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Abstract. In this article we investigate filters of cozero sets for real-valued
continuous functions, called coz-filters. Much is known for z-ultrafilters and
their correspondence with maximal ideals of C(X). Similarly, a correspon-
dence will be established between coz-ultrafilters and minimal prime ideals of
C(X). We will further notice various properties of coz-ultrafilters in relation
to P -spaces and F -spaces. In the last two sections, the collection of coz-
ultrafilters will be topologized, and then compared to the hull-kernel and the
inverse topologies placed on the collection of minimal prime ideals of C(X)
and general lattice-ordered groups.

1 Introduction and notation

In parallel to the notion of z-filters, we first consider the relationship between
the coz-filters and the prime ideals of C(X). In particular, we will show
that maximal coz-filters (coz-ultrafilters) have a direct correspondence with
the minimal prime ideals of C(X). The inspiration for this comes from the
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known relationship between maximal ideals of C(X) and z-ultrafilters. This
is the content of Section 2.

The focus of Section 3 is topologizing the collection of all coz-ultrafilters.
In particular, we endow topologies on these collections which are similar to
the inverse and the hull-kernel topologies. It is shown that these topological
spaces are homeomorphic to spaces of minimal prime ideals of C(X).

In the last section we prove some general results for lattice-ordered
groups. In particular, we show that the space of ultrafilters of G+, with
respect to the Stone topology, is homeomorphic to Min(G)−1, for an ℓ-
group G. Moreover, for a W-object G, there is a one-to-one correspondence
between the ultrafilters of Coz(G) and the ultrafilters of G+.

Throughout this paper X is a Tychonoff space, that is, X is a completely
regular Hausdorff space. Also, all rings R are commutative with identity.
The ring of real-valued continuous functions on X is denoted by C(X), or
just simply C. We mention a few definitions that are essential in this article.
For the rest of the concepts see [1], [11], [13], and [14].

If f ∈ C(X), then the zero set of f is z(f) = {x ∈ X : f(x) = 0} and
the cozero set of f is coz(f) = {x ∈ X : f(x) ̸= 0}; z(f) and coz(f) are
set-theoretic complements of each other in X. Denote the collection of all
zero sets of X as Z(X) and the collection of all cozero sets of X as Coz(X).
A nonempty subfamily F ⊆ Coz(X) is a coz-filter on X if the following
holds:

1. ∅ /∈ F ;

2. if A,B ∈ F , than A ∩B ∈ F ; and

3. if A ∈ F , B ∈ Coz(X), and A ⊆ B, then B ∈ F .

Observe that the above definition is the counterpart of the concept of
z-filter from [11]. A prime coz-filter is a coz-filter F such that if coz(f) ∪
coz(g) ∈ F , then coz(f) ∈ F or coz(g) ∈ F . A coz-filter U ⊆ Coz(X) is a
coz-ultrafilter if whenever U ⊂ F , where F is a coz-filter, then F = Coz(X).

A subset M of a ring R is called a multiplicative set if 1 ∈M , and for all
f, g ∈M , the product fg ∈M . A ring is called reduced if it has no non-zero
nilpotent elements; hence, C(X) is a reduced ring. A proper ideal P of R
is called a prime ideal if ab ∈ P implies a ∈ P or b ∈ P . A minimal prime
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ideal of a ring is a prime ideal which contains no other smaller prime ideal.
The collection of all minimal prime ideals of R is denoted by Min(R).

The following results are well-known and will be used often in this article.

Lemma 1.1. If f ∈ C(X), then the following are equivalent:

1. f is a non-zero-divisor of C(X), that is, Ann(f) = 0.

2. coz(f) is dense in X, that is, cl(coz(f)) = X.

3. z(f) has empty interior, that is, int(z(f)) = ∅.

Similarly, notice that given f ∈ C(X), f = 0 precisely when coz(f) is
an empty set; this is equivalent to z(f) = X.

For more on Lemma 1.1 refer to Section 5 in [7] and Theorem 2.2 in [9].

Proposition 1.2. Let U be a coz-filter. Then U is a coz-ultrafilter if and
only if given any coz(f) /∈ U , there exists some coz(g) ∈ U such that fg = 0
(equivalently, coz(f)∩ coz(g) = ∅). As a consequence, coz(f) is dense in X
if and only if coz(f) ∈ U for every coz-ultrafilter U .

It is known that an ultrafilter is a prime filter. This is true for coz-
ultrafilters as well. The next result follows from the preceding proposition.

