p. 63] that a minimal ideal of a *reduced* ring (a ring without any nonzero nilpotent element) is generated by an idempotent. Furthermore, if R is a reduced ring and $e^2 = e \in R$, then eR is a minimal ideal if and only if eR is a field with the multiplicative identity e. In this section, we study minimal ideals of $\mathcal{F}_{\mathcal{P}}L$ and we show that if I is a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ and $a = \bigvee_{f \in I} coz(f)$ then I is generated by f_a , where f_a is introduced in the following proposition.

Proposition 3.1. Let a be a complemented element of the frame L. Then $f_a: P(\mathbb{R}) \to L$, defined by

$$f_a(X) = \begin{cases} \top & if \ 0, 1 \in X \\ a' & if \ 0 \in X \ and \ 1 \notin X \\ a & if \ 0 \notin X \ and \ 1 \in X \\ \bot & if \ 0 \notin X \ and \ 1 \notin X, \end{cases}$$

is a real-valued function on L.

Proof. Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be a family of subsets of \mathbb{R} . Then

$$f_a(\bigcup_{\lambda \in \Lambda} X_\lambda) = \begin{cases} \top & \text{if } \exists \lambda_1, \lambda_2 \in \Lambda \text{ such that } 0 \in X_{\lambda_1} \text{ and } 1 \in X_{\lambda_2}, \\ a' & \text{if } 0 \in X_\lambda \text{ and } 1 \notin X_\lambda, \text{ for every } \lambda \in \Lambda, \\ a & \text{if } 0 \notin X_\lambda \text{ and } 1 \in X_\lambda, \text{ for every } \lambda \in \Lambda, \\ \bot & \text{if } 0 \notin X_\lambda \text{ and } 1 \notin X_\lambda, \text{ for every } \lambda \in \Lambda, \\ = \bigvee_{\lambda \in \Lambda} f_a(X_\lambda). \end{cases}$$

A straightforward calculation shows that $f_a(A \cap B) = f_a(A) \wedge f_a(B)$, for every $A, B \in P(\mathbb{R})$. Since $f_a(\mathbb{R}) = \top$ and $f_a(\emptyset) = \bot$, we conclude that f_a is a real-valued function on L.

From now on, unless specified otherwise, f_a denotes the real-valued function from the power set of \mathbb{R} into L, defined in Proposition 3.1.

Proposition 3.2. Let a be a complemented element of L. Then $f_a^2 = f_a$.

Proof. Let x be a nonzero element of \mathbb{R} . Then

$$\begin{aligned} f_a^2(\{x\}) &= \bigvee_{0 \neq y \in \mathbb{R}} f_a(\{y\}) \wedge f_a(\{\frac{x}{y}\}) \\ &= \bigvee_{0 \neq y \in \mathbb{R}} f_a(\{y\} \cap \{\frac{x}{y}\}) \\ &= \begin{cases} f_a(\{1\}) & \text{if } x = 1, \\ \bot & \text{if } x \neq 1 \\ &= f_a(\{x\}). \end{aligned}$$

Since $z(f_a^2) = z(f_a)$, we conclude that $f_a^2(\{0\}) = f_a(\{0\})$. Hence $f_a^2 = f_a$.

Proposition 3.3. Let a be a complemented element of L. Then for every $f \in \mathcal{F}_{\mathcal{P}}L$ and $X \in P(\mathbb{R})$,

$$ff_a(X) = \begin{cases} a' \lor f(X) & \text{if } 0 \in X, \\ a \land f(X) & \text{if } 0 \notin X. \end{cases}$$

Proof. By Theorem 2.1, we have

$$ff_a(\{0\}) = z(ff_a) = z(f) \lor z(f_a) = f(\{0\}) \lor a'.$$

Now, let x be a nonzero element of \mathbb{R} . Then

$$\begin{aligned} ff_a(\{x\}) &= \bigvee_{0 \neq y \in \mathbb{R}} f(\{y\}) \wedge f_a(\{\frac{x}{y}\}) \\ &= f(\{x\}) \wedge f_a(\{1\}) \\ &= f(\{x\}) \wedge a. \end{aligned}$$

We consider the following two cases:

Case 1: Let $X \in P(\mathbb{R})$ with $0 \in X$. Then

$$\begin{aligned} ff_{a}(X) &= ff_{a}(\{0\}) \lor ff_{a}(X \setminus \{0\}) \\ &= (f(\{0\}) \lor a') \lor \bigvee_{x \in X \setminus \{0\}} ff_{a}(\{x\}) \\ &= (f(\{0\}) \lor a') \lor \bigvee_{x \in X \setminus \{0\}} f(\{x\}) \land a \\ &= (f(\{0\}) \lor a') \lor (a \land \bigvee_{x \in X \setminus \{0\}} f(\{x\})) \\ &= (f(\{0\}) \lor a') \lor (a \land f(X \setminus \{0\})) \\ &= (f(\{0\}) \lor a' \lor a) \land (f(\{0\}) \lor a' \lor f(X \setminus \{0\})) \\ &= \top \land (a' \lor f(X)) \\ &= a' \lor f(X). \end{aligned}$$

