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an essential extension, so that, in the case that G is archimedean with weak
unit, “G ∈ W”, we have for the Yosida representation spaces a “covering
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U(g) = {P ∈ Min(G) : g /∈ P} (g ∈ G), the Stone space SA is a cover of
Y G with the minimal property of (1); this extends the result from [1] for the
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1 Introduction

For G ∈W, the topological space Min(G) has the open base consisting of
all U(g) = {P ∈ Min(G) : g /∈ P} (g ∈ G), and these sets are clopen. We
denote Min(G) \ U(g) by V (g). Let A be the boolean algebra defined in
the abstract, SA its Stone space. We then have

Min(G)

λ
����

� � dense // SA

Y G

where λ(P ) is the unique M ∈ Y G with P ⊆M . The map λ is a continuous
surjection and A ∋ A 7→ clA ⊆ SA is the isomorphism A ∼= ClopSA .
The following will be shown in Sections 5 and 6.

Theorem 1.1. The map λ : Min(G) 7→ Y G extends continuously to a map
λ : SA 7→ Y G.

Min(G)

λ
����

� � dense // SA

λyyr r r r r r

Y G

The map λ is irreducible (a covering map), and (SA , λ) is the minimum
among those zero-dimensional covers (W,h) of Y G which have clWh

−1 coz g
open for all g ∈ G.

That is the property characterizing Y pG ([8, Theorem 3.6 and Corollary
2.5]), whence we obtain immediately the following.

Theorem 1.2. The projectable hull pG is the W-object of extended real-
valued functions on SA = Y pG of the form

f =
∑

(gi ◦ λ)χUi

for a finite sum, gi ∈ G, {Ui} a clopen partition of SA .

This extends [1] by a simple appeal to [8]. We also have shown this in [9]
via a different approach.
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2 Background and Preliminaries

In this section we set the notation and concepts needed from the theory of
ℓ-groups. Our aim is to give a quick overview of the projectable hull of an
archimedean lattice-ordered group with weak unit. Our standard references
for the theory of ℓ-groups are [4] and [2].

Let G be an abelian ℓ-group. A convex ℓ-subgroup P of G is called
prime if a ∧ b ∈ P implies either a ∈ P or b ∈ P . The set of all prime
subgroups of G is called the prime spectrum of G and is denoted by Spec(G).
Assuming Zorn’s Lemma, primes exist in all ℓ-groups. In particular, given
0 < g ∈ G, there are convex ℓ-subgroups which are maximal with respect to
not containing g. These subgroups are known as values of g and we denote
the set of them by Val(g). Observe that Val(g) = Val(|g|).

We put S(a) = {P ∈ Spec(G) : a /∈ P}. Observe that S(a) = S(|a|)
and that for any 0 < a, b ∈ G, S(a) ∩ S(b) = S(a ∧ b) and S(a) ∪ S(b) =
S(a∨ b). Thus, we can topologize Spec(G) by taking as a base of open sets
the collection {S(a) : a ∈ G}. Further, Spec(G) forms a root system, that
is, given a prime P ∈ Spec(G) the set of prime subgroups containing P
forms a chain under inclusion. Thus, there is a map µ : S(a)→Val(a) that
takes a P ∈ S(a) to the unique value of a containing P , denoted by µ(P ).
For each 0 ̸= a ∈ G, the space S(a) is quasi-compact. Since Val(a) ⊆ S(a),
Val(a) inherits the subspace topology from S(a), and this is identical to the
hull-kernel topology on Val(a). Moreover, Val(a) is Hausdorff; we shall have
more to say in Section 4.

Min(G) is the collection of minimal prime subgroups topologized with
the topology inherited from Spec(G). Minimal prime subgroups are charac-
terized amongst the primes as those P that have the property that for each
0 < g ∈ P , there is some h ∈ G \ P such that g ∧ h = 0. It follows that
if 0 < u ∈ G is a weak order unit then it does not belong to any minimal
prime subgroup.