Corollary 1.3. If U is a coz-ultrafilter, then it is a prime coz-filter.

2 Prime ideals and coz-filters

Gillman and Jerison devoted the second chapter of their text Rings of Con-
tinuous Functions to the relationship between the ideals of C and the z-
filters. Here we provide a few of their results as a reference for the inspiration
of the results which follow:

Theorem 2.1 (Theorem 2.3, [11]). (1) If I is an ideal in C, then Z(I) =
{z(f) : f ∈ I} is a z-filter on X.

(2) If F is a z-filter on X, then Z←(F) = {f : z(f) ∈ F} is an ideal in
C.
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If I is an ideal of C, then I is a z-ideal if z(f) ∈ Z(I) implies f ∈ I, that
is to say if I = Z←(Z(I)). [Note, F = Z(Z←(F)) is always true for a z-filter
F .]

With z-ideals more can be said about the relationship between the prime
ideals of C and the prime z-filters.

Theorem 2.2 (Theorem 2.12, [11]). (1) If P is a prime ideal of C, then
Z(P ) is a prime z-filter.

(2) If F is a prime z-filter, then Z←(F) is a prime z-ideal.

Furthermore, it has been shown that the maximal ideals of C are in
one-to-one correspondence to the z-ultrafilters on X.

The results from Gillman and Jerison are well-known, but the relation-
ship between the ideals of C and the coz-filters onX are yet to be considered;
this section is devoted to such an investigation. Through the results in this
section we notice the difference between the z-filters and the coz-filters; to
start, observe that we require the ideal of C to be prime to obtain a coz-filter
of Coz(X).

If P is an ideal of C, then P c is the set-theoretic complement of P in C.

Theorem 2.3. If P is a prime ideal of C(X), then Coz(P c) = {coz(f) :
f ∈ P c} is a coz-filter.

Proof. The first two axioms of being a coz-filter can be easily verified. To
show the third axiom we will require the primeness of P . Suppose coz(f) ⊆
coz(g) for some f /∈ P and g ∈ C(X). Since P is prime, using 5D in
[11], it follows that f2 + g2 ∈ P c. Therefore coz(g) ∈ Coz(P c), since
coz(g) = coz(f2 + g2).

This result is different than the Z(I) case, since I need only be an ideal
for Z(I) to be a z-filter. Primeness is needed since this is related to a
multiplicative set which will become evident. The following example will
demonstrate this fact.

Example 2.4. Let C = C(N), where N is the natural numbers with the
discrete topology. Recall that the characteristic function on S ⊆ N is χS .
In this case, every characteristic function is continuous, since N is discrete.
Now, consider I =< χ{1} >, the ideal generated by χ{1}. Then z(χ{1}) =
N\{1} and for any f ∈ I, z(χ{1}) ⊆ z(f). It follows that χ{2} and χ{3}
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are not in I. So, coz(χ{2}), coz(χ{3}) ∈ Coz(Ic). However, coz(χ{2}) ∩
coz(χ{3}) = {2} ∩ {3} = ∅. Therefore, Coz(Ic) is not a coz-filter. Do note
that χ{1,2}χ{1,3} = χ{1} ∈ I, but χ{1,2}, χ{1,3} /∈ I, so I is not prime.

We know that there is a one-to-one correspondence between the z-ideals
of C and the z-filters of X. Such a correspondence does not exist for coz-
filters. In order to establish a relation between z-ideals and coz-filters,
we need the prime condition on both. The next result is a counterpart
of Theorem 2.12 in [11]; there is a one-to-one correspondence between the
prime z-ideals of C and the prime coz-filters of X.

Theorem 2.5. If P is a prime z-ideal of C, then Coz(P c) is a prime coz-
filter. If F is a prime coz-filter, and M =Coz←(F) = {f : coz(f) ∈ F},
then P = C\M is a prime z-ideal.

Moreover, Coz←(Coz(P c)) = P c and Coz(Coz←(F)) = F , for all prime
z-ideals P and all prime coz-filters F .

Proof. The proof of the first part is left to the interested reader.