Case 2: Let $X \in P(\mathbb{R})$ with $0 \notin X$. Then

$$ff_a(X) = \bigvee_{x \in X} ff_a(\{x\})$$

= $\bigvee_{x \in X} f(\{x\}) \land a$
= $a \land \bigvee_{x \in X} f(\{x\})$
= $a \land f(X).$

Hence

$$ff_a(X) = \begin{cases} a' \lor f(X) & \text{if } 0 \in X, \\ a \land f(X) & \text{if } 0 \notin X, \end{cases}$$

for every $X \subseteq \mathbb{R}$.

For an element a of a frame L, let $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a) := \{f \in \mathcal{F}_{\mathcal{P}}L | coz(f) \leq a\}.$ Clearly $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is an ideal of $\mathcal{F}_{\mathcal{P}}L$.

Proposition 3.4. Let a be a complemented element of a frame L. Then $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is a principal ideal generated by f_a .

Proof. Suppose that $0 \neq f \in \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$. Then $coz(f) \leq a$ and $z(f) \geq a'$. Let $X \in P(\mathbb{R})$ with $0 \in X$. Then $a' \leq f(\{0\}) \leq f(X)$ and, using Proposition 3.3, we have

$$f(X) = a' \lor f(X) = ff_a(X).$$

Now, we assume that $X \in P(\mathbb{R})$ with $0 \notin X$. Since

$$f(X) \subseteq f(\mathbb{R} \setminus \{0\}) = coz(f) \le a,$$

we conclude from Proposition 3.3 that $f(X) = F(X) \wedge a = ff_a(X)$. Hence $\Re_{\mathcal{F}_{\mathcal{P}}}(a) \subseteq \langle f_a \rangle$. Evidently, $\langle f_a \rangle \subseteq \Re_{\mathcal{F}_{\mathcal{P}}}(a)$, since $coz(f_a) = a$. \Box

Remark 3.5. We have the following conclusions:

- (1) $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(\top) = \mathcal{F}_{\mathcal{P}}L$ and $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(\bot) = (0).$
- (2) For each pair of complemented elements $a, b \in L$, $f_a f_b = f_{a \wedge b}$.
- (3) $f_a + f_{a'} = 1$.

Lemma 3.6. If a is an atom element of a frame L and $0 \neq g \in \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$, then $h: P(\mathbb{R}) \to L$ defined by

$$h(X) = \begin{cases} a' \lor \bigvee_{0 \neq x \in X} g(\{\frac{1}{x}\}) & \text{if } 0 \in X, \\ a \land \bigvee_{x \in X} g(\{\frac{1}{x}\}) & \text{if } 0 \notin X, \end{cases}$$

is a real-valued function on L.

Proof. Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be a family of subsets of \mathbb{R} . We put $\Lambda_0 := \{\lambda \in \Lambda \mid 0 \in X_{\lambda}\}$ and $\Lambda_1 := \{\lambda \in \Lambda \mid 0 \notin X_{\lambda}\}$. Then

$$\begin{split} \bigvee_{\lambda \in \Lambda} h(X_{\lambda}) &= \bigvee_{\lambda \in \Lambda_{0}} h(X_{\lambda}) \lor \bigvee_{\lambda \in \Lambda_{1}} h(X_{\lambda}) \\ &= \bigvee_{\lambda \in \Lambda_{0}} (a' \lor \bigvee_{0 \neq x \in X_{\lambda}} g(\{\frac{1}{x}\})) \lor \bigvee_{\lambda \in \Lambda_{1}} (a \land \bigvee_{x \in X_{\lambda}} g(\{\frac{1}{x}\})) \\ &= (a' \lor \bigvee_{\lambda \in \Lambda_{0}} \bigvee_{0 \neq x \in X_{\lambda}} g\{\frac{1}{x}\}) \lor (a \land \bigvee_{\lambda \in \Lambda_{1}} \bigvee_{x \in X_{\lambda}} g\{\frac{1}{x}\}) \\ &= (a' \lor \bigvee_{0 \neq x \in \bigcup_{\lambda \in \Lambda_{0}} X_{\lambda}} g\{\frac{1}{x}\}) \lor (a \land \bigvee_{x \in \bigcup_{\lambda \in \Lambda_{1}} X_{\lambda}} g\{\frac{1}{x}\}) \\ &= (a' \lor \bigvee_{0 \neq x \in \bigcup_{\lambda \in \Lambda_{0}} X_{\lambda}} g\{\frac{1}{x}\}) \lor (a \land \bigvee_{0 \neq x \in \bigcup_{\lambda \in \Lambda} X_{\lambda}} g\{\frac{1}{x}\}) \\ &= h(\bigcup_{\lambda \in \Lambda} X_{\lambda}). \end{split}$$

