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Abstract. We show that in ZF set theory without choice, the Ultrafilter
Principle (UP) is equivalent to several compactness theorems for Alexandroff
discrete spaces and to Rudin’s Lemma, a basic tool in topology and the theory
of quasicontinuous domains. Important consequences of Rudin’s Lemma are
various lift lemmas, saying that certain properties of posets are inherited by
the free unital semilattices over them. Some of these principles follow not
only from UP but also from DC, the Principle of Dependent Choices. On
the other hand, they imply the Axiom of Choice for countable families of
finite sets, which is not provable in ZF set theory.

1 Introduction

If not otherwise stated, we are working rigorously in Zermelo–Fraenkel set
theory (ZF) without assuming any choice principles a priori. In that en-
vironment, many order-theoretical, algebraic and topological theorems are
equivalent to the Ultrafilter Theorem or Ultrafilter Principle (UP), postu-
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lating that every proper set-theoretical filter be contained in an ultrafilter;
see Herrlich [26], and Howard and Rubin [28] for a long list of equiva-
lent forms of UP. Three of the earliest references are Rubin, Scott and
Tarski [38, 40, 41]. For special results relevant to the present study refer
to Banaschewski and Erné [2–6, 12, 15, 16, 18, 20].

The equivalence of certain statements to UP appears sometimes rather
unexpectedly. A useful tool for the investigation of such equivalences is the
set δP of all Scott-open filters of a poset P ; recall that the Scott-open sets
U ⊆ P , characterized by the equivalence x ∈ U ⇔ D∩U 6= ∅ for all directed
sets D⊆P having a join x =

∨
D, form the Scott topology σP . A powerful

lattice-theoretical equivalent of UP, established in [12] for locales and in [5]
for quantales, is

SL the Separation Lemma: any element outside a Scott-open filter in a
locale lies below a prime element outside that filter.

A few notational comments might be welcome. Locales or frames are
complete lattices in which arbitrary joins distribute over finite meets (John-
stone [32], Picado and Pultr [37]). Given a quasiordered set (qoset), that
is, a set with a reflexive and transive order relation ≤, we adopt the usual
notations ↓Y and ↑Y for the lower set (down-set) and the upper set (up-
set), respectively, generated by a subset Y ; thus, x∈↓Y means that there
is a y∈Y with x≤y, and dually for ↑Y . An ideal is an (up-)directed lower
set, and a filter a filtered (that is, down-directed) upper set. In particu-
lar, ↓y = ↓{y} is the principal ideal, and ↑y = ↑{y} is the principal filter
generated by y. If the order relation is antisymmetric, we have a partially
ordered set (poset). A poset is up-complete, directed complete or a dcpo if
each directed subset has a join. An element p of a poset P is prime if P \↓p
is a filter; notice that for us (like in number theory and algebra, but devi-
ating from [23]), a unit (top element) is never prime. A completely prime
or
∧

-prime element generates a principal ideal that is complementary to a
principal filter. The dual notion is supercompact or

∨
-prime.

By a space, we always mean a topological space X, and we denote by T
or OX its topology (the locale / frame of open sets). When we speak about
compactness properties, no separation axiom is assumed. The saturation of
a subset is the intersection of its neighborhoods. The set of all compact satu-
rated subsets of X is denoted by Q or QX. All order-theoretical statements
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about spaces refer to the specialization order, given by x ≤ y ⇔ x ∈ cl{y}.
Thus, for subsets Y of X, the upper set ↑Y is the saturation of Y ; in par-
ticular, the principal filter ↑y generated by a point y is the (neighborhood)
core of y, while the principal ideal ↓y is the closure of {y}. For collections
Y of subsets of X, put

YT = {U ∈ T : ∃ Y ∈ Y (Y ⊆ U)}.

Specifically, for Y ⊆ X and x ∈ X, the open neighborhood systems are

Y T = {Y }T = {U ∈ T : Y ⊆ U}, xT = {x}T = {U ∈ T : x ∈ U}.