We show that P is a prime z-ideal. To show that P is an ideal, let
f, g ∈ P . Then coz(f), coz(g) /∈ F . This implies that coz(f) ∪ coz(g) /∈ F ,
since F is prime. Note that coz(f − g) ⊆ coz(f) ∪ coz(g). Since F is coz-
filter, coz(f − g) /∈ F . Hence f − g /∈ M ; in other words, f − g ∈ P . Now
let f ∈ P and h ∈ C. Since coz(f) /∈ F and coz(fh) ⊆ coz(f), therefore
coz(fh) /∈ F . Consequently, fh ∈ P . Furthermore, P is a proper ideal since
given any unit u ∈ C, coz(u) = X ∈ F , which means P does not contain
any unit. Observe that for all f, g ∈ C, fg /∈ P whenever f, g /∈ P , proving
that P is prime. Thus P is a z-ideal by the definition of M .

Finally, it is easy to check that Coz(Coz←(F))= F , for all prime coz-
filters F . On the other hand, if f ∈ Coz←(Coz(P c)), then coz(f) = coz(g)
for some g /∈ P . Since P is a z-ideal, f ∈ P c. Thus, Coz←(Coz(P c))⊆ P c.
The other inclusion can be verified easily. Hence the result follows.

The following example shows that the prime condition of a coz-filter is
required in the preceding theorem.

Example 2.6. Consider C(N) and let F = {A ⊆ N : {2n : n ∈ N} ⊆ A},
this is the collection of all the subsets of N which contain all of the even
natural numbers. It is clear that F is a coz-filter since all subsets of N are
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clopen. Next, take {2, 4, 6, 8, . . .} ⊆ F , this is equal to {2} ∪ {4, 6, 8, . . .}.
However, both {2} and {4, 6, 8, . . .} are not in F , so F is not a prime coz-
filter.

Next, take M = {f : coz(f) ∈ F}. Since {2} and {4, 6, 8 . . .} are not
in F , χ{2} and χ{4,6,8,...} are not in M , hence they are in C\M . Further,
we see that coz

(
χ{2} − χ{4,6,8,...}

)
= {2n : n ∈ N}, this implies that χ{2} −

χ{4,6,8,...} ∈M and not in C\M . So, C\M is not an ideal.

Note that the set M , in Theorem 2.5, is a multiplicative set. Recall
some general results on multiplicative sets which will be used later, but will
not be referenced to directly.

Theorem 2.7 (Chapter 3, Example 1, [1]; Page 2, Theorem 2, [14]).
(1) If P is a prime ideal of C, then C\P is a multiplicative set.
(2) M ⊆ C is a maximal multiplicative set if and only if C\M is a

minimal prime ideal of C.

For more on general multiplicative sets refer to [1] or [16].
Next, we consider coz-ultrafilters and how they relate to prime ideals.

Gillman and Jerison provide us with the following:

Theorem 2.8 (Theorem 2.5, [11]). If M is a maximal ideal in C, then
Z(M) is a z-ultrafilter on X.

We will establish a correspondence between the minimal prime ideals
of C and the coz-ultrafilters; or, another way to view the situation is that
there is a relationship between the maximal multiplicative sets and the coz-
ultrafilters. Recall the following known results:

Theorem 2.9 (Theorem 14.7, [11]). Every minimal prime ideal of C is a
z-ideal.

Lemma 2.10 (Corollary 2.2, [13]). Let R be a reduced ring and let P be a
prime ideal of R. Then P is minimal if and only if for each x ∈ P there
exists an r ∈ R\P such that xr = 0.

Now we state the main theorem for this section.

Theorem 2.11. (1) If U is a coz-ultrafilter of X and M = {f : coz(f) ∈ U}
with P = C\M , then P is a minimal prime ideal.

(2) If P is a minimal prime ideal of C, then Coz(P c) is a coz-ultrafilter.
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Proof. (1) Suppose U is a coz-ultrafilter on X. By Theorems 1.3 and 2.5, it
follows that P is a prime z-ideal. To show that P is a minimal prime ideal,
let f ∈ P . Since f /∈M , it follows that coz(f) /∈ U . Using Proposition 1.2,
there exists some g ∈ C(X) such that coz(g) ∈ U and fg = 0. Consequently,
by Lemma 2.10, P is minimal.

(2) Suppose P is a minimal prime ideal of C and let coz(g) /∈ Coz(P c). It
follows that g ∈ P . So, by Lemma 2.10, there exists t ∈ Ann(g) with t /∈ P .
Consequently, coz(t) ∩ coz(g) = coz(tg) = coz(0) = ∅. Since t /∈ P , we have
coz(t) ∈ Coz(P c). By Proposition 1.2, Coz(P c) is a coz-ultrafilter.

The remainder of the section will focus on coz-filters related to P -spaces
and F -spaces. The inspiration for the following investigation is given by the
sets Ap = {z(f) : p ∈ z(f)}, defined in [11]. Note that Ap is a z-filter for
every p ∈ X.