Assume that $A, B \in P(\mathbb{R})$. If $0 \notin A$ and $0 \notin B$, then

$$\begin{split} h(A) \wedge h(B) &= (a \wedge \bigvee_{x \in A} g(\{\frac{1}{x}\})) \wedge (a \wedge \bigvee_{y \in B} g(\{\frac{1}{y}\})) \\ &= a \wedge \bigvee_{x \in A, y \in B} (g(\{\frac{1}{x}\}) \wedge g(\{\frac{1}{y}\})) \\ &= a \wedge \bigvee_{x \in A, y \in B} (g(\{\frac{1}{x}\} \cap \{\frac{1}{y}\})) \\ &= a \wedge \bigvee_{x \in A \cap B} g(\{\frac{1}{x}\}) \\ &= h(A \cap B). \end{split}$$

If $0 \in A$ and $0 \notin B$, then

$$\begin{split} h(A) \wedge h(B) &= (a' \vee \bigvee_{0 \neq x \in A} g(\{\frac{1}{x}\})) \wedge (a \wedge \bigvee_{y \in B} g(\{\frac{1}{y}\})) \\ &= (a' \wedge a \wedge \bigvee_{y \in B} g\{\frac{1}{y}\}) \vee (a \wedge \bigvee_{0 \neq x \in A, y \in B} g(\{\frac{1}{x}\} \cap \{\frac{1}{y}\})) \\ &= a \wedge \bigvee_{x \in A \cap B} g(\{\frac{1}{x}\}) \\ &= h(A \cap B). \end{split}$$

If $0 \in A$ and $0 \in B$, then

$$\begin{split} h(A) \wedge h(B) &= (a' \vee \bigvee_{0 \neq x \in A} g(\{\frac{1}{x}\})) \wedge (a' \vee \bigvee_{0 \neq y \in B} g(\{\frac{1}{y}\})) \\ &= a' \vee (\bigvee_{0 \neq x \in A} g(\{\frac{1}{x}\}) \wedge \bigvee_{0 \neq y \in B} g(\{\frac{1}{y}\})) \\ &= a' \vee \bigvee_{0 \neq x \in A, 0 \neq y \in B} g(\{\frac{1}{x}\} \cap \{\frac{1}{y}\}) \\ &= a' \vee \bigvee_{0 \neq x \in A \cap B} g(\{\frac{1}{x}\}) \\ &= h(A \cap B). \end{split}$$

Therefore, $h(A \cap B) = h(A) \wedge h(B)$, for every $A, B \in P(\mathbb{R})$. Also, since a is an atom element of L and $\bot < coz(g) \le a$, we conclude that coz(g) = a. Finally, from

$$h(\mathbb{R}) = a' \vee \bigvee_{0 \neq x \in A} g(\{\frac{1}{x}\}) = a' \vee coz(g) = a' \vee a = \top$$

and

$$h(\emptyset) = a \land \bigvee_{x \in \emptyset} g(\{\frac{1}{x}\}) = a \land \bot = \bot,$$

we infer that h is a real-valued function on L.

Lemma 3.7. Let a be an atom element of a frame L and $0 \neq g \in \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$. If $h \in \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is the same function of Lemma 3.6, then $hg = f_a$. *Proof.* Let X be a subset of \mathbb{R} . If $\{0,1\} \subseteq X$, then

$$\begin{split} hg(X) &= hg(\{0\}) \lor hg(\{1\}) \lor hg(X \setminus \{0,1\}) \\ &= (h\{0\} \lor g\{0\}) \lor (\bigvee_{0 \neq x \in \mathbb{R}} (h\{x\} \land g\{\frac{1}{x}\})) \lor hg(X \setminus \{0,1\}) \\ &= (a' \lor a') \lor (\bigvee_{0 \neq x \in \mathbb{R}} (a \land g\{\frac{1}{x}\} \land g\{\frac{1}{x}\})) \lor hg(X \setminus \{0,1\}) \\ &= a' \lor (a \land \bigvee_{0 \neq x \in \mathbb{R}} g\{\frac{1}{x}\}) \lor hg(X \setminus \{0,1\}) \\ &= a' \lor (a \land coz(g)) \lor hg(X \setminus \{0,1\}) \\ &= a' \lor a \lor hg(X \setminus \{0,1\}) \\ &= \top \\ &= f_a(X). \end{split}$$