In [20], we demonstrate that UP is responsible for the coincidence of various
degrees of (topological) sobriety. A T0-space X or its topology T is called
δ-sober or strictly sober [18, 20] if any V ∈ δ T contains each open U with⋂V ⊆ U . Strictly sober spaces are in fact sober (the only irreducible closed
sets are the point closures) and strongly well-filtered, that is, for every set
I ⊆ Q such that IT is filtered (that is, directed by dual inclusion), any
U ∈ T with

⋂ I ⊆ U contains some member of I (cf. [25]); and clearly,
such spaces are well-filtered, that is, they satisfy the previous condition
whenever I itself is filtered (cf. [23]).

The following generalizations will be of interest: let K be a collection of
compact saturated subsets of a space X with topology T . Then we say X
or T is locally K-compact if each U ∈T is the directed union of all V ∈ T
for which there is a C ∈ K with V ⊆ C ⊆ U ; and X or T is K-well-filtered
(respectively, strongly K-well-filtered) if it is T0 and for any I ⊆ K such that
I (respectively, IT ) is a filter base, there is a saturated C with IT = CT
(which implies C =

⋂ I ∈ Q).

Theorem 1.1. Strictly sober spaces are strongly K-well-filtered.
Conversely, locally K-compact K-well-filtered spaces are strictly sober.

The first statement is obvious: IT is a Scott-open filter in T if it is a filter
base and I⊆Q; the second one is established in [20] (see [18] for a point-free
version).

Corollary 1.2. A locally compact space is strictly sober if and only if it
is (strongly) well-filtered.
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A subset S of a poset P is
∧

-dense (respectively ∧-dense) if each element
of P is a meet of a subset (respectively finite subset) of S. The spectrum of
a complete lattice L is the set P of its primes, equipped with the hull-kernel
topology {P\↑x : x ∈ L}; it is always sober [23, V–4.4]. L is called spatial if
it is an isomorphic copy of a topology or, equivalently, if the spectrum is

∧
-

dense in L. If, moreover, L satisfies the condition in the Separation Lemma
SL, we speak of a strictly spatial lattice. The following lemma, established
choice-freely in [20], provides a basic connection.

Lemma 1.3. A space is strictly sober if and only if its topology is strictly
spatial. Hence, the category of strictly sober spaces is dual to the category
of strictly spatial frames.

Let us record some fundamental results from [20] we shall need in due
course. For convenience, call a class X of spaces cs-stable if it contains all
closed subspaces of any X-space, that is, of any member of X. A transversal
of a collection of sets is a subset of its union meeting all its members.

Proposition 1.4. Consider the following statements on a class X of spaces:

SLX the Separation Lemma for topologies of sober X-spaces,

SSX the Strict Sobriety Theorem: sober X-spaces are strictly sober,

WX the Well-filter Theorem: sober X-spaces are well-filtered,

CIX the Compact Intersection Theorem: any filter base of compact satu-
rated subsets of a sober X-space has a compact intersection,

NIX the Non-void Intersection Theorem: any filter base of compact satu-
rated subsets of a sober X-space has a non-void intersection,

ITX the Irreducible Transversal Theorem: any set of compact subsets of
an X-space whose saturations form a filter base has an irreducible
transversal.

(1) The first five statements are equivalent if X is cs-stable, consists of
locally compact spaces and contains for each X ∈ X the ordinal sum with
a non-compact space; and all six are equivalent if additionally X is closed
under sobrification.
(2) If X is cs-stable and contains all powers of a space V with specializa-
tion poset r∨r r, all six statements are equivalent to UP and to the Tychonoff
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Product Theorem for any class of sober spaces that contains a two-element
discrete space.

Rudin’s Lemma [39] states that any collection of finite subsets of a qoset
whose generated upper sets form a filter base has a directed transversal
[23, 39]. This lemma is a useful tool in topology and in domain theory
[23, 24]. We shall see that Rudin’s Lemma and a topological variant of
it, due to Heckmann and Keimel [25] and resembling ITX, are equivalent
to the above theorems, hence to UP; in fact, Rudin’s Lemma is just a
reformulation of ITA, the Irreducible Transversal Theorem for the class A
of Alexandroff discrete spaces (A-spaces). The principles SLA, SSA, WA,
CIA, and NIA for A-spaces are mutually equivalent, but, surprisingly, they
are strictly weaker than ITA in ZF; indeed, we shall see that they follow not
only from UP but also from DC, the Principle of Dependent Choices, and
they are equivalent to the Noetherian Lift Lemma, saying that the free unital
semilattice over a noetherian poset is noetherian, too. These principles and
even weaker lift lemmas imply König’s Infinity Lemma and so the Axiom
of Choice for countable families of finite sets. As there are models in which
the latter fails, none of these principles is provable in ZF.