In a similar flavor we define Bp to be the collection of all cozero neigh-
borhoods of p, that is, Bp = {coz(f) : p ∈ coz(f)}. Observe that Bp is a
prime coz-filter with

∩
Bp = {p}. On the other hand, Bp is not necessar-

ily a coz-ultrafilter. For an example, consider R with the usual topology
and 1 ∈ R. Then B1 is not a coz-ultrafilter, since the cozero set (−∞, 1)
intersects every member of B1.

Recall that for p ∈ X, Mp = {f ∈ C : f(p) = 0} is a maximal ideal and
Op = {f ∈ C : p ∈ int(z(f))} is a z-ideal, with Op ⊆ Mp. Refer to 4.6-4.7
and 4I in [11] for more on Mp and Op. Further, if Mp = Op, then p is called
a P -point. We say that X is a P -space if every element of X is a P -point
(refer to 4L.2 in [11]).

Observe that for p ∈ X,

Coz←(Bp) = C \Mp and Coz(C \Mp) = Bp.

Hence, using Theorem 2.11 and 4I in [11], we have the following character-
ization of when Bp is a coz-ultrafilter.

Theorem 2.12. Let p ∈ X. Then Bp is a coz-ultrafilter if and only if p is
a P -point. Further, Bp is a coz-ultrafilter for all p ∈ X if and only if X is
a P -space.

Following the pattern of the nomenclature, we define Cp = {coz(f) :
p ∈ cl(coz(f))}. Note that Bp ⊆ Cp for all p ∈ X. In general, Cp is not a
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coz-filter. For example, consider C(R). We have 0 ∈ [−1, 0] = cl((−1, 0))
and 0 ∈ [0, 1] = cl((0, 1)), and so (−1, 0), (0, 1) ∈ C0. However, cl((−1, 0) ∩
(0, 1)) = cl(∅) = ∅, which is not in C0.

Observe that Cp satisfies the prime condition: p ∈ cl(coz(f)∪ coz(g)) =
cl(coz(f)) ∪ cl(coz(g)). Consequently, p ∈ cl(coz(f) or p ∈ cl(coz(g).

Our next result gives a characterization of when Cp is a coz-filter.

Proposition 2.13. Let p ∈ X. Then Cp is a prime coz-filter if and only if
Op is a prime ideal.

Proof. (⇒) Suppose fg ∈ Op. Then p ∈ int(z(fg)), and so p /∈ cl(coz(fg)).
Consequently coz(fg) /∈ Cp, which gives coz(f)∩ coz(g) /∈ Cp. So, coz(f) /∈
Cp or coz(g) /∈ Cp, since Cp is a coz-filter. Hence p /∈ cl(coz(f)) or p /∈
cl(coz(g)). So, p ∈ int(z(f)) or p ∈ int(z(g)), and therefore f ∈ Op or
g ∈ Op, that is, Op is prime.

(⇐) It is evident that ∅ /∈ Cp. If coz(f), coz(g) ∈ Cp, then p /∈ int(z(f))
and p /∈ int(z(g)). Consequently, f, g /∈ Op. Since Op is prime, fg /∈ Op.
Thus, p /∈ int(z(fg)). It follows that p ∈ cl(coz(fg)) = cl(coz(f) ∩ coz(g)),
and so Cp is closed under intersection. Lastly, let coz(f) ∈ Cp and coz(g) ∈
Coz(X), with coz(f) ⊆ coz(g). Since cl(coz(f)) ⊆ cl(coz(g)), we have that
coz(g) ∈ Cp.

Recall that a space X is called an F ′-space if Op is a prime ideal, for all
p ∈ X. A space X is called an F -space if every finitely generated ideal of C
is a principal ideal. An F -space is also an F ′-space, and the two notions are
equivalent if X is compact. Equivalent conditions for X to be an F -space
or an F ′-space are well-known (see [10] and [11]). In the following theorem
we provide some more equivalent conditions for F ′-spaces in terms of Cp.

Recall that when Op is a prime ideal, it is a minimal prime ideal of C.
Moreover, Coz(C \ Op) = Cp and Coz←(Cp) = C \ Op. Using these facts
and Theorem 2.11, the following theorem holds.

Theorem 2.14. For a (compact) space X, the following are equivalent:

(1) X is an F ′-space (F -space).

(2) Cp is a prime coz-filter, for all p ∈ X.