If $0 \in X$ and $1 \notin X$, then

$$\begin{split} hg(X) &= hg(\{0\}) \lor hg(X \setminus \{0\}) \\ &= (h(\{0\}) \lor g(\{0\})) \lor (\bigvee_{0 \neq xy \in X} (h(\{x\}) \land g(\{y\}))) \\ &= a' \lor (\bigvee_{0 \neq x \in \mathbb{R}} (a \land g(\{\frac{1}{x}\}) \land g(\{y\}))) \\ &= a' \lor (\bigvee_{0 \neq x \in \mathbb{R}} (a \land g(\{\frac{1}{x}\} \cap \{y\}))) \\ &= a' \lor (a \land \bot) \\ &= a' \\ &= f_a(X). \end{split}$$

If $0 \notin X$ and $1 \in X$, then

$$\begin{split} hg(X) &= hg(\{1\}) \lor hg(X \setminus \{1\}) \\ &= (\bigvee_{0 \neq x \in \mathbb{R}} (h(\{x\}) \land g(\{\frac{1}{x}\}))) \lor (\bigvee_{1 \neq xy \in X} (h(\{x\}) \land g(\{y\}))) \\ &= (\bigvee_{0 \neq x \in \mathbb{R}} (a \land g\{\frac{1}{x}\} \land g\{\frac{1}{x}\})) \lor (\bigvee_{1 \neq xy \in X} (a \land g\{\frac{1}{x}\} \land g\{y\})) \\ &= (a \land \bigvee_{0 \neq x \in \mathbb{R}} (g(\{\frac{1}{x}\}))) \lor (\bigvee_{1 \neq xy \in X} (a \land g(\{\frac{1}{x}\} \cap \{y\}))) \\ &= (a \land coz(g)) \lor (\bigvee_{1 \neq xy \in X} (a \land \bot)) \\ &= a \\ &= f_a(X). \end{split}$$

If $0 \notin X$ and $1 \notin X$, then

$$hg(X) = \bigvee_{xy \in X} (h(\{x\}) \land g(\{y\}))$$

$$= \bigvee_{xy \in X} (a \land g(\{\frac{1}{x}\}) \land g(\{y\}))$$

$$= \bigvee_{xy \in X} (a \land g(\{\frac{1}{x}\} \cap \{y\}))$$

$$= \bigvee_{xy \in X} (a \land \bot)$$

$$= \bot$$

$$= f_a(X).$$

Hence $hg = f_a$.

Proposition 3.8. Let a be an atom of a frame L. Then $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$.

Proof. By Lemmas 3.6 and 3.7, $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is a field with the multiplicative identity f_a . Hence, by Propositions 3.2 and 3.4, $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$ is a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$.

Let R be a commutative ring with unit. We let \mathscr{M} denote its maximal ideal space of R and put $\mathscr{M}(a) = \{M \in \mathscr{M} \mid a \in M\}$ for all $a \in R$. An ideal I of R is called a *z*-ideal if $\mathscr{M}(a) = \mathscr{M}(b)$ and $a \in I$, then $b \in I$. Equivalently, since $\mathscr{M}(a) \subseteq \mathscr{M}(b)$ if and only if $\mathscr{M}(ab) = \mathscr{M}(b)$, hence I is a *z*-ideal if and only if $\mathscr{M}(a) \subseteq \mathscr{M}(b)$ and $a \in I$ implies $b \in I$ (see [23]). It is well known that if R has minimal nonzero ideals, then they are *z*-ideals (see [23]).

Lemma 3.9. Let I be a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$. Then $I = \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$, for some complemented element a of L.

Proof. Clearly every minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ is generated by an idempotent. Hence there exists an idempotent $e \in I$ such that $I = e\mathcal{F}_{\mathcal{P}}L$. Now consider a = coz(e). Since I is a z-ideal and $z(f_a) = a' = z(e)$, we conclude that $f_a \in I$. Proposition 3.4 insures that $\mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a) \subseteq I$ and the minimality of I implies that $I = \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$.

Definition 3.10. A frame L is called an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame provided there exists $\mathcal{A} \subseteq \mathcal{F}_{\mathcal{P}}$ such that $a = \bigvee_{f \in \mathcal{A}} coz(f)$, for every $a \in L$.

If L is an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame and $a \in L$, then there exists $\mathcal{A} \subseteq \mathcal{F}_{\mathcal{P}}$ such that $a = \bigvee_{f \in \mathcal{A}} coz(f) = \bigvee_{f \in \mathcal{A}} coz(f \circ j)$, which shows that L is a completely regular frame.

Proposition 3.11. Let L be an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame. Then for an ideal I of $\mathcal{F}_{\mathcal{P}}L$, the following statements are equivalent.

- (1) The ideal I is a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$.
- (2) $I = \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$, for some atom a of L.