Another way of constructing convex ℓ-subgroups is as follows. Given
S ⊆ G, we define the polar of S as

S⊥ = {g ∈ G : |g| ∧ |s| = 0 for all s ∈ S}.

This is clearly nonempty as 0 ∈ S⊥ for any subset S ⊆ G, and S⊥ is a
convex ℓ-subgroup, called a polar. When S = {g} we instead write g⊥;
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notice that g⊥ = |g|⊥. If g⊥ = {0}, then g is called a weak order unit of G.
A strong order unit is a weak order unit.

Let W be the category whose objects are pairs (G, u), where G is an
archimedean ℓ-group and u ∈ G+ is a weak order unit, and a morphism
between objects (G, u) and (H, v) be an ℓ-group homomorphism ρ : G→H
for which ρ(u) = v. For (G, u) ∈W put Y G = Val(u). We have the Yosida
functor from W to the category of compact Hausdorff spaces, which we now
explain.

Put R = R ∪ {±} with the obvious topology and order. For a space X,

D(X) = {f : X→R : f is continous and f−1(R) is dense in X}.

This is a lattice when ordered pointwise. In general, D(X) need not be a
group as addition is only partially defined. A subset A ⊆ D(X) which is a
sublattice, is closed under pointwise addition and subtraction, and contains
1 is a W-object in D(X), and then we write G ≤ D(X).

See [10] for details of the following.

Theorem 2.1 (The Yosida functor). (a) Suppose (G, u) ∈W. Then, there
is an isomorphism G ∼= Ĝ ≤ D(Y G) with û = 1, and Ĝ separates the points
of Y G.

(b) Suppose (G, u)
ρ→ (H, v) ∈W. Then, there is a unique continuous

Y G
Y ρ← Y H for which ˆρ(g) = (Y ρ) ◦ ĝ for each g ∈ G. If ρ is an injection,

then Y ρ is a surjection.

We frequently write simply G ∈ W and “G ≤ D(Y G)” (that is, drop
the “u” and identify G with its Ĝ.)

The ℓ-group is called projectable if for all g ∈ G, G = g⊥ + g⊥⊥. Every
representable ℓ-group has a projectable hull G ≤ pG, the unique minimum
essential extension to a projectable ℓ-group. When G is archimedean, so is
pG, and when G ∈W, the unit of G is a unit of pG because the embedding
is essential, and we construe G ≤ pG in W.

Now, ([11]) G
ρ→ H in W is essential if and only if Y G

Y ρ← Y H is
irreducible (the image of a proper closed set is proper). Thus, G ≤ pG (in

W) produces an irreducible surjection Y G
σ↞ Y pG; we reserve “σ” for this

map. This places our situation in a topological context, as follows.
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In compact Hausdorff spaces, for irreducible X
f
↞ Y , (Y, f) is called

a cover of X. For two covers (Yi, fi) of X, if there is a Y1
h← Y2 with

f2 = f1 ◦ h, then h is also irreducible and we write (Y1, f1) ≤ (Y2, f2),
and say the two are equivalent if h is a homeomorphism. The collection of
equivalence classes of covers is a set, denoted by covX, and it is a complete
lattice. For details, see [7] and [15].

Thus, for G ∈W, (Y pG, σ) ∈ cov Y G, and its position in cov Y G is of
central importance to this paper, as will be explained in Sections 5 and 6.

3 Lemmas on irreducible maps

We collect some rather dry topological items. A reader might skip this, and

refer back when needed. In this section X
f
↠ Y is a continuous surjection

of Tychonoff spaces.

Definition 3.1. Here are some properties that f might possess.

1. f has (α) means: if W is a nonempty open subset of X, then there is
a nonempty open subset of Y , say V , with f−1(V ) ⊆W .

2. f is irreducible means: if F is closed and proper in X, then f(F ) is
proper in Y .

