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A note on the problem when FS-domains
coincide with RB-domains

Zhiwei Zou, Qingguo Li∗, and Lankun Guo

Abstract. In this paper, we introduce the notion of super finitely separat-
ing functions which gives a characterization of RB-domains. Then we prove
that FS-domains and RB-domains are equivalent in some special cases by the
following three claims: a dcpo is an RB-domain if and only if there exists an
approximate identity for it consisting of super finitely separating functions; a
consistent join-semilattice is an FS-domain if and only if it is an RB-domain;
an L-domain is an FS-domain if and only if it is an RB-domain. These re-
sults are expected to provide useful hints to the open problem of whether
FS-domains are identical with RB-domains.

1 Introduction

In [4, 5], A. Jung introduced the notion of FS-domains (that is, finitely
separating domains) and proved that the category FS of FS-domains is
a maximal Cartesian closed full subcategrory of continuous dcpos. Also
in [4, 5], it had been shown that the category RB of RB-domains (or retracts
of algebraic FS-domains) is Cartesian closed, but its maximality is still an
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open question.
A well-known result is that every RB-domain is an FS-domain. Even

though much attention has been paid to the question whether each FS-
domain is an RB-domain, it is still an open problem [2, 4, 5]. We only
make a brief review for the works which are closely related to this problem.
In [6], J.D. Lawson proved that the domain of closed formal balls based on
a complete metric space is an FS-domain. Meanwhile, it is still unknown
whether this domain is an RB-domain. In [7], J.H. Liang and K. Keimel
proved that FS-domains and RB-domains are equivalent for L-domains with
least elements. In [3], R. Heckmann obtained some characterizations of
FS-domains by power domains. In those characterisations, separation by
the elements of a finite set is replaced by separation by a continuous non-
deterministic function with finite image.

A basic result about RB-domain is that a dcpo is an RB-domain if and
only if it has an approximate identity consisting of deflations [4, 5]. Towards
the open problem whether each FS-domain is an RB-domain, a natural ideal
is to find a deflation over every finitely separating function. Inspired by the
idea of R. Heckmann [3], a possible approach for us is to construct a deflation
based on the relating finite subset Fδ over every finitely separating function
δ.

In this paper, we introduce the notion of super finitely separating func-
tions which is a special case of finitely separating functions. Here, separation
by the elements of a finite set is replaced by an order preserving function
with finite image. It is shown that a dcpo is an RB-domain if and only if
it has an approximate identity consisting of super finitely separating func-
tions, which can be seen as a characterization of RB-domains. Finally, we
show that FS-domains always coincide with RB-domains under some special
conditions, such as consistent join-semilattices or L-domains (here, the least
element is not necessary). Our result may provide useful hints to the open
problem mentioned above.

2 FS-domains and RB-domains

A function f : S → T between dcpos is said to be Scott continuous if it sends
directed subsets to directed subsets, and preserves sups of directed subsets.
We denote all the Scott continuous funcitons from S to T by [S → T ].
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Definition 2.1. [2, 4] An approximate identity for a dcpo S is a directed
subset D ⊆ [S → S] satisfying supD = idS , the identity on S.

Definition 2.2. [2, 4] A Scott continuous function δ : S → S on a dcpo S
is finitely separating if there exists a finite set Fδ such that for each x ∈ S,
there exists y ∈ Fδ such that δ(x) ≤ y ≤ x.

(1) A dcpo S is called an FS-domain if there is an approximate identity
for S consisting of finitely separating functions.

(2) An algebraic FS-domain is called a bifinite domain.
(3) A dcpo S is called an RB-domain if it is isomorphic to the image

of some bifinite domain under a Scott continuous projection. That is, an
RB-domain is a continuous retract of some bifinite domain.

Lemma 2.3. [2, 4]
(1) If D ⊆ [S → S] is an approximate identity for a dcpo S, then D′ =

{δ2 = δ ◦ δ : δ ∈ D} is also an approximate identity for S.
(2) If a Scott continuous function δ : S → S on a dcpo S is finitely

separating, then δ(x)� x for each x ∈ S.
Lemma 2.4. [1] A dcpo S is an RB-domain if and only if there is an
approximate identity for S consisting of deflations, where a deflation f :
S → S is a Scott continuous function with finite image and f(x) ≤ x holds
for each x ∈ S.

Lemma 2.3 indicates that every bifinite domain is an RB-domain and
every RB-domain is an FS-domain.