Proof. (1) \Rightarrow (2) There exists a complemented element a of L such that $I = \Re_{\mathcal{F}_{\mathcal{P}}}(a)$, by Lemma 3.9. Suppose that there exists $s \in L$ such that $\perp < s \leq a$. Since L is an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame, we conclude that there exists $g \in \mathcal{F}_{\mathcal{P}}L$ such that $\perp < coz(g) \leq s \leq a$, which shows that $0 \neq g \in I$, and so $I = \langle g \rangle$, because I is a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$. Hence there exists $h \in \mathcal{F}_{\mathcal{P}}L$ such that $f_a = hg$, which implies that $a = coz(f_a) \leq coz(g)$ and so coz(g) = s = a. Therefore, a is an atom and $I = \Re_{\mathcal{F}_{\mathcal{P}}}(a)$.

 $(2) \Rightarrow (1)$ By Proposition 3.8, it is evident.

4 On Property (A) of $\mathcal{F}_{\mathcal{P}}L$

Recall that a commutative ring R has Property (A) if every finitely generated ideal of R consisting entirely of zero-divisors has a nonzero annihilator. In [2] the authors showed that C(X) has Property (A). In this section, we show that (i) $\mathcal{F}_{\mathcal{P}}L$ has Property (A), (ii) if L has a finite number of atoms, then the residue class ring $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).

Proposition 4.1. Let L be a frame. Then f-ring $\mathcal{F}_{\mathcal{P}}L$ has Property (A).

Proof. Let $I = \sum_{i=1}^{n} f_i \mathcal{F}_{\mathcal{P}} L \subseteq Z(\mathcal{F}_{\mathcal{P}} L)$. Since $f = \sum_{i=1}^{n} f_i^2 \in I$, we conclude that there exists $0 < g \in \mathcal{F}_{\mathcal{P}} L$ such that fg = 0, which shows that $coz(fg) = \bot$. Let $h = \sum_{i=1}^{n} f_i h_i \in I$. Then

$$coz(hg) = coz(\sum_{i=1}^{n} f_i h_i g)$$

$$\leq \bigvee_{i=1}^{n} coz(|f_i||h_i|g)$$

$$\leq \bigvee_{i=1}^{n} coz(f_i^2 g)$$

$$= coz(\sum_{i=1}^{n} f_i^2 g)$$

$$= coz(fg)$$

$$= \bot.$$

m

Hence hg = 0, which implies that $g \in Ann(I)$. Therefore, $\mathcal{F}_{\mathcal{P}}L$ has Property (A).

Lemma 4.2. Let a_1, \ldots, a_n be disjoint atomic elements of a frame L. Then for every $f \in \mathcal{F}_{\mathcal{P}}L$ and $X \in P(\mathbb{R})$,

$$\sum_{i=1}^{n} ff_{a_i}(X) = \begin{cases} (\bigwedge_{i=1}^{n} a'_i) \lor f(X) & \text{if } 0 \in X, \\ (\bigvee_{i=1}^{n} a_i) \land f(X) & \text{if } 0 \notin X. \end{cases}$$

Proof. We prove it by induction on the number of complemented elements. For n = 1, it follows from Proposition 3.3. For n > 1 let $g = \sum_{i=1}^{n-1} f f_{a_i}$. Then

$$g(\{0\}) \wedge ff_{a_n}(\{0\}) = [(\bigwedge_{i=1}^{n-1} a'_i) \vee f(\{0\})] \wedge [a'_n \vee f(\{0\})] = (\bigwedge_{i=1}^n a'_i) \vee f(\{0\}),$$

$$g(\{x\}) \wedge ff_{a_n}(\{0\}) = [(\bigvee_{i=1}^{n-1} a_i) \wedge f(\{x\})] \wedge [a'_n \vee f(\{0\})]$$

$$= [(\bigvee_{i=1}^{n-1} a_i) \wedge f\{x\} \wedge a'_n] \vee [(\bigvee_{i=1}^{n-1} a_i) \wedge f\{x\} \wedge f\{0\}]$$

$$= (\bigvee_{i=1}^{n-1} a_i) \wedge f(\{x\}),$$

$$g(\{0\}) \wedge ff_{a_n}(\{x\}) = [(\bigwedge_{i=1}^{n-1} a'_i) \vee f(\{0\})] \wedge [a_n \wedge f(\{x\})]$$

$$= [(\bigwedge_{i=1}^{n-1} a'_i) \wedge a_n \wedge f(\{x\})] \vee [f(\{0\}) \wedge a_n \wedge f(\{x\})]$$

$$= a_n \wedge f(\{x\}),$$

for every $0 \neq x \in \mathbb{R}$. Also if $x, y \in \mathbb{R}$ with $y \neq 0 \neq x$, then

$$g(\{x\}) \wedge ff_{a_n}(\{y\}) = [(\bigvee_{i=1}^{n-1} a_i) \wedge f(\{x\})] \wedge [a_n \wedge f(\{y\})] = \bot$$