Valuable references concerning choice axioms in set theory, order theory
and topology are Fräıssé [22], Herrlich [26], Howard and Rubin [28], Jech
[30], and Moore [36].

2 Rudin’s Lemma

In this section, we shall apply the Irreducible Transversal Theorem (see the
introduction) to the special class A of Alexandroff discrete spaces (A-spaces),
in which arbitrary intersections of open sets are open. From Alexandroff’s
seminal work [1], we learn that these are just the quasiordered sets (qosets),
topologized by the collection of all upper sets as open sets. In that situation,
the compact saturated sets are precisely the feet, where a foot (Fuß in Ger-
man) in a qoset is a f initely generated upper set. On the other hand, the
irreducible subsets are just the directed ones, whence the closed irreducible
sets are the ideals.

Given a collection Y of sets, we mean by a cutset [15] of Y a set that
meets each member of Y; a transversal of Y is a cutset contained in

⋃Y.
Any cutset contains a transversal. A collection E of subsets of a qoset is
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said to be quasifiltered if the collection {↑E : E ∈ E} is filtered by inclusion
(in other words, E is directed by the quasiorder v with E v F ⇔ F ⊆ ↑E;
cf. [23, 25]). By the previous remarks, ITA, the Irreducible Transversal
Theorem for A-spaces, implies

RL the Rudin Lemma: any quasifiltered collection E of non-void finite sets
in a qoset has a directed transversal.

Originally, Mary Rudin [39] proved that lemma by transfinite tools,
based on AC. The proof was modified in [23, III–3] but still involved the
full AC. Our approach relies on the weaker UP or, more directly, on the
Irreducible Transversal Theorem, which opens applications to a wider range
of problems. We shall make use of an obvious self-refinement of RL, namely
(cf. [24, 25, 33])

SRL the Strong Rudin Lemma: if E is a quasifiltered set of finite subsets
of a qoset and U is an upper set not containing any E ∈ E then E has
a directed transversal disjoint from U .

Heckmann and Keimel study in [25], for any space X and diverse subsets
K of PX, the upper Vietoris space VKX with ground set K and basic open
sets

KU = {K∈ K : K⊆U} (U ∈ T = OX),

and a topological variant of RL, called

TRL the Topological Rudin Lemma: if I is an irreducible set in the upper
Vietoris space VQX then every cutset of I that is closed in X contains
an irreducible closed cutset of I.

We shall compare RL and SRL with TRL, but also with

SLL the Sober Lift Lemma:
the upper Vietoris space VQX of any sober space X is sober,

and with

SLI the Separation Lemma for Irreducible sets: if V is a Scott-open filter
of open sets in a space then for each open set U outside V there is an
irreducible closed cutset of V disjoint from U .
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Proposition 2.1. (1) I is irreducible in VKX if and only if IT is filtered
(I⊆K).

(2) A T0-space X is strongly well-filtered if and only if the space VQX is
sober.

Proof. For (1) use the equivalence

⋂
Y∈ IT ⇔ I ∩

⋂
{KU : U ∈Y} 6= ∅ (Y⊆T ),

and then for (2) the equivalence

IT = CT ⇔ ∀U ∈ T (I ∩ QU 6= ∅ ⇔ C ∈ QU) ⇔ cl I = cl {C}.

In [25], (2) was deduced from Zorn’s Lemma.

Now, invoking Theorem 1.1 and Proposition 1.4, and making VQ functo-
rial by setting VQf : VQX → VQX, C 7→ ↑f [C] for continuous f : X → Y ,
we obtain

Corollary 2.2. UP is equivalent to SLL, hence to the statement that VQ
gives rise to an endofunctor of the category of sober spaces.

