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Countable composition closedness and
integer-valued continuous functions in

pointfree topology

Bernhard Banaschewski

Abstract. For any archimedean f -ring A with unit in which
a ∧ (1 − a) ≤ 0 for all a ∈ A, the following are shown to be equiva-
lent:
1. A is isomorphic to the l-ring ZL of all integer-valued continuous func-
tions on some frame L.
2. A is a homomorphic image of the l-ring CZ(X) of all integer-valued
continuous functions, in the usual sense, on some topological space X.

3. For any family (an)n∈ω in A there exists an l-ring homomorphism
ϕ : CZ(Zω) → A such that ϕ(pn) = an for the product projections
pn : Zω → Z.

This provides an integer-valued counterpart to a familiar result con-
cerning real-valued continuous functions.

The fundamental fact that the lattice-ordered rings RL of real-valued
continuous functions on frames L are characterized as the countable com-
position closed (c3) archimedean f -rings with unit, first stated by Isbell
[4] and rather later given a somewhat more detailed proof by Madden
and Vermeer [7], raised the obvious question whether the integer-valued
counterparts ZL of the RL have an analogous characterization. That did,
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indeed, turn out to be the case in due course, but the approach of [4] and
[7] could hardly be used for this purpose. While the original arguments
regarding RL were firmly grounded in the setting of the Yosida represen-
tation of archimedean f -rings, the treatment of ZL in Banaschewski [1]
took place in the context that appeared most natural for such questions
at that later stage: the functoriality of the correspondence L 7−→ ZL.
This paper presents a detailed account of this (which has never been
published except for some further talks over the years), prompted by
the fact that a new version of the proof has recently evolved which is
somewhat simpler and rather more appealing than the original one. In
addition, it will be shown that a simple modification of the arguments
concerning ZL will provide a proof for the corresponding result for the
RL.

We begin with a brief account of the background involved here. For
general aspects of frames we refer to Picado and Pultr [8] and for details
concerning the function ring functors to Banaschewski [2].

Recall that the integer-valued continuous functions on a frame L may
be viewed as the frame homomorphisms to L from the frame OZ of open
sets of the discrete space Z of integers (conveniently described by the
maps α : Z → L such that α(k) ∧ α(l) = 0 for k 6= l and

∨
{α(m)|m ∈

Z} = e, the unit of L), and ZL is then the l-ring whose elements are the
homomorphisms OZ→ L, with its operations derived from those of Z as
l-ring in the familiar way. Any ZL is an archimedean f -ring with unit 1
such that

α ∧ (1− α) ≤ 0 for all α ∈ ZL,

where 1 and 0 are the constant functions determined by 1 and 0 of Z.
We refer to the f -rings with unit which satisfy this condition as Z-rings.

Now, any ZL is actually isomorphic to ZM for the subframe M of L
generated by the complemented elements of L so that we may take all
frames considered here as 0-dimensional without loss of generality.

Concerning the relation to the classical function rings, note that
Z(OX) ∼= CZ(X) where the latter is the l-ring of all integer-valued con-
tinuous functions, in the usual sense, on the topological space X and OX
the frame of open sets of X.

Next, any frame homomorphism h : L→M clearly determines a map
Zh : ZL → ZM , γ 7−→ hγ, which is in fact an l-ring homomorphism,
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resulting in the functor Z from the category ODFrm of 0-dimensional
frames to the category AZ of archimedean Z-rings. Further, Z has a left
adjoint K : AZ → ODFrm, taking each A ∈ AZ to the frame KA of
its archimedean kernels, that is, the l-ring ideals J of A for which A/J
is archimedean, and each ϕ : A → B in AZ to the frame homomor-
phism Kϕ : KA → KB, sending J ∈ KA to the archimedean kernel of B
generated by ϕ[J ]. Further, the adjunction maps are