(3) Cp is a coz-ultrafilter, for all p ∈ X.
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3 The spaces of coz-ultrafilters

In this section, we investigate the relationship between the spaces of
Min(C(X)), with respect to the hull-kernel and the inverse topologies, and
the spaces of coz-ultrafilters.

Let U(X) denote the collection of all coz-ultrafilters of X. Let Φ :
Min(C(X)) → U(X) be defined by Φ(P ) = Coz(P c) = {coz(f) : f ∈ P c}.
Clearly Φ is a bijection, implied by Theorem 2.11.

Given any f ∈ C(X), let us use the conventional notation VU(f) = {F ∈
U(X) : coz(f) ∈ F}. The set-theoretic complement of VU(f) is denoted by
UU(f). Notice the following properties of VU and UU:

Proposition 3.1. For f, g ∈ C we have:
(1) VU(f) ∩ VU(g) = VU(fg) and UU(f) ∪ UU(g) = UU(fg).
(2) VU(f) ∪ VU(g) = VU

(
f2 + g2

)
and UU(f) ∩ UU(g) = UU(f2 + g2).

(3) VU(f) = ∅ if and only if f = 0 if and only if UU(f) = U(X).
(4) VU(f) = U(X) if and only if f is a non-zero-divisor if and only if

UU(f) = ∅.

Proof. (1) This is due to the fact that given any coz-filter F , coz(f), coz(g) ∈
F if and only if coz(fg) ∈ F .

(2) This is due to the fact that given any prime coz-filter F , coz(f) ∪
coz(g) ∈ F if and only if coz(f) ∈ F or coz(g) ∈ F .

If VU(f) = ∅, then coz(f) /∈ F for every F ∈ U(X). Consequently, f ∈ P
for every P ∈ Min(C(X)) and hence f ∈ ∩

Min(C(X)) = 0. The other
direction is clear.

(3) This follows directly from Lemma 1.1 and Proposition 1.2.

Based on the properties described above, we can talk about two different
topologies on U(X):

(i) the collection {VU(f) : f ∈ C} forms a basis for open sets on U(X),
this topology is denoted by U(X)−1.

(ii) the collection {UU(f) : f ∈ C} also forms a basis for open sets on
U(X). We use U(X) to denote this topology.

U(X) is the same topology considered by Wallman [19], Samuel [18],
and Brooks [4], generated by the collection {VU(f) : f ∈ C} as a basis for
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closed sets. It is known that U(X) is a compact T1 space. We show a more
interesting fact about U(X) with a different viewpoint of this topology.

These two topological spaces on U(X) have similar flavors as the spaces
of Min(C(X)). In [12] the concept of the hull-kernel topology, also referred
to as the Stone topology, for Min(R) is studied for commutative rings. Recall
that the hull-kernel topology on Min(C(X)), denoted by Min(C(X)), has
subsets of the form U(f) = {P ∈ Min(C(X)) : f /∈ P} as basic open sets,
for f ∈ C. It is well-known that Min(C(X)) is a zero dimensional, Hausdorff
topological space (see Corollary 2.4 in [12]).

On the other hand, the inverse topology on Min(C(X)), denoted by
Min(C(X))−1, is generated by the subsets of the form

V (f) = {P ∈ Min(C(X)) : f ∈ P}
as basic open sets, for f ∈ C. The inverse topology on Min(G) is considered
in [17] for a lattice-ordered group G. Also, Min(C(X))−1 is studied in [3];
Min(C(X))−1 is a compact, T1 space.

Theorem 3.2. The following hold for any Tychonoff space X:
(1) U(X)−1 is homeomorphic to Min(C(X)).
(2) U(X) is homeomorphic to Min(C(X))−1.

Proof. Consider Φ : Min(C(X)) → U(X) as defined at the beginning of
Section 4. We have noticed earlier that Φ is a well-defined bijection.

(1) For f ∈ C, we claim that Φ−1(VU(f)) = U(f). Consider P ∈
Φ−1(VU(f)), then Coz(P c) ∈ VU(f). It follows that coz(f) ∈ Coz(P c), and
so coz(f) = coz(g) for some g ∈ P c. If f ∈ P , then g ∈ P since P is a z-ideal.
Therefore, f /∈ P which means P ∈ U(f). Conversely suppose P ∈ U(f),
that is f /∈ P . Since coz(f) ∈ Coz(P c), we have Φ(P ) = Coz(P c) ∈ VU(f).
Accordingly, P ∈ Φ−1(VU(f)). Hence, Φ : Min(C(X)) → U(X)−1 is a con-
tinuous function.