Recall that a monotone convergence space is a T0-space in which every
monotone net has a supremum (relative to the specialization order) to which
it converges [23]. It is easy to see that these spaces are just the d-spaces
or temperate spaces in the sense of Wyler [43], that is, T0-spaces in which
the closure of any directed subset is the closure of a point, which is then
the supremum of the directed set; equivalently, the specialization poset of a
d-space is up-complete and its Scott topology contains the original topology
(see [17, 23]).

Lemma 2.3. The d-spaces are exactly the C-well-filtered spaces for the
collection C of cores. Hence, the following implications hold for arbitrary
spaces:

strictly sober ⇒ strongly well-filtered ⇒ well-filtered ⇒ H-well-filtered
⇓ ⇓

sober ⇒ d-space ⇔ monotone convergence space ⇔ C-well-filtered.
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Proof. If X is a d-space and F is a filter base of cores then there is a directed
set D with F = {↑d : d ∈ D}. Hence, x =

∨
D exists, and for each open U ,

we have ↑x =
⋂F ∈ U if and only if ↑d ⊆ U for some d ∈ D. Thus, X is

C-well-filtered.

Conversely, if X is C-well-filtered and D is a directed subset of X, then
the set D↑↓ =

⋂ {↓y : D⊆↓y} is closed, and V =X \D↑↓ is open. Assuming
the inclusion D↑ =

⋂ {↑d : d ∈D} ⊆ V leads to ↑d ⊆ V for a d ∈ D (as
X is C-well-filtered), hence to D ∩ V 6= ∅, in contrast to V = X \ D↑↓.
Thus, D↑ ∩ D↑↓ is non-empty; the only element in that intersection is the
supremum x of D, and any neighborhood of x contains a set ↑d ∩D with
d ∈ D; thus, D converges to x.

Johnstone’s famous example of an up-complete poset with non-sober
Scott space [31] is not well-filtered either (there is a filter base of “rect-
angular” compact saturated sets with empty intersection). However, this
Scott space is H-well-filtered, being a d-space, as will follow from Theorem
2.4 (UP may be circumvented by the specific structure of that countable
example).

Though in this paper we are mainly interested in A-spaces, let us have
a look at more general topological situations. A subset of a space is called
supercompact if its saturation is a core (a principal filter), and hypercompact
if its saturation is finitely generated, in other words, a foot relative to the
specialization order.

Clearly, every supercompact set is hypercompact, and every hypercom-
pact set is compact, but not conversely. In a locally supercompact space,
every point has a neighborhood base of supercompact sets, hence also a
neighborhood base of cores; therefore, such spaces are also referred to as
core spaces or C-spaces. Similarly, in a locally hypercompact space or H-
space [19], alias locally finite-bottomed space (Isbell [29]), every point has a
neighborhood base of hypercompact sets, hence also a neighborhood base
of feet.

Denoting by H the collection of all hypercompact saturated subsets, we
see that the H-spaces are just the locally H-compact spaces. All A-spaces
are B-spaces (spaces with a minimal base), all B-spaces are C-spaces, and all
C-spaces are H-spaces; for more details, see [14, 17, 19]. Each of these four
classes satisfies the hypotheses in Proposition 1.4 (1), but only the last three
contain all powers of V, which is required for (2) in the same proposition.
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Heckmann and Keimel [25] have derived a few of the statements in the
next theorem (namely TRL, SWT, SLL) from Zorn’s Lemma, which is
equivalent to AC.

Theorem 2.4. Each of the following principles is equivalent to UP:

SLI the Separation Lemma for Irreducible sets,

ITT the Irreducible Transversal Theorem for arbitrary spaces,

ITA the Irreducible Transversal Theorem for A-spaces,

RL the Rudin Lemma,

SRL the Strong Rudin Lemma,

TRL the Topological Rudin Lemma,

HW the H-Well-filter Theorem: d-spaces are H-well-filtered,

FT the Foot Theorem: filtered meets of feet in d-spaces are compact,

SH the Strict Sobriety Theorem for H-spaces: locally hypercompact d-
spaces are strictly sober,

SWT the Strong Well-filter Theorem: sober spaces are strongly well-filtered,

SLL the Sober Lift Lemma.

Proof. First, we shall establish the following implication circuit:

UP⇒SLI⇒TRL⇒ ITT⇒ ITA⇒RL⇒SRL⇒HW⇒SH⇒UP.