ζA : A→ ZKA, a 7→ â, â({m}) = <(1− |a−m|+)>,

< ·> for the archimedean kernel generated by ·, and

δL : KZL→ L, J 7→
∨
{coz(γ)|γ ∈ J},

where coz(γ) = γ(Z − {0}). Now, as is familiar, Z and K induce an
adjoint equivalence between the subcategories of AZ and ODFrm deter-
mined by the conditions ζA is an isomorphism and δL is an isomorphism,
respectively. The latter consists of all Z-complete frames, meaning the
0-dimensional frames which are complete for the uniformity given by
their countable covers of pairwise disjoint elements (or, equivalently, the
0-dimensional Lindelöf frames, provided the Axiom of Countable Choice
is assumed). Note that, for such L,

δ−1
L (s) = {γ ∈ ZL|coz(γ) ≤ s}

by the general properties of the coz-map. On the other hand, to provide
a description of the analogous subcategory of AZ which does not depend
on the adjunction map ζA is exactly the purpose of this note.

The condition involved here is as follows:

(Zc3) For any family (an)n∈ω in A, there exists an l-ring homo-
morphism ϕ : CZ(Zω) → A such that ϕ(pn) = an for the
product projection pn : Zω → Z.

We call the A ∈ AZ for which this holds countable Z-composition
closed (Zc3 for short), and note that the CZ(X) are obviously of this
type: any (fn)n∈ω in CZ(X) determines f : X → Zω such that pnf = an
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by the nature of the products of spaces, and the corresponding l-ring
homomorphism

C(f) : CZ(Zω)→ CZ(X), g 7−→ gf,

trivially has the required property.
Obviously, (Zc3) is the integer-valued version of the familiar condition

(c3) which has ϕ : C(Rω) → A in place of ϕ : CZ(Zω) → A. The corre-
sponding archimedean f -rings A with unit, called countable composition
closed, are then exactly the A isomorphic to some RL, the l-ring of all
real-valued continuous functions on some frame L, as mentioned earlier.
In this context it is worth pointing out that the original definition of (c3)
was formulated in terms of the Yosida representation while the version
just described was introduced by Madden only some 15 years ago. It was
undoubtedly a crucial contribution to the subject to place this condition
entirely within the setting of the function ring functor involved without
which the present treatment of ZL would not have been possible.

We first give an account of some basic facts concerning the copowers
of OZ which will be needed later on. For this, let S be any set and

kS :
⊕
S

OZ→ O(ZS)

such that kSjt = Opt for each t ∈ S, where jt : OZ →
⊕

S OZ is the
coproduct injection and pt : ZS → Z the product projection, and put

τS = ZkS : Z(
⊕
S

OZ)→ ZO(ZS).

Note that, by a standard computation, kS is the reflection map to spatial
frames; further, since ZOX ∼= CZ(X), as noted earlier, Z(

⊕
S OZ) ∼=

CZ(ZS).
Now we have the following, not entirely unknown but put here for

the reader’s convenience.
Lemma 1.
(1) Any

⊕
S OZ is Z-complete.

(2) For (at most) countable S, kS is an isomorphism.
(3) For any S, τS is an isomorphism.
(4) Any γ : OZ→

⊕
S OZ factors through some partial coproduct

⊕
T OZ

with countable T ⊆ S.
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Proof.

1. Since OZ is complete in its uniformity of all covers,
⊕

S OZ is
complete in the corresponding coproduct uniformity, and since this
is coarser than its Z-uniformity,

⊕
S OZ is also complete in the

latter.

2. As noted earlier, kS is the reflection map to spatial frames. On the
other hand, the coproduct uniformity of

⊕
S OZ has a countable

basis, as S is countable, and since
⊕

S OZ is complete in this, as
already mentioned, it is spatial by a result if Isbell [4].