3. f is skeletal means: if D is dense in Y, then f−1(D) is dense in X.

In the next section we show that λ has (α).

Definition 3.2. For W ⊆ X, set

OfW ≡ {y ∈ Y |f−1({y}) ⊆W}

and notice that OfW = Y \ f(X \W ). Furthermore, the surjectivity of f
implies OfW ⊆ f(W ).

The proofs of the following are straightforward. For more information
see [7, 2.6].

Lemma 3.3. (1) f has (α) if and only if for each nonempty open subset
W ⊆ X, intOfW ̸= ∅.
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(2) If f is closed and W open, then OfW is open.

(3) If f is closed and irreducible and W is open, then f−1(OfW ) is dense
in W and f(W ) ⊆ clYOfW .

Proposition 3.4. (a) If f has (α), then f is irreducible and skeletal.
(b) If f is closed, then irreducibility implies that f has (α).

Proof. (a) Suppose f has (α) and let D ⊆ Y be a dense subset. For an open
nonempty subset W ⊆ X, the condition (α), implies there is a nonempty
open subset of Y , say V , such that f−1(V ) ⊆W . By density there is some
y ∈ D ∩ V . Choose x ∈ W such that f(x) = y. Then x ∈ f−1(D) ∩W .
Consequently, f−1(D) is dense in X.

Next, suppose F is a proper closed subset of X and set W = X \ F ,
nonempty and open. By (1) of Lemma 3.3, we gather that ∅ ≠ intOfW ⊆
OfW = Y \ f(X \W ) = Y \ f(F ), whence f(F ) is proper.

(b) Suppose f is closed and irreducible and let W ⊆ X be nonempty and
open. Setting F = X\W , a proper closed subset, the hypothesis implies that
f(F ) is both proper and closed. Therefore, OfW = Y \f(X\W ) = Y \f(F )
is nonempty and open. By (1) of Lemma 3.3, we conclude that f has (α).

The next two propositions show that (α) goes both up and down in
certain cases.

Proposition 3.5. Suppose X is dense in L, and there is a continuous
extension of f to L, say f̃ : L ↠ Y . If f has (α), then f̃ has (α).

Proof. We shall use the following property of density twice in our proof.
For any nonempty open subset O of L, clL(O ∩X) = clLO.

Assume that f has (α). To show that f̃ has (α) let T be nonempty and
open subset of L set W = T ∩ X, nonempty and open in X by density.
Choose ∅ ≠ W ′ ⊆ W such that clLW

′ ⊆ W . Since f has (α) there is
a nonempty open subset of Y , say V , such that f−1(V ) ⊆ W ′. Notice
that density together with the fact that f̃−1(V ) ⊆ L is open, yields that
clLf̃

−1(V ) = clL(f̃−1(V ) ∩X). Thus,

∅ ̸= f̃−1(V ) ⊆ clL(f̃−1(V ) ∩X) = clLf
−1(V ) ⊆ clL(W ′ ∩X) = clLW

′ ⊆ T

where density is used again for the last equality.
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Proposition 3.6. Suppose E is a regular closed in X. If f has (α), then
the restriction of f to E onto f(E) also has (α).

Proof. We shall denote the restriction of f to E by f ′ and set Y ′ = f(E).
Then we have a continuous surjection f ′ : E→Y ′.

Assume that f has (α) and let O be a nonempty subset of E. Let O′ be
an open subset of X for which O′∩E = O. Set W = O′∩ intE, a nonempty
open subset of X. Since f has (α), there is a nonempty subset of Y , say V ,
such that f−1(V ) ⊆W . Notice that V ⊆ Y ′ and so

f ′−1(V ) = f−1(V ) ∩ E = f−1(V ) ⊆ O.

4 Properties of the map λ

For a W-object G, or (G, u), we have the map µ : S(u)→Val(u) = Y G,
from Section 2. The restriction of µ to Min(G) is the map of Section 1,
λ : Min(G)→Y G.