By Proposition 1.4, UP implies SLS, the Separation Lemma for sober
topologies, and SLI is just a reformulation of SLS (passing to comple-
ments).

SLI ⇒TRL: If I is an irreducible set in VQX then V = IT is a Scott-
open filter in T = OX (Proposition 2.1). For a closed cutset C of I, the
set U = X \ C lies in T \ V, so that, by SLI, there is an irreducible closed
cutset A of V with A∩U = ∅. Assuming A∩B = ∅ for a B ∈ I, we obtain
B ⊆ V =X\A ∈ V but A∩V = ∅, impossible for a cutset A of V. Thus, A
is a cutset of I containing C.

TRL ⇒ ITT ⇒ ITA: Let E be a quasifiltered collection of non-void
compact sets in a space X. We may assume X =

⋃ E . Then I = {↑F : F ∈
E} is a filter base of compact saturated subsets of X, hence I is irreducible
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in VQX. By TRL , I has an irreducible closed cutset, which is then an
irreducible transversal of E .

ITA ⇒RL ⇒ SRL: See the introductory comments in this section.

SRL ⇒HW: If F is a filter base of feet in a d-space X, and U is an
open (hence upper) set with F 6⊆ U for all F ∈ F , then, by SRL, there is
a directed transversal D of F with D∩U = ∅. As X is a d-space, x =

∨
D

exists and lies in
⋂F (because each F ∈F meets D, whence x ∈ ↑F = F ).

Since U is disjoint from D, the point x cannot belong to the open (and so, as
we are in a d-space, Scott-open) set U . Thus,

⋂F 6⊆ U . By contraposition,
X is H-well-filtered.

HW⇒SH: By Theorem 1.1, H-well-filtered H-spaces are strictly sober.

SH ⇒UP: The class of all locally hypercompact d-spaces contains all
powers of the space V, since these are locally supercompact sober spaces.
By Proposition 1.4 (2), it follows that SH is equivalent to UP.

HW ⇒ FT is straightforward.

FT ⇒ UP: For the two-element space D of maximal elements in V, the
sets DE × V I\E (E finite) form a filter base of feet with meet DI . Now,
apply Proposition 1.4.

SWT⇔ SLL⇔UP: Theorem 1.1, Proposition 1.4, Corollary 2.2.

H-spaces share many useful properties with the more special C-spaces, but
most of these properties rely on RL, which, for example, implies that the d-
H-spaces are exactly the Scott spaces of quasicontinuous domains, as defined
in [23].

3 Sober A-spaces and noetherian posets

Henceforth, we shall focus on

DC the Principle of (Countable) Dependent Choices: if R is a relation on
X such that xR = {y : xR y} 6=∅ for all x∈X then each x∈X is the
first member of a sequence (xn) with xnRxn+1.

As shown in [14] (see also [17, 19]), the sober A-spaces are exactly the
Scott spaces of noetherian posets, which we now are going to study more
thoroughly. We shall apply the previously introduced principles to A-spaces
and investigate their relationships to maximality conditions on a poset P .
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An ω-chain in P is the image of the chain ω of natural numbers under an
isotone (alias monotone) map into P , and a properly ascending chain in P is
an isomorphic copy of ω in P . We abbreviate “Ascending Chain Condition”
by ACC. Consider the following properties:

(1) P is co-well-founded ; any non-empty subset has a maximal element.

(2) P is noetherian : every directed subset has a maximal element.

(3) P satisfies the ACC : every ω-chain in P has a maximal element.

A maximal element of a chain or directed set is already the greatest element.
Clearly, (1) implies (2), which in turn implies (3), and DC makes all three
properties equivalent. As the nomenclature indicates, the ACC excludes
properly ascending chains. Notice, however, that Birkhoff [7] and others
defined the ACC by (1), although the equivalence of (1) and (3) fails in ZF
without choice.

As explained in [19], the sober A-spaces correspond not only (via the
specialization functor) to the noetherian posets, but also (via the open set
locale functor) to the superspatial locales, in which the primes are

∧
-dense

and completely prime (
∧

-prime). We now supplement these facts by anal-
ogous correspondences for co-well-founded posets and for posets satisfying
the ACC.