Finally we show that Φ is an open map. Let Φ(Q) ∈ Φ(U(f)) ⊆ U(X)−1

for some Q ∈ U(f). Since f /∈ Q, we have coz(f) ∈ Coz(Qc), which
means that Φ(Q) ∈ VU(f). Now, let F ∈ VU(f) be arbitrary. Then there
exists some P ∈ Min(C(X)) such that F = Φ(P ) = Coz(P c). Note that
coz(f) ∈ F implies that f /∈ P , since P is a z-ideal. Consequently P ∈ U(f),
and so F = Φ(P ) ∈ Φ(U(f)).

(2) The homeomorphic aspect of Φ : Min(C(X))−1 → U(X) can be
shown similarly and is left to the interested reader.
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Corollary 3.3. U(X)−1 is a zero-dimensional, Hausdorff topological space.

We direct our attention to [17] where it is shown that if X is an F -space,
then Min(C(X))−1 is homeomorphic to β(X), the Stone-Čech compactifi-
cation of X. Hence, we have the following result:

Corollary 3.4. If X is a compact F -space, then U(X) is homeomorphic to
X.

Definition 3.5 (Definition 2.3, [4]). Let L be a lattice on X. L is a normal
lattice if for each pair of disjoint elements A and B of L, there exists C,D ∈
L such that A ⊆ C, B ⊆ D, A ∩D = ∅ = B ∩ C, and C ∪D ∈ U for every
ultrafilter U of L.

In [4], it is shown that the collection of ultrafilters, with the Samuel
topology, on a lattice L is Hausdorff precisely when L is a normal lattice.
Here we are considering Coz(X) as a lattice on the set P(X). In [3] the
authors have shown various conditions for the space Min(C(X))−1 to be
Hausdorff. A further study on the inverse topology on the minimal prime
subgroups of lattice-ordered groups is being conducted currently in [2]. Since
we have established a homeomorphism between U(X) and Min(C(X))−1,
summing up, we can say the following:

Proposition 3.6. The following are equivalent:
(1) U(X) is a Hausdorff space.
(2) Min(C(X))−1 is a Hausdorff space.
(3) For each pair of disjoint cozero sets coz(f) and coz(g), there ex-

ist f1, g1 ∈ C such that coz(f) ⊆ int(z(f1)), coz(g) ⊆ int(z(g1)), and
int(z(f1)) ∩ int(z(g1)) = ∅.

(4) For each pair of disjoint cozero sets C,D ⊆ X, there exist cozero
sets C1, D1 ⊆ X such that C ⊆ C1, D ⊆ D1, C ∩D1 = ∅, D ∩C1 = ∅, and
C1 ∪D1 is a dense subset of X.

(5) Coz(X) is a normal lattice.

Proof. The equivalence of (1) and (2) follows from Theorem 3.2. That (2),
(3), and (4) are equivalent is shown in [3]. In [4] it is shown that (1) and
(5) are equivalent. We want to point out further that a direct equivalence
of (4) and (5) can be shown using Proposition 1.2.
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4 Lattice-ordered groups

We finish our article with some general results on ultrafilters associated with
lattice-ordered groups. These are generalizations of results from Sections 2
and 3. As a reference for the theory of lattice-ordered groups, see [6].

A lattice-ordered group or ℓ-group is a group (G,+, 0) which is also a
lattice (G,≤) such that for every a, b, x, y ∈ G, a ≤ b implies that x+a+y ≤
x+ b+ y. In general, an ℓ-group is not necessarily abelian, but do note that
C is an abelian ℓ-gorup. The positive cone of G is denoted by G+ = {g ∈
G : g ≥ 0}. An ℓ-subgroup of G is a subgroup which is also a sublattice. An
ℓ-subgroup H of G is convex if whenever a ∈ G and 0 ≤ a ≤ h for some
h ∈ H+, then a ∈ H. Given g ∈ G, the set g⊥ = {h ∈ G : |g| ∧ |h| = 0} is
called the polar of g. It turns out that polars of G are convex ℓ-subgroups.
We say an element g ∈ G is a weak order unit if g⊥ = 0.

Recall the well-known Lemma on Ultrafilters where a one-to-one cor-
respondence has been shown between the minimal prime subgroups of G,
Min(G), and the ultrafilters of G+, denoted as ult(G+).