Hence

$$(g+ff_{a_n})(\{0\}) = \bigvee_{x \in \mathbb{R}} g\{x\} \land ff_{a_n}(\{-x\}) = g\{0\} \land ff_{a_n}(\{0\}) = (\bigwedge_{i=1}^n a'_i) \lor f\{0\}$$

and

$$(g + ff_{a_n})(\{x\}) = \bigvee_{y \in \mathbb{R}} g(\{y\}) \wedge ff_{a_n}(\{x - y\}) \\ = [g(\{0\}) \wedge ff_{a_n}(\{x\})] \vee [g(\{x\}) \wedge ff_{a_n}(\{0\})] \\ = [a_n \wedge f(\{x\})] \vee [(\bigvee_{i=1}^{n-1} a_i) \wedge f(\{x\})] \\ = (\bigvee_{i=1}^n a_i) \wedge f(\{x\}).$$

Thus if $0 \in X \subseteq \mathbb{R}$, then

$$\begin{split} (\sum_{i=1}^{n} ff_{a_{i}})(X) &= (g + ff_{a_{n}})(\{0\}) \lor \bigvee_{0 \neq x \in X} (g + ff_{a_{n}})(\{x\}) \\ &= [(\bigwedge_{i=1}^{n} a'_{i}) \lor f(\{0\})] \lor \bigvee_{0 \neq x \in X} [(\bigvee_{i=1}^{n} a_{i}) \land f(\{x\})] \\ &= [(\bigwedge_{i=1}^{n} a'_{i}) \lor f(\{0\})] \lor [(\bigvee_{i=1}^{n} a_{i}) \land \bigvee_{0 \neq x \in X} f(\{x\})] \\ &= (\bigwedge_{i=1}^{n} a'_{i}) \lor f(X), \end{split}$$

and if $0 \notin X \subseteq \mathbb{R}$, then

$$(\sum_{i=1}^{n} ff_{a_i})(X) = \bigvee_{x \in X} (g + ff_{a_n})(\{x\}) = \bigvee_{x \in X} [(\bigvee_{i=1}^{n} a_i) \wedge f(\{x\})] = (\bigvee_{i=1}^{n} a_i) \wedge f(X).$$

This completes the induction.

Corollary 4.3. Let a_1, \ldots, a_n be disjoint atomic elements of a frame L. Then for every $f \in \mathcal{F}_{\mathcal{P}}L$ and $X \in P(\mathbb{R})$,

$$\sum_{i=1}^{n} f_{a_i} = f_b,$$

where $b = \bigvee_{i=1}^{n} a_i$.

Proof. Consider $b = \bigvee_{i=1}^{n} a_i$. Hence

$$\left(\sum_{i=1}^{n} f_{a_i}\right)(A) = \begin{cases} 1(A) \lor b' & \text{if } 0 \in A, \\ 1(A) \land b & \text{if } 0 \notin A, \end{cases} = f_b(A),$$

for all $A \subseteq \mathbb{R}$.

Proposition 4.4. Let L be an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame. Then the socle of $\mathcal{F}_{\mathcal{P}}L$ consists of those f for which coz(f) is a join of finitely many atoms.

Proof. If $\text{Soc}(\mathcal{F}_{\mathcal{P}}L) = 0$, then there is nothing to prove. Now suppose that it is nonzero. If $f \in \text{Soc}(\mathcal{F}_{\mathcal{P}}L)$, then there exist atoms $a_1, \ldots, a_k \in L$ and $f_1, \ldots, f_i \in \mathcal{F}_{\mathcal{P}}L$ such that

$$f = f_1 f_{a_1} + f_2 f_{a_2} + \dots + f_k f_{a_k},$$

by Propositions 3.4 and 3.11, which implies that $coz(f) \leq \bigvee_{i=1}^{k} a_i$. Consequently, $coz(f) = \bigvee_{i=1}^{k} a_i \wedge coz(f)$. Since each a_i is an atom, hence $a_i \wedge coz(f) = 0$ or a_i , which implies that coz(f) is a join of finitely many atoms.

Conversely, suppose that $coz(f) = \bigvee_{i=1}^{k} a_i$, where each a_i is an atom. By Propositions 3.4 and 3.11, $R_{\mathcal{F}_{\mathcal{P}}}(a_i)$ is a minimal ideal generated by f_{a_i} . If $0 \notin X \subseteq \mathbb{R}$, then, by Lemma 4.2, we have

$$(\sum_{i=1}^{n} ff_{a_i})(X) = (\bigvee_{i=1}^{n} a_i) \wedge f(X) = f(X),$$

since $f(X) \leq coz(f)$. If $0 \in X \subseteq \mathbb{R}$, then

$$(\sum_{i=1}^{n} ff_{a_i})(X) = ((\sum_{i=1}^{n} ff_{a_i})(\mathbb{R} \setminus X))' = (f(\mathbb{R} \setminus X))' = f(X).$$

Hence $f = \sum_{i=1}^{n} f f_{a_i} \in \sum_{i=1}^{n} \Re_{\mathcal{F}_{\mathcal{P}}}(a_i) \subseteq \operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L).$

An element f of $\mathcal{F}_{\mathcal{P}}L$ is said to be *bounded* if $|f| \leq \mathbf{n}$, for some $n \in \mathbb{N}$. The set of all bounded real-valued functions on a frame L is denoted by $\mathcal{F}_{\mathcal{P}}^*L$.