Let g ∈ G. We have these subsets of Y G.

coz(g) = {M ∈ Y G : g /∈M} and Z(g) = Y G \ coz(g);

and the subsets of Min(G),

U(g) = {P ∈ Min(G) : g /∈ P} and V (g) = Min(G) \ U(g).

Summing up:

Proposition 4.1. (a) The space Y G is compact Hausdorff, with {coz(g) :
g ∈ G} an open basis.

(b) The space Min(G) is zero-dimensional Hausdorff, with {U(g) : g ∈
G} an open basis.

(c) The map λ : Min(G)→Y G is a continuous surjection.

We establish some other properties of λ.

Theorem 4.2. Let (G, u) ∈W. For each g ∈ G, we have
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(1) λ−1(coz(g)) ⊆ U(g); coz(g) ⊆ λ(U(g)),

(2) λ(U(g)) is compact, hence a closed subset of Y G.

(3) λ−1(intZ(g)) ⊆ V (g),

(4) λ(U(g)) = clY G coz g.

Proof. (1) Let Q ∈ λ−1(coz(g)). This means that λ(Q) ∈ coz(g) and so
g /∈ λ(Q). Since Q ≤ λ(Q), it follows that g /∈ Q, that is, Q ∈ U(g). Next,
if P ∈ coz(g), then for any minimal prime Q ≤ P (which indeed exists), it
follows that λ(Q) = P . Since g /∈ P , we gather that Q ∈ U(g).

(2) Fix the map µ : S(u)→Y G. We claim that λ(U(g)) = µ(S(|g| ∧ u)).
Since S(|g|∧u) is quasi-compact, so is µ(S(|g|∧u) by continuity. Therefore,
λ(U(g)) is a compact subset, whence a closed subset of Y G. As for the claim
for any prime subgroup P , if |g| ∧ u /∈ P , then u /∈ P and so µ(P ) ∈ Y G.
Furthermore, for any Q ∈ Min(G) with Q ≤ P , we know that g /∈ P , thus
Q ∈ U(g). For any Q ∈ U(g), it is also the case that Q ∈ S(|g| ∧ u).

(3) Let Q ∈ λ−1(intZ(g)), that is, λ(Q) ∈ intZ(g). Since sets of the
form coz(h) form a base for the open sets of Y G, we can find an 0 < h such
that λ(Q) ∈ coz(h) ⊆ Z(g). In the Yosida representation, it follows that
h ∧ g = 0. Now Q ∈ λ−1(coz(h)) ⊆ U(h) by (1) and therefore, g ∈ Q by
primality, that is, Q ∈ V (g).

(4) By (1), coz(g) ⊆ λ(U(g). By (2), λ(U(g)) is closed and therefore,
clYG coz(g) ⊆ λ(U(g)). For the reverse direction, let P ∈ λ(U(g)) and
choose Q ∈ U(g) such that λ(Q) = P . If P ∈ Y G \ clY G coz(g), then
P ∈ intZ(g), and thus by (3), Q ∈ V (g), a contradiction.

Corollary 4.3. Let (G, u) ∈W. Then, the map λ : Min(G)→Y G has (α).

Proof. Let W be a nonempty open subset of Min(G). Choose g ∈ G such
that U(g) is nonempty and U(g) ⊆W . Observe that g ̸= 0 and so coz(g) ̸=
∅. By (1) of Theorem 4.2, λ−1(coz(g)) ⊆ U(g). Therefore, λ has (α).
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5 SA is a cover of Y G

We restate and prove half of Theorem 1.1. The following is pivotal ([5, 3.2]
and [15, 4.1 (m)])

Theorem 5.1 (Taimonov’s Theorem). For Tychonoff spaces, suppose f :
X→Y is continuous with Y compact, and X dense in L. Then, f extends
continuously over L if and only if E,F closed and disjoint in Y implies
clLf

−1(E) ∩ clLf−1(F ) = ∅.