Recall that a space is scattered if each non-empty subspace has an
isolated point. A poset is strongly atomic if each non-singleton interval
[x, y ] = ↑x ∩ ↓y has an atom (an element covering x). A superalgebraic
lattice is a complete lattice whose elements are joins of supercompact (

∨
-

prime) elements. As in [14], a superatomic lattice is a superalgebraic and
strongly atomic lattice (the notion of superatomic boolean algebra is related
but different). By an ω-sober space we mean a T0-space in which the closure
of any ω-chain is a point closure; equivalently, every monotone sequence has
a supremum to which it converges. A complete lattice is ω-spatial if it has a∧

-dense subset of primes satisfying the DCC (the dual of the ACC). Some
of the implications in the next proposition are known, but we are interested
in a systematic comparison within a choice-free setting.

Proposition 3.1. For a T0-A-space X with specialization poset P and open
set locale T , the following equivalences and implications hold:
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(1)P is co-well-founded ⇔ (1a)X is scattered ⇔ (1b) T is superatomic

⇓ ⇓ ⇓
(2)P is noetherian ⇔ (2a)X is sober ⇔ (2b) T is superspatial

⇓ ⇓ ⇓
(3)P satisfies the ACC ⇔ (3a)X is ω-sober ⇔ (3b) T is ω-spatial .

DC is equivalent to (3)⇒ (1) and makes therefore all nine conditions equiv-
alent.

Proof. (1)⇒ (1a): Let Y be a non-empty subset of X and x a maximal
element of Y . Then {x} = Y ∩ ↑x is open in Y (since ↑x is open in X).

(1a)⇒ (1b): Observe that ⊂ denotes proper inclusion. For open sets U⊂
V pick an isolated x in V \U and an open set W ⊇U with {x} = W ∩V \U .
Then W ∩ V = U ∪ {x} is an atom of the interval [U, V ].

(1b)⇒ (1): For ∅ 6= Y ⊆ X, the lower set A = ↓Y is a non-empty
closed set. Dualizing the strong atomicity of T , one obtains a maximal
C among the closed proper subsets of A. Any element x ∈ A \ C must
then be maximal in A and so in Y (assuming x < y ∈ A would lead to
C ⊂ C ∪ ↓x ⊂ C ∪ ↓y ⊆ A).

(2)⇔ (2a): In A-spaces the directed lower sets are the irreducible closed
sets, and the lower sets with greatest elements are the point closures.

(2a)⇒ (2b): In a sober A-space X, each prime open set is complemen-
tary to a point closure, hence

∧
-prime (as arbitrary intersections of open

sets are open).
(2b)⇒ (2): If D is a directed subset of P then P \↓D is prime in the

open set locale, hence
∧

-prime by (2b) and so complementary to a principal
ideal.

(3)⇔ (3a): Let x0 ≤ x1 ≤ x2 ... be an ascending sequence in P . Then
the closure of {xn:n ∈ ω} is a point closure ↓y if and only if xn coincides
with y eventually, because ↑y is open in the A-space X.

(3)⇒ (3b): The set {X \↓x : x ∈ X} is
∧

-dense in T , consists of primes
and satisfies the DCC (being dually isomorphic to P ).

(3b)⇒ (3): If P is an arbitrary
∧

-dense set of primes in T then the
set {X \ ↓x : x ∈ X} must be contained in P, because it consists of

∧
-

primes in the lattice T . And if P satisfies the DCC then so does the poset
{X \ ↓x : x ∈ X}, whence the dually isomorphic poset P satisfies the ACC.
The equivalence of (3)⇒ (1) to DC is well-known (see below and [28]).
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Theorem 3.2. DC is equivalent to either of the global implications

NW every noetherian poset is co-well-founded,

AW every poset satisfying the ACC is co-well-founded.

A consequence of these statements is

AN every poset satisfying the ACC is noetherian,

which is strictly stronger than

DS the Denumerable Subset Axiom: infinite sets have denumerable subsets
(or, Dedekind finite sets are finite)

which in turn is strictly stronger than

Cω
<ω the Axiom of Choice for countable families of finite sets.