Lemma 4.1 (Lemma on Ultrafilters, [5]). Let G be an ℓ-group. For each
minimal prime subgroup P , the set u(P ) = {q > 0 : q /∈ P} is an ultrafilter.
Conversely, if U is an ultrafilter, then Q(U) =

∪{x⊥ : x ∈ U} is a mini-
mal prime subgroup. The correspondences P → u(P ) and U → Q(U) are
mutually inverse bijections.

We use Ψ : Min(G)→ ult(G+) to be the bijective map described above,
that is, Ψ(P ) = u(P ) = G+ \ P . Given g ∈ G+, let N(g) = {U ∈ ult(G+) :
g ∈ U} be in the power set of ult(G+). Note the following properties of
N(g):

1. If g is a weak order unit, then g /∈ P for all P ∈ Min(G). Consequently,
N(g) = ult(G+).

2. N(0) = ∅, since 0 ∈ P for all P ∈ Min(G).

3. N(g) ∩N(h) = N(g ∧ h), since for any P ∈ Min(G), g ∧ h ∈ P if and
only if g ∈ P or h ∈ P .

4. N(g) ∪ N(h) = N(g ∨ h): If g /∈ U and h /∈ U , then there exists
a, b ∈ U such that a ∧ g = 0 and b ∧ h = 0. So, (g ∨ h) ∧ (a ∧ b) =
(g ∧ a∧ b)∨ (h∧ a∧ b) = 0. Since a∧ b ∈ U , it follows that g ∨ h /∈ U .



Filters of Coz(X) 119

The collection {N(g) : g ∈ G+} forms a closed base for a topology on
ult(G+). Further, the inverse topology on Min(G), denoted by Min(G)−1,
is defined in a similar manner as to that of Min(C(X))−1: the collection
{V (g) : g ∈ G+} forms an open base for the topology, where V (g) = {P ∈
Min(G) : g ∈ P}. The topological space Min(G)−1 is compact T1.

Theorem 4.2. The map Ψ : Min(G)−1 → ult(G+) is a homeomorphism.
In particular, Ψ(V (g)) = ult(G+) \N(g) for all g ∈ G+.

Proof. We only need to show that Ψ(V (g)) = ult(G+)\N(g) for all g ∈ G+.
Then using the fact that Ψ is a bijective map, it follows immediately that
Ψ is continuous and hence a homeomorphism.

Let V (g) be a basic open set of Min(G)−1 and G+\Q = Ψ(Q) ∈ Ψ(V (g))
for some Q ∈ V (g). Since g ∈ Q, g /∈ G+ \ Q ∈ ult(G+). Therefore
Ψ(Q) = G+\Q ∈ ult(G+)\N(g). On the other hand, if U ∈ ult(G+)\N(g),
then g /∈ U = G+ \ P for some P ∈ Min(G)−1, and so g ∈ P . Hence
P ∈ V (g) and U = Ψ(P ) ∈ Ψ(V (g)).

Corollary 4.3. The space ult(C(X)+) is homeomorphic to Min(C(X))−1.

We next consider the category W whose objects are archimedean ℓ-
groups with a designated weak order unit and whose morphisms are the
ℓ-homomorphisms which preserves the designated unit. An ℓ-group G is
archimedean if whenever g, h ∈ G+ and ng ≤ h for all n ∈ N, then g =
0. An archimedean ℓ-group is abelian. Let (G, u) ∈ W. Using Zorn’s
Lemma, there exist convex ℓ-subgroups which are maximal with respect to
not containing u. Such a convex ℓ-subgroup is called a value of u, and the
collection of all such values is denoted by Y G. We endow Y G with the hull-
kernel topology, which is a compact Hausdorff space. Let R = R∪{±∞} be
the two-point compactification of R. For a topological space X, we define

D(X) = {f : X → R : f is continuous and f−1(R) is dense}.

Then D(X) is a lattice under pointwise operation, but not necessarily a
group. We say H ⊆ D(X) is an ℓ-subgroup of D(X) if H is an ℓ-group
under pointwise operation. As an example, C(X) ⊆ D(X) is an ℓ-subgroup.
Given an f ∈ D(X), we write coz(f) = {x ∈ X : f(x) ̸= 0}, and is called
the cozero-set of f . The set z(f) = X \ coz(f) is called the zero-set of f .
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Theorem 4.4 (The Yosida Embedding Theorem). Let (G, u) ∈W. Then
there is an ℓ-isomorphism (g 7→ ĝ) of G onto an ℓ-subgroup Ĝ of D(Y G)
such that û = 1 and Ĝ has the following separation property: for each
p ∈ Y G and closed set V ⊆ Y G not containing p, there is some g ∈ G for
which ĝ(p) = 1 and ĝ(V ) = 0. Further, Y G is the unique compact space, up
to homeomorphism, that satisfies these two properties.