Proposition 4.5. For $f \in \mathcal{F}_{\mathcal{P}}L$, the following statements are equivalent.

- (1) $f \in \mathcal{F}_{\mathcal{P}}^* L.$
- (2) $f(]]p,q[]) = \top$ for some $p,q \in \mathbb{Q}$ with p < q.

(3) $f((-\infty, p[[\cup]]q, +\infty)) = \bot$ for some $p, q \in \mathbb{Q}$ with p < q.

Proof. Straightforward.

Proposition 4.6. Let L be an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame. Then every minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ consists entirely of bounded functions.

Proof. Let I be a minimal ideal of $\mathcal{F}_{\mathcal{P}}L$ and $f \in I$. Then there exists an atom element a of L such that $I = \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a)$, by Proposition 3.11. Since $f = ff_a$, we conclude from Proposition 3.3 that $f(]\!] - n, n[\![]) = a' \vee f(]\!] - n, n[\![])$, for all $n \in$ \mathbb{N} . The maximality of a' insures that $a' = f(]\!] - n, n[\![])$ or $f(]\!] - n, n[\![]) = \top$. If $a' = f(]\!] - n, n[\![])$ for all $n \in \mathbb{N}$, then $\top = f(\mathbb{R}) = \bigvee f(]\!] - n, n[\![]) = a'$, which is a contradiction. Therefore there exists $n \in \mathbb{N}$ such that $f(]\!] - n, n[\![]) = \top$. Hence $f \in \mathcal{F}_{\mathcal{P}}^*L$, by Proposition 4.5.

Corollary 4.7. If L is an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame, then $\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L) = \operatorname{Soc}(\mathcal{F}_{\mathcal{P}}^*L)$.

Proof. Since $\mathcal{F}_{\mathcal{P}}$ is a reduced *f*-ring with bounded inversion, then $\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L) = \operatorname{Soc}(\mathcal{F}_{\mathcal{P}}^*L)$, by [6, Proposition 3.2] and Proposition 4.6.

Proposition 4.8. Let L be an $\mathcal{F}_{\mathcal{P}}$ -completely regular frame. If L has a finite number of atoms, then the following statements hold.

- (1) The residue class ring $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).
- (2) The residue class ring $\mathcal{F}_{\mathcal{P}}^*L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).

Proof. (1) Let $A = \{a_1, \ldots, a_n\}$ be the set of all atoms in L. Then

$$\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L) = \sum_{i=1}^{n} \mathfrak{R}_{\mathcal{F}_{\mathcal{P}}}(a_i) = \sum_{i=1}^{n} f_{a_i} \mathcal{F}_{\mathcal{P}}L,$$

by Propositions 3.4 and 3.11. For every $f \in \mathcal{F}_{\mathcal{P}}L$, put $\bar{f} = f + \operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$. Let $I = \langle \bar{f}_1, \ldots, \bar{f}_n \rangle$ be a finitely generated ideal of $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ entirely of zero-divisors. Consider $f = \sum_{i=1}^n f_i^2$. Since $\bar{f} = \sum_{i=1}^n \bar{f}_i^2 \in I$, we conclude that there exists $0 < g \in \mathcal{F}_{\mathcal{P}}L$ such that $\bar{f}\bar{g} = 0$ and $\bar{g} \neq 0$. Then $\operatorname{coz}(fg) = \bigvee_{j=1}^r a_{i_j}$, for some $a_{i_1}, \ldots, a_{i_r} \in A$. Consider $b = \bigwedge_{i=1}^n a'_i$. We claim that $0 \neq \bar{f}_b \bar{g} \in \operatorname{Ann}(I)$. If $\operatorname{coz}(f_b g) \leq \bigvee_{i=1}^n a_i$, then

$$coz(f_bg) = coz(f_bg) \land \bigvee_{i=1}^n a_i = b \land coz(g) \land \bigvee_{i=1}^n a_i = \bot,$$

which follows that $coz(g) \leq z(f_b) = \bigvee_{i=1}^n a_i$. Hence $g \in Soc(\mathcal{F}_{\mathcal{P}}L)$, which is a contradiction. Thus $0 \neq \overline{f_b}\overline{g}$.