Theorem 5.2. Let (G, u) ∈W. Then,

(a) there is a continuous λ̃ : SA ↠ Y G extending λ.

(b) λ̃ has (α), thence is skeletal and irreducible, whence (SA , λ̃) ∈ cov Y G.

Proof. (a) Suppose E and F are disjoint closed sets in Y G. That Y G
is a compact Hausdorff space provides us with a g ∈ G+ with E ⊆ coz g,
F ⊆ intZ(g). Then, by (1) and (2) of Theorem 4.2, λ−1(E) ⊆ λ−1(coz(g)) ⊆
U(g), and λ−1(F ) ⊆ λ−1(intZ(g)) ⊆ V (g). Since U(g) are complementary
members of A , we have clSA U(g)∩clSA V (g) = ∅, by Stone Representation.
By Taimonov’s Theorem, we have the extension λ̃.

(b) By Corollary 4.3, λ has (α), and since (α) goes up (Proposition 3.5),
λ̃ also has (α) and thus is irreducible and skeletal (Proposition 3.4).

6 (SA , λ̃) is (Y pG, σ); a Theorem about minimal covers

We are going to apply the following.

Theorem 6.1. [8, 3.6] (Y pG, σ) is the minimum in cov Y G among covers
(W,h) with W zero-dimensional and satisfying for all g ∈ G, clY Gh

−1(coz(g))
is open.

(This result is also visible (with some thought) in [14, 4.6].) For brevity’s
sake we shall denote the condition: for all g ∈ G, clY Gh

−1(coz(g)) is open,
by (†).

Proposition 6.2. For all g ∈ G, clSA λ̃
−1(coz(g)) = clSA U(g), so this is

open.
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Proof. Note that this result is in fact a corollary to Theorem 4.2.

Let M = Min(G) and S = SA . Then, by Theorem 4.2, we have
clMλ

−1(coz(g)) = U(g). Now, M is dense in S, thus, for all W open in
S, clSW = clSW ∩M = clS(clMW ∩M). Apply this to W = λ̃−1(coz(g)),
for which W ∩M = clMλ

−1(coz(g)).

Towards the minimality condition in Theorem 6.1, we have the following
topological/boolean algebraic theorem. (We need only (a) implies (b) but
we prove the equivalence.)

Theorem 6.3. Suppose (Z, f) ∈ cov Y , Z is zero-dimensional, and U is an
open base for Y . The following two statements are equivalent.

(a) For all U ∈ U , clZf
−1(U) is open, and {clZf−1(U) : U ∈ U} gener-

ates ClopZ (qua boolean algebra).

(b) (Z, f) is the minimum in cov Y among covers (W,h), with W zero-
dimensional and satisfying for all U ∈ U , clWh

−1(U) is open.

Proof. (a) ⇒ (b) Suppose (Z, f) ∈ cov Y satisfies (a), and let (W,h) be
as in (b). Let B be the sub-boolean algebra of ClopW generated by the
collection {clWh−1(U)}. Note that B is dense in ClopW because U is a
basis for Y . This means that the embedding B ≤ ClopW has its Stone dual

surjection SB
s↞ W irreducible (see [16]). We shall show that ClopZ ∼= B,

which means that s is, up to homeomorphism, a map Z ↞ W , showing that
(Z, f) ≤ (W,h) in cov Y .

Let R(·) denote the boolean algebra of regular closed sets of the space

(·). By [15, §6], whenever F
t↞ K is irreducible between compact spaces,

then R(K) ∋ E 7→ t(E) ∈ R(T ), and this defines a boolean algebra isomor-
phism, again denoted by t : R(K)→R(T ), thence carries a generating set in
R(K) to a generating set in R(T ). Note, “generating” refers to the boolean
operations in the R(·)s.