Proof. We know that DC implies AW, which clearly implies NW.
NW⇒DC: Let R be a relation on a set X such that for each x ∈ X

there is a y ∈ X with xR y. Then the poset T of all finite sequences
(x0, ..., xn) in X with xk Rxk+1 for all k < n, ordered by (x0, ..., xn) ≤
(y0, ..., ym) if n ≤ m and xk = yk for all k ≤ n, has no maximal element.
By NW, T contains a directed set with no maximal element. But the
only directed sets in T are the ω-chains, and a properly ascending chain
(x0, ..., xn0) < (x0, ..., xn1) < ... in T gives a sequence (xn : n ∈ ω) with
xnRxn+1.

AN⇒DS: First, we show that AN implies Cω
<ω.

Let (Fn : n ∈ ω) be a sequence of non-empty finite sets, which may be
assumed to be pairwise disjoint. On their union U =

⋃ {Fn : n ∈ ω} define
an order relation R by xR y if and only if x=y or x ∈ Fm, y ∈ Fn for some
m < n. Then U is directed by R (indeed, for x ∈ Fk and y ∈ Fm, any z ∈ Fn
with n>k and n>m satisfies xR z and y R z) but has no maximal element.
Hence, by AN, U contains a properly ascending chain, which provides a
choice function for a subsequence of (Fn). As remarked by Brunner [8], this
suffices to deduce Cω

<ω. Now, if X is any infinite set then the collection of
all finite subsets is directed by inclusion but has no greatest member, hence
cannot be noetherian. AN gives an ascending sequence E0 ⊂ E1 ⊂ ...
of finite subsets of X, and we may select via Cω

<ω a sequence of elements
xn∈ En+1 \ En, hence a denumerable subset of X.



134 M. Erné

Suitable models of set theory demonstrate that DS does not even imply
the well-orderedness of chains with DCC (Höft and Howard [27] prove that
and several related implications and independencies but denote by DS the
statement that chains with DCC are well-ordered). All the less can DS
imply the stronger (dual of) AN. On the other hand, it is known that
Cω
<ω is strictly weaker than DS but not provable in ZF (see [28] for these

facts).

A similar clue as for DC ⇔ AW ⇔ NW leads to Tarski’s observa-
tion [42] that DC is equivalent to the existence of maximal elements in all
non-empty posets not containing any infinite chains. However, the precise
position of the principle AN seems to be unknown: it might be equivalent
to or else strictly weaker than DC.

Let us conclude this section with an application of Proposition 3.1.
The lower sets of a poset P form the Alexandroff completion of P . A

∧
-

decomposition of an element x in a poset or lattice is a subset with meet x;
and x is

∧
-irreducible if it is contained in any

∧
-decomposiition of x.

Lemma 3.3. (1) A lattice L (equivalently, its dual) is superalgebraic if and
only if it is isomorphic to the Alexandroff completion of a poset, which is
then isomorphic to the poset of all

∨
-primes and also to that of all

∧
-primes

of L.
(2) A frame is strongly atomic if and only if its elements have least (hence
unique irredundant)

∧
-decomposiitions into

∧
-irreducible elements.

Part (1) is easy and well-known; (2) was mentioned in [11] and proven
in [13, 7.1.29].

Corollary 3.4. For a complete lattice L, the following are equivalent:

(a) L is isomorphic to the Alexandroff completion of a well-founded poset.

(b) L is a superatomic lattice.

(c) L is a superspatial lattice with scattered spectrum.

(d) L is a superspatial lattice with co-well-founded spectrum.

(e) Each element has a unique irredundant
∧

-decomposition into
∧

-primes.

DC is equivalent to the duality between the category of posets with DCC
and that of superatomic frames via the Alexandroff completion functor.
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Proof. By Lemma 3.3 (1), there is no loss of generality in assuming that L
is the Alexandroff completion of a poset P . Via dualization, the equivalence
of (a) – (d) and the last claim is now immediate from Proposition 3.1, which
also assures that a lattice is superspatial if and only if it is superalgebraic
and its spectrum consists of

∧
-primes.

(b) ⇔ (e) follows from Lemma 3.3 (2).

For the categorical duality statement in ZFC see also [14].