We identify g ∈ G with ĝ ∈ D(Y G). Note that {coz(g) : g ∈ G} forms an
open basis for the topology of Y G; any subset of Y G of this form is called a
G-cozero-set, and the collection of all such is denoted by Coz(G). We denote
the collection of all cozero sets of Y G by Coz(Y G). In general, Coz(G) ⊆
Coz(Y G). We use U(Y G) and U(G) to denote the ultrafilters on Coz(Y G)
and Coz(G), respectively. Using Theorem 3.2, we can immediately conclude
that U(Y G) is homeomorphic to Min(C(Y G))−1, since Y G is a Tychonoff
space.

Next, we focus on Coz(G)-ultrafilters. Let Ω : ult(G+) → U(G) be
defined by Ω(F ) = Coz(F ) = {coz(f) : f ∈ F}.

Lemma 4.5. The map Ω defined above is well-defined.

Proof. We first show that Coz(F ) is a filter.
(1) coz(f) = ∅ if and only if f = 0. Hence ∅ = coz(0) /∈ Coz(F ), since

0 /∈ F .
(2) Suppose coz(f), coz(g) ∈ Coz(F ) for some f, g ∈ F . Since F is a

filter, f ∧ g ∈ F . Hence, coz(f) ∩ coz(g) = coz(f ∧ g) ∈ Coz(F ).
(3) Suppose f ∈ F and g ∈ G+ with coz(f) ⊆ coz(g). Note that

coz(g) = coz(f)∪ coz(g) = coz(f ∨ g). Since f ∈ F and f ≤ f ∨ g, it follows
that f ∨ g ∈ F , because F is a filter. Consequently, coz(g) ∈ Coz(F ).

Finally, let coz(g) /∈ Coz(F ). Then g /∈ F . Since F is an ultrafilter,
there exists some f ∈ F such that g ∧ f = 0. Therefore, coz(f) ∈ Coz(F )
such that coz(f) ∧ coz(g) = ∅. Hence, Coz(F ) is an ultrafilter.

Lemma 4.6. Let U ∈ U(G). Then the set F (U) = {f ∈ G+ : coz(f) ∈ U}
is an ultrafilter of G+.

Proof. The proof is similar to the preceding lemma, using the reverse im-
plications of the statements.

We can view the Lemma on Ultrafilters in an alternative manner.
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Theorem 4.7. Let (G, u) ∈W. For each ultrafilter F of G+,

F = F (Coz(F )) = {f ∈ G+ : coz(f) ∈ Coz(F )}.

Conversely, for each ultrafilter U of Coz(G), U = Coz(F (U)). In other
words, Ω : ult(G+)→ U(G) is a bijection.

Proof. It is clear, by the definition of Coz(F ), that F ⊆ {f ∈ G+ : coz(f) ∈
Coz(F )}. For the reverse inclusion, let f ∈ G+ be such that coz(f) ∈
Coz(F ). Then there exists g ∈ F such that coz(f) = coz(g). If f /∈ F , then
there exists f ′ ∈ F such that f ∧ f ′ = 0, since F is an ultrafilter. Now

coz(g ∧ f ′) = coz(g) ∩ coz(f ′) = coz(f) ∩ coz(f ′) = coz(f ∧ f ′) = ∅.

Consequently, g ∧ f ′ ∈ ∩
Y G = u⊥ = 0 ∈ F , which is a contradiction.

The converse can be verified easily.

To summarize, we have the following one-to-one correspondences be-
tween ultrafilters and minimal prime ideals of a W-object (G, u):

Min(G) ↪
Ψ−−→→ ult

(
G+

)
↪

Ω−−→→ U(G)

Endow a topology on U(G) in a similar manner, with the collection of
sets {F ∈ U(G) : coz(g) ∈ F} as a basis for closed sets. It follows that this
space is also compact T1. We can say more about the spaces U(G), ult(G+),
and Min(G)−1.

Theorem 4.8. All three spaces, U(G), ult(G+), and Min(G)−1 are home-
omorphic to each other.

Proof. We have shown already that ult(G+) is homeomorphic to Min(G)−1.
In a similar fashion, it can be shown that U(G) and Min(G)−1 are homeo-
morphic to each other. The proof of this is left to the interested reader.
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