Example 2.5. [2]
(1) All finite posets are bifinite domains, hence RB-domains and FS-

domains.
(2) All bounded complete domains are RB-domains, hence FS-domains.
(3) If a dcpo S has an infinite number of minimal elements, then S is

not an FS-domain.

Definition 2.6. [7] A dcpo S is an L-domain if for every element x of S,
the principal ideal ↓x = {y ∈ S : y ≤ x} is a complete lattice. In this case,
we write sup↓x for the supremum operation in ↓x.
Lemma 2.7. [7] In any L-domain S, if x ≤ y and φ 6= A ⊆ ↓x, then
sup↓xA = sup↓y A.
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Corollary 2.8. [7] For each L-domain S with the least element, the follow-
ing statements are equivalent:

(1) S is an FS-domain.
(2) S is an RB-domain.

Each RB-domain is an FS-domain. However, we do not know whether
every FS-domain is an RB-domain. For a positive answer, we need to find a
deflation above every finitely separating function δ. We notice that in [3], R.
Heckmann uses the existing finite separating set: Fδ to give characterizations
of FS domains. Therefore, a possible approach for us is to construct a
deflation based on the relating Fδ. The first trouble thing is that for each
x ∈ S, there may exist more than one element y ∈ Fδ such that δ(x) ≤ y ≤ x.
Using the Axiom of Choice, we provide the following lemma to give an
equivalent description of finitely separating functions.

Lemma 2.9. A Scott continuous function δ : S → S on a dcpo S is finitely
separating if and only if there exists a function fδ : S → S with finite image
such that δ(x) ≤ fδ(x) ≤ x for each x ∈ S.
Proof. Suppose δ : S → S is finitely separating. For each x ∈ S, there exists
an element yx ∈ F such that δ(x) ≤ yx ≤ x. According to the Axiom of
Choice, we define a function fδ : S → S by fδ(x) = yx for each x ∈ S.
Obviously, Im(fδ) ⊆ F is finite.

Conversely, let F = Im(fδ). It can be checked that δ : S → S is finitely
separating.

Remark 2.10. We remind the reader that the function fδ : S → S, given
in Lemma 2.9, is not necessary to be order preserving. A typical instance is
given in Example 3.10.

3 Super finitely separating functions

In this section, we introduce the concept of super finitely separating func-
tions and show that a dcpo S is an RB-domain if and only if S has an approxi-
mate identity consisting of super finitely separating functions. Then we show
that FS-domains coincide with RB-domains in one of the following cases:
(1) consistent join-semilattices; (2) dual of consistent join-semilattices; (3)
L-domains.
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Definition 3.1. A Scott continuous function δ : S → S on a dcpo S is
called super finitely separating if there exists an order preserving function
fδ : S → S with finite image such that δ(x) ≤ fδ(x) ≤ x for each x ∈ S.

An immediate conclusion is that every deflation is super finitely separat-
ing and every super finitely separating function is finitely separating.

Lemma 3.2. Let S be a domain and δ : S → S be a super finitely separating
function. Then there exists a Scott continuous function θ : S → S with finite
image such that δ(x) ≤ θ(x) ≤ x for each x ∈ S.

Proof. From Definition 3.1, there exists an order preserving function fδ :
S → S with finite image such that δ(x) ≤ fδ(x) ≤ x for each x ∈ S.

Define θ : S → S by θ(x) = sup{fδ(y) : y � x} for each x ∈ S. Since S is
a domain and fδ : S → S is order preserving, θ : S → S is well defined. It is
easy to see that θ has finite image and it is order preserving. For each x ∈ S,
δ(x) = sup{δ(y) : y � x} ≤ sup{fδ(y) : y � x} = θ(x) = sup{fδ(y) : y �
x} ≤ sup{y : y � x} = x.

Suppose that D is a directed subset of S. Then θ(supD) = sup{fδ(y) :
y � supD} = sup{fδ(y) : ∃d ∈ D such that y � d} = sup

d∈D
sup{fδ(y) : y �

d} = sup
d∈D

θ(d).

Thus θ : S → S is Scott continuous.

Theorem 3.3. A dcpo S is an RB-domain if and only if there is an approx-
imate identity for S consisting of super finitely separating functions.

Proof. Suppose S is an RB-domain. Since every deflation is a super finitely
separating function, there is an approximate identity for S consisting of
super finitely separating functions.

Suppose that there exists an approximate identity {δi : i ∈ I} for S,
consisting of super finitely separating functions. By Lemma 3.2, for each δi,
there exists a deflation θi such that δi(x) ≤ θi(x) ≤ x for each x ∈ S. Since
sup{δi : i ∈ I} = idS , we have sup{θi : i ∈ I} = idS . We have proved that,
S is an RB-domain.