3. ZkS is one-one because kS is dense since

∅ = kS(jt1(U1) ∧ · · · ∧ jtn(Un)) = p−1
t1

[U1] ∩ · · · ∩ p−1
tn [Un]

implies that some Uk = ∅ and hence jt1(U1) ∧ · · · ∧ jtn(Un) = 0
trivially. To see ZkS is onto consider the diagram

⊕
S

OZ kS // O(ZS) ZS

f

��

p

��
O(ZT )

Op

<<

ZT

g

��⊕
T

OZ

j

OO

kT

<<

OZ

ψ

bb
ϕ

OO

Z

where ϕ is arbitrary, f corresponds to ϕ, T ⊆ S is countable such
that f factors through the corresponding partial product projec-
tion p (as provided by a familiar classical result), ψ = Og so that
ϕ = (Op)ψ, and j is the partial coproduct injection. Now for
the coproduct maps it : OZ →

⊕
T OZ and the product maps

qt : ZT → Z,

(Op)kT it = (Op)(Oqt) = O(qtp) = Opt = kSjt = (kSj)it
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hence (Op)kT = kSj so that Op = kSjk
−1
T by (2) and therefore

kS(jk−1
T ψ) = (Op)(Og) = Of = ϕ

showing ZkS is onto.

4. By (1),
⊕

S OZ is Lindelöf, as noted earlier, so that each γ({m}),
being complemented, is a Lindelöf element of

⊕
S OZ and hence a

join of countably many elements

jt1(U1) ∧ · · · ∧ jtn(Un).

Consequently, there exists a countable Tm ⊆ S such that γ({m})
belongs to the image in

⊕
S OZ of the corresponding partial co-

product, and the countable T =
⋃
{Tm|m ∈ Z} then has the stated

property.

Remark 1. Note that, in view of (2) above, (Zc3) is equivalent to the
condition that, for any countable S ⊆ A, there exists a homomorphism
ϕ : Z(

⊕
S OZ)→ A such that ϕ(ja) = a for the coproduct injections ja.

It will be convenient later on to use this form of the condition.

Lemma 2. Any archimedean image of a ZL is isomorphic to a ZM .

Proof. Let A be of the stated kind and ϕ : ZL → A a corresponding
onto homomorphism. Now, note first that L may be taken as Z-complete
because ZδL : ZKZL→ ZL is an isomorphism by the properties of the ad-
junction between Z and K, and the same holds for any δKA : KZKA→ KA
which in turn makes KA Z-complete. Hence, by the earlier description
of (δL)−1,

Ker(ϕ) = {γ ∈ ZL|coz(γ) ≤ s}, s = δL(Kerϕ),

so that, for νs = (·) ∨ s : L→ ↑s = {x ∈ L|x ≥ s},

coz(γ) ≤ s iff s = νs(coz(γ)) = coz(νsγ)

iff νsγ = 0 in Z(↑s) iff (Zνs)(γ) = 0,
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the second step because s is the zero of ↑s, and thus Ker(ϕ) = Ker(Zνs).
Further, Zνs : ZL→ Z(↑s) is onto, which evidently amounts to saying

that any countable cover P of ↑s by pairwise disjoint elements is the
image by νs of such a cover Q of L. Now P is of course a cover of L and
L is 0-dimensional Lindelöf so that the cover of L by all the complemented
elements below some u ∈ P has a countable subcover C = {an|n ∈ ω}
which then determines Q = {bn|n ∈ ω} where

b0 = a0, bn+1 = (a1 ∨ · · · ∨ an)∗ ∧ an+1,

(* for pseudocomplement which means complement for these elements)
and one readily sees that the bn are pairwise disjoint such that a0 ∨ a1 ∨
· · · ∨ an = b0 ∨ b1 ∨ · · · ∨ bn. On the other hand, for each n, νs(bn) ≤ u
for some u ∈ P by the definition of the bn which implies νs[Q] = P , as
desired, and it then follows that

A ∼= ZL/Ker(ϕ) ∼= ZL/Ker(Zνs) ∼= Z(↑s).

Proposition. The following are equivalent for any archimedean Z-ring
A:

(1) A is isomorphic to some ZL.
(2) A is a homomorphic image of some CZ(X).
(3) A is Zc3.