Applying this to our construction, we have boolean algebra isomor-
phisms

R(Y ) R(Z)
foo

R(W )

h

OO
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with B ∼= h[B], the latter generated by {h(clWh−1(U)) : U ∈ U}, and
ClopZ ∼= f [ClopZ], the latter generated by {f(clZf

−1(U)) : U ∈ U}. Note
that, for all U ∈ U , h(clWh

−1(U)) = clY U = f(clZf
−1(U)). Therefore,

ClopZ ∼= f [ClopZ] = h[B] ∼= B, as desired.
(b) ⇒ (a) (This mimics the proof of 3.6 (c) in [8].)
We show this: suppose (Z, f) ∈ cov Y with Z zero-dimensional and each

clZf
−1(U) open (U ∈ U). Let A be the sub-boolean algebra of ClopZ

generated by the set {clZf−1(U) : U ∈ U}, and let SA
h← Z be the Stone

dual of A ≤ ClopZ. (This is irreducible because U is a basis.) Then, if
there is an s with s ◦ h = f as

Y Z
foo

h}}{{
{{
{{
{{

SA

s

OO

it then follows that s is irreducible, since f and h are ([7, 2.6]). Thus, if (Z, f)
satisfies the minimality condition in (b), then h must be a homeomorphism,
which means that A ∼= ClopZ, as desired.

Now, h is a quotient map (being a surjection of compact spaces). Thus,
the existence of the s is equivalent to: f(p1) ̸= f(p2) implies h(p1) ̸= h(p2).
So suppose f(p1) ̸= f(p2). Since U is a basis, there are disjoint U1, U2 ∈
U with f(pi) ∈ Ui (i = 1, 2). Then f−1(U1) ∩ clZf−1(U2) = ∅. Since
clZf

−1(U2) is open, clZf
−1(U1)∩clZf−1(U2) = ∅. Thus, p1, p2 lie in disjoint

elements of A , whence h(p1) ̸= h(p2).

Theorem 6.4. (SA , λ̃) is (Y pG, σ).

Proof. (SA , λ̃) is certainly a zero-dimensional cover of Y G satisfying (†)
(Proposition 6.2). By Proposition 4.1, U = {coz(g) : g ∈ G} is an open base
for Y G. By design and Stone duality {clSA U(g)}g∈G generates the boolean
algebra of clopen sets of SA . Thus, by Theorem 6.3, applied to Z = SA ,
we conclude that (SA , λ̃) is (Y pG, σ).

7 Representations of pG

We give three representations, each derived from Theorem 7.1. The follow-

ing notation from [8, §2] is convenient. Given skeletal Y G
τ↞ X we have
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G ∼= G ◦ τ ≤ D(X) (G ◦ τ consists of all g ◦ τ , and g 7→ g ◦ τ preserves the
W-operations.) Suppose X is zero-dimensional, and put

(G ◦ τ)X ≡ {
∑

(gi ◦ τ) · χ(Wi) :
∑

is finite, {Wi} is a clopen partition

of X, gi ∈ G}
≤ D(X).

Theorem 7.1. [8, 3.5] Granted Y G
σ↞ Y pG,

pG = (G ◦ σ)Y pG.

(This result is also visible in [14, §2 and 5.11]. Also, a version for rings
is [9, 5.3].)

Lemma 7.2. (a) G ∼= G ◦ λ ≤ D(Min(G)).
(b) G ∼= G ◦ λ̃ ≤ D(SA (G)).

Proof. (a) The map λ has the property (α) (Corollary 4.3), thus is skeletal
(Proposition 3.4), and so g ◦ λ ∈ D(Min(G)). The resulting map g 7→ g ◦ λ
preserves the W-operations and is clearly a bijection.

(b) As (a), since λ̃ is skeletal (Theorem 5.2).

(We note that Lemma 7.2(a) is the Johnson-Kist representation of G on
Min(G); see [12] and [13]).

Since (SA (G), λ̃) is (Y pG, σ) (Section 6), we have immediately the fol-
lowing corollary.