Definition 3.4. A poset P is said to be a consistent join-semilattice if each
bounded pair in S has a least upper bound. Equivalently, for each a, b ∈ S,
if there exists c ∈ S such that a ≤ c and b ≤ c, then a ∨ b exists.
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If the dual of P is a consistent join-semilattice, we call it a dual consistent
join-semilattice.

Remark 3.5. (1) A join-semilattice is always a consistent join-semilattice.
(2) A bounded complete domainD is always a consistent join-semilattice.

However, the converse does not hold in general even if D is an FS-domain.
In fact, a bounded complete domain must have the least element, which is
different from a consistent join-semilattice.

Proposition 3.6. If a dcpo S is a consistent join-semilattice (or a dual
consistent join-semilattice), then each finitely separating function δ : S → S
is super finitely separating.

Proof. Since δ : S → S is a finitely separating function, there exists a
function fδ : S → S with finite Im(δ) such that δ(x) ≤ fδ(x) ≤ x for each
x ∈ S, where Im(δ) stands for the image of the function δ.

If S is a consistent join-semilattice, we denote f ′δ(x) = sup{fδ(y) : y ≤ x}
for each x ∈ S. Then the nonempty subset {fδ(y) : y ≤ x} ⊆ Im(δ) is finite
and fδ(y) ≤ y ≤ x imply that f ′δ : S → S is well defined. For each x ∈ S,
f
′
δ(x) = sup{fδ(y) : y ≤ x} ≤ sup{y : y ≤ x} = x and f ′δ(x) ≥ fδ(x) ≥ δ(x).
It is easy to see that f ′δ(x1) ≤ f

′
δ(x2) for all x1, x2 ∈ S with x1 ≤ x2. Thus

δ is a super finitely separating function on S.
In case that S is a dual consistent join-semilattice, just let f ′δ(x) =

inf{fδ(y) : y ≥ x} for each x ∈ S. We can get the conclusion that δ is a
super finitely separating function on S.

Corollary 3.7. A consistent join-semilattice (or a dual consistent join-
semilattice) is an FS-domain if and only if it is an RB-domain.

Proof. This follows immediately from Lemma 2.4, Theorem 3.3 and Propo-
sition 3.6.

It is clear that a sup semilattice is a consistent join-semilattice and an
inf semilattice is a dual consistent join-semilattice. Then by Corollary 3.7,
for a sup semilattice or an inf semilattice, it is an FS-domain if and only it
is an RB-domain.

Proposition 3.8. If S is an L-domain, then each finitely separating function
δ : S → S is super finitely separating.
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Proof. Based on the proof of Proposition 3.6, to prove this proposition, we
only need to show the existence of inf{fδ(y) : y ≥ x} for each x ∈ S.

Since S is an L-domain, every bounded subset of S has the infimum.
In particular, fδ(x) ∧ fδ(y) exists for each pair x, y ∈ S with x ≤ y. This
can imply that inf{fδ(x)

∧
fδ(y) : x ≤ y} exists for each x ∈ S. Observing

the sets {fδ(y) : x ≤ y} and {fδ(x)
∧
fδ(y) : x ≤ y} have the same lower

bounds, we can conclude that inf{fδ(y) : y ≥ x} exists for each x ∈ S.

Corollary 3.9. An L-domain is an FS-domain if and only if it is an RB-
domain.

Proof. This follows immediately from Lemma 2.3, Theorem 3.3 and Propo-
sition 3.8.

The following example shows that a finitely separating function is not
necessary super finitely separating.

Example 3.10. Let S be the dcpo as Fig. 1. Then, δ : S → S is defined as
follows: δ(ai) = bi, δ(bi) = di, δ(ci) = di for each i ∈ N; δ(a) = b and maps
others to the least element 0.

     

     

          

 

  

 

 d1  d2 

 a2  a1 

 a  

 b2  b1  c1  c2 

 b   c  

 0  

Fig    1

Since every directed subset in S has a maximum element, S is a domain
and the order preserving function δ is Scott continuous. It is easy to see that
δ is finitely separating if the associated Fδ is chosen as {a, b, c, 0}. But δ is
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not super finitely separating. In fact: if a function fδ : S → S with finite
image separates δ and idS , then fδ(ai) = a and fδ(ci) = c hold eventually,
but c ≤ a is not true, that is to say, fδ is not order preserving.
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