Proof. (1) ⇒ (2). We show any ZL is of the stated kind. For this, take
h :
⊕

ZLOZ → L such that hjα = α for the coproduct injections. Then
Zh : Z(

⊕
ZLOZ) → ZL is trivially onto, and by Lemma 1 this provides

an onto homomorphism CZ(ZZL)→ ZL.
(2) ⇒ (3). As already noted, any CZ(X) is Zc3, and the same then

obviously holds for any homomorphic image of any CZ(X).
(3)⇒ (1) For any A of the stated kind, take any ZL containing A as a

sub-l-ring (as provided, say, by the adjunction map ζA : A→ ZKA) and
consider h :

⊕
AOZ→ L such that hjα = α for the coproduct injections

jα. We show that Im(Zh) = A which proves (1) in view of Lemma 2.
Since it is obvious from the definition of h that A ⊆ Im(Zh) it only

remains to show Im(Zh) ⊆ A. Now, for any γ : OZ→
⊕

AOZ, Lemma



8 Bernhard Banaschewski

1 supplies a countable S ⊆ A and γ̃ : OZ →
⊕

S OZ such that γ = jγ̃
for the partial coproduct injection j :

⊕
S OZ→

⊕
AOZ. On the other

hand, A being Zc3, we have a homomorphism ϕ : Z(
⊕

S OX)→ A such
that ϕ(iα) = α for the coproduct injections iα by Remark 1. Further,
the Z-completeness of

⊕
S OZ (Lemma 1) supplies k :

⊕
S OX → L such

that Zk = lϕ where l : A→ ZL is the identical embedding (Banaschewski
[2]), and then k = hj because

kiα = lϕ(iα) = α = hjα = (hj)iα

for all α ∈ S. Consequently,

(Zh)(γ) = hγ = hjγ̃ = kγ̃ = Zk(γ̃) = lϕ(γ̃) ∈ A,

showing Im(Zh) ⊆ A.

Remark 2. The original proof of the Proposition in Banaschewski [1]
was rather more complicated than the present one, which only recently
evolved. The crucial new step is Lemma 2 which was motivated by
Banaschewski, Bhattacharjee, and Walters-Wayland [3]. What seems
interesting here is that this is absolutely trivial once one has the Zc3

characterization of the ZL but can readily be proved without that and
then be utilized with advantage in proving that characterization.

Remark 3. It should be added here that almost the same arguments
used above can be applied to the l-ring RL of real-valued continuous
functions instead of ZL, to provide a proof of the analogous proposition:

The following are equivalent for any archimedean f -ring A with unit:
(1) A is isomorphic to some RL.
(2) A is a homomorphic image of some C(X).
(3) A is c3.

What has to be done here is obvious: in the given text, turn all the
statements about OZ and ZL into statements about the frame L(R) of
reals and the l-ring RL of real-valued continuous functions, respectively,
and replace 0-dimensionality by complete regularity and Z-completeness
by its obvious counterpart realcompleteness (= completeness relative to
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the uniformity defined by the images of the standard uniform covers of
L(R) by the γ ∈ RL). With this modification, the proof of Lemma
1, (1) - (3), and of the Proposition turn into proofs of their modified
versions. In the case of Lemma 1(4) one uses the familiar fact that, for
any γ : L(R) →

⊕
S L(R), the elements γ(p, q), p, q ∈ Q, are Lindelöf

because
⊕

S L(R) is Lindelöf. Finally regarding Lemma 2, the argument
for Ker(ϕ) = Ker(RνS), now for ϕ : RL → A, is certainly valid again,
but that the modified RνS : RL→ R(↑s) is onto very obviously requires
a new argument - fortunately readily available. Note that, in analogy
with the case of ZL, L here may be taken as realcomplete which makes
it Lindelöf (Banaschewski [2]) and therefore normal so that RνS is onto
by the pointfree Tietze Theorem (Li and Wang [6]).

Remark 4. Two further modifications of the Proposition can be proved
in a similar way, one concerning the archimedean l-groups with specified
weak order unit and the other where the order unit is assumed to be
singular as well, which corresponds to the RL-case and the ZL-case,
respectively. We omit the details.
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