Let $h = \sum_{i=1}^{n} f_i h_i$. Then

$$coz(hf_bg) = coz(\sum_{i=1}^n f_i h_i f_b g)$$

$$\leq \bigvee_{i=1}^n coz(|f_i||h_i|f_b g)$$

$$\leq \bigvee_{i=1}^n coz(f_i^2 f_b g)$$

$$= coz(\sum_{i=1}^n f_i^2 f_b g)$$

$$= coz(fgf_b)$$

$$\leq \bigvee_{j=1}^r a_{i_j} \wedge \bigwedge_{i=1}^n a'_i$$

$$= \bot.$$

Hence $\bar{h}\bar{f}_b\bar{g} = 0$, which implies that $\bar{f}_b\bar{g} \in Ann(I)$. Therefore $\mathcal{F}_{\mathcal{P}}L/\operatorname{Soc}(\mathcal{F}_{\mathcal{P}}L)$ has Property (A).

(2) By a similar argument as used in the proof of item (1), one can prove it. \Box

Acknowledgement

We are very thankful to the referee for his/her thorough reading of the paper and giving very helpful comments.

References

- Azarpanah, F., Karamzadeh, O.A.S., and Rahmati, S., C(X) vs. C(X) modulo its Socle, Colloq. Math. 111(2) (2008), 315-336.
- [2] Azarpanah, F., Karamzadeh, O.A.S., and Rezai Aliabad, A., On ideals consisting entirely of zero divisors, Comm. Algebra 28(2) (2000), 1061-1073.
- [3] Ball, R.N. and Walters-Wayland, J., C- and C^{*}-quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412 (2002), 62 pages.
- [4] Banaschewski, B., "The Real Numbers in Pointfree Topology", Textos Mat. Sér. B, 12, University of Coimbra, 1997.
- [5] Banaschewski, B. and Gilmour, C., Cozero bases of frames, J. Pure and Appl. Algebra 157 (2001), 1-22.
- [6] Dube, T., A note on the socle of certain type of f-rings, Bull. Iranian Math. Soc. 38(2) (2012), 517-528.
- [7] Dube, T., Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ. Padova 123 (2010), 37-53.
- [8] Estaji, A.A. and Karamzadeh, O.A.S., On C(X) modulo its socle, Comm. Algebra 31(4) (2003), 1561-1571.
- [9] Ferreira, M.J., Gutiérrez García, J., and Picado, J., Completely normal frames and real-valued functions, Topology Appl. 156 (2009), 2932-2941.
- [10] Gutiérrez García, J., Kubiak, T., and Picado, J., Localic real functions: A general setting, J. Pure Appl. Algebra 213 (2009), 1064-1074.
- [11] Gutiérrez García, J. and Picado, J., Rings of real functions in pointfree topology, Topology Appl. 158 (2011), 2264-2287.

- [12] Henriksen, H. and Jerison, M., The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965) 110-130.
- [13] Hong, C.Y., Kim, N.K., Lee, Y., and Ryu, S.J., Rings with property (A) and their extensions, J. Algebra 315 (2007), 612-628.
- [14] Huckaba, J.A., "Commutative Rings with Zero Divisors", Marcel Dekker Inc., 1987.
- [15] Huckaba, J.A. and Keller, J.M., Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), 375-379.
- [16] Johnstone, P.T., "Stone Space", Cambridge University Press, 1982.
- [17] Kaplansky, I., "Commutative Rings", Rev. Ed. Chicago: University of Chicago Press, 1974.
- [18] Karimi Feizabadi, A., Estaji, A.A., and Zarghani, M., The ring of real-valued functions on a frame, Categ. General Alg. Struct. Appl. 5(1) (2016), 85-102.
- [19] Karamzadeh, O.A.S and Rostami, M., On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184.
- [20] Lambek, J., "Lecture Notes on Rings and Modules", Chelsea Publishing Co., 1976.
- [21] Lucas, T.G., Two annihilator conditions: Property (A) and (A.C.), Comm. Algebra 14(3) (1986), 557-580.
- [22] Marks, G., Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-318.
- [23] Mason, G., z-ideals and prime z-ideals, J. Algebra 2 (1973), 280-297.
- [24] Picado, J. and Pultr, A., "Frames and Locales: Topology without Points", Frontiers in Mathematics, Springer Basel, 2012.
- [25] Picado, J. and Pultr, A., A Boolean extension of a frame and a representation of discontinuity, Pré-Publicações do Departamento de Matemática Universidade de Coimbra, Preprint Number 16-46.
- [26] Quentel, Y., Sur la compacité du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971), 265-272.
- [27] Zarghani, M. and Karimi Feizabadi, A., Zero elements in lattice theory, Proceeedings of the 25th Iranian Algebra Seminar, Hakim Sabzevari University, Sabzevar, Iran, 19-20 July 2016.

Ali Asghar Estaji, Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.

Email: as.estaji@hsu.ac.ir

Ebrahim Hashemi, Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.

 $Email:\ eb_hashemi@yahoo.com,\ eb_hashemi@shahroodut.ac.ir$

Ali Akbar Estaji, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

 $Email: aaestaji@hsu.ac.ir, aa_estaji@yahoo.com$