Corollary 7.3. (a) pG = (G ◦ λ̃)SA (G) ≤ D(SA (G)).
(b) pG = (G ◦ λ)Min(G) ≤ D(Min(G).

(In [1], it is proved that for G ∈ W∗ (note, W∗, not W), a simpler
version of Corollary 7.3(a) holds; this is without a priori knowledge of Y pG.
It then follows that for G ∈W∗, Y pG = SA . See the discussion in [9].)

Now we shall represent pG as continuous functions on “certain dense
subsets” of Y G. It is clear that this can be done: G ≤ pG is an essential
extension, and the maximum essential extension of G consists of all contin-
uous real-valued functions on dense Gδs in Y G modulo f1 ≈ f2 if f1 = f2

on dom(f1)∩ dom(f2), the intersection of the respective domains. Also, pG
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embeds in the strongly projectable hull of G which consists of all “finitely
G-local” functions on dense open sets in Y G, modulo ≈. (See discussions
in [6], [9], and [17].)

The first issue for pG is to specify the “certain dense subsets.”
Let B be the family of open sets in Y G generated by finite intersections

and unions from {coz(g) : g ∈ G} ∪ {intZ(g) : g ∈ G}. Let L be the family
of continuous functions on certain subsets of Y G as follows. The notation
f ∈ L means: the domain of f has the form

∪
Bi for pairwise disjoint

B1, . . . , Bn ∈ B with
∪
Bi dense in Y G; and there are g1, . . . , gn ∈ G for

which f |Bi = g|Bi for all i = 1, . . . , n. Next, we define an equivalence
relation on the f ∈ L as above: f1 ≈ f2 if they agree on the intersection of
their domains.

Theorem 7.4. The set of equivalence classes L/ ≈ is a W-object isomor-
phic to pG.

Proof. We outline the one-to-one correspondence, omitting many details.
This correspondence comes from that between ClopSA (G) and B, and the
description in Theorem 6.3(a).

Notation for the nonce: In B, U1 = {coz(g) : g ∈ G} and U2 =

{intZ(g) : g ∈ G}; in Â ≡ ClopSA (G), Û1 = {clSA U(g) : g ∈ G}
and Û2 = {clSA V (g) : g ∈ G}. From §3, λ̃(cl

Â
U(g)) = clY G coz(g) and

˜cl
Â
V (g) = clY GintZ(g). By definition above, B is generated by U1 ∪ U2,

with finite intersections and unions; from [16, p.14], Â is likewise generated

(qua boolean algebra) by Û1 ∪ Û2.

For B = coz(g) (respectively, intZ(g)), put
←
B= clSA U(g) (respectively,

←
B= clSA V (g)), and for B =

∪∩
Bij , with each Bij ∈ U1 ∪ U2, put

←
B=

∩∪ ←
Bij . For the other direction, for W = clSA (G)U(g) (respectively,

clSA (G)V (g)) set
→
W= coz(g) (respectively, intZ(g)), and for W =

∩∪
Wij

with each Wij ∈ Û1 ∪ Û2 put
→
W=

∩ ∪ →
Wij .

Now consider f =
∑

(gi ◦ λ̃ · χ(Wi)) ∈ pG, per Theorem 6.3(a). Here

{Wi} is disjoint in Â with
∪
Wi = SA (G), so {

→
Wi} is disjoint in B with

∪ →
Wi dense in Y G. Therefore, we can define the element

→
f∈ L/ ≈ to be

the equivalence class of the function which agrees with gi on
→
Wi.
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The reverse correspondence L→pG is clear. Vagaries in the above evap-
orate upon factoring L by ≈.

Acknowledgement We would like to thank the referee for their careful
reading of the article. The referee made a very valuable point that the
topological setup of µ, λ,SA , and the extension λ̄ have an appropriate
generalization to spectral spaces in a fashion similar to what is done in [3].
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