4 Footstep induction and the Noetherian lift lemma

Thoughout this section, P denotes a poset and S = F↑P the meet-semilattice
of all finitely generated upper sets (feet) of P , ordered by dual inclusion.
Thus, ∅ is the greatest element of S, and the map ηP : P → S, x 7→ ↑x,
embeds P in S. In fact, ηP is a universal embedding of P in a unital semi-
lattice, whence S may be referred to as “ the” free unital semilattice over P :
for each isotone map ϕ from P into a unital semilattice T , there is a unique
homomorphism ϕ̂ : S → T such that ϕ = ϕ̂ ◦ ηP (given by ϕ̂(F ) =

∧
ϕ[F ]).

Moreover, F↑ gives rise to a functorial equivalence between the category
of posets and the category of unital meet-semilattices whose primes form a
∧-dense subset.

Non-trivial is the fact that, under weak choice principles, the maximality
properties (1), (2), (3) discussed in the previous section may be “lifted” from
a poset P to S, the free unital semilattice over it. Birkhoff established the
dual result in the 1948 edition of his seminal monograph Lattice Theory [7],
by rather technical arguments involving ordinals and making heavy use of
choice. Simpler arguments were given later by Erné [9] and Fräıssé [22].
The proof in [9] is based on

FIP the Footstep Induction Property:

if a subset S ′ of S = F↑P satisfies the conditions

(i) x ∈ P and {Y ∈ S : Y ⊂ ↑x} ⊆ S ′ imply ↑x ∈ S ′,
(ii) Y ∈ S and {↑x : x ∈ Y } ⊆ S ′ imply Y ∈ S ′,

then S ′ already coincides with S.
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Proposition 4.1. Consider the following conditions on a poset P and the
free unital semilattice S = F↑P over P :

(0) P has the FIP. (0′) S has the FIP.

(1) P is co-well-founded. (1′) S is co-well-founded.

(2) P is noetherian. (2′) S is noetherian.

(3) P satisfies the ACC. (3′) S satisfies the ACC.

In ZF, all implications displayed in the diagram below are true:

(3)
@R

(3′)
�	

(2)
�	 @R

(2′)
?

-(0)

?

� (1)
?

�	 @R
(1′)� -

@R
(0′)

In ZF+DC all eight conditions are equivalent.

Proof. Note first that for any foot Y ∈ S, the finite set MinY of all minimal
elements is the least set F satisfying Y = ↑F .

(0)⇒ (1): Apply the FIP to the set S ′ of all co-well-founded members
of S:
(i) if all feet properly contained in ↑x are co-well-founded then so is ↑x;
(ii) if all ↑x with x ∈ Y are co-well-founded then so is Y .
By the FIP, all principal filters and the whole poset P are co-well-founded,
too.

(1)⇒ (0): Assume a proper subset S ′ of S satisfies (i) and (ii); then,
by (1) and (ii), there is a maximal x0 with ↑x0 6∈ S ′. But then, by (i) and
(ii) again, one would obtain a Y ∈ S \ S ′ with Y ⊂ ↑x0 and an x∈Y with
↑x 6∈ S ′, whence x0<x, contradicting the maximality ofx0.
We have proved the equivalence (0)⇔ (1) and, in particular, (0′)⇔ (1′).

(0)⇒ (3′): We want to apply the FIP to the set S ′ of all elements of S
that are not the first member of a properly ascending (that is, ⊆–descending)
sequence in S. Condition (i) is obviously fulfilled. For (ii), assume Y0 ∈
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S \ S ′. There is a sequence Y0 ⊃ Y1 ⊃ Y2... in S with ↑Fn = Yn for
finite Fn= MinYn. For each x ∈ F0, define recursively a sequence Y0(x) ⊇
Y1(x) ⊇ Y2(x) ... in S by

Y0(x) = ↑x, Yn+1(x) = ↑(Fn+1 ∩ Yn(x)).
Then, by induction,

(∗) Yn =
⋃ {Yn(x) : x ∈ F0} for all n.

In the step from n to n+ 1, note that for y ∈ Yn+1 there is a z ∈ Fn+1

with z ≤ y, and Fn+1 ⊆ Yn =
⋃ {Yn(x) : x ∈ F0} yields an x ∈ F0 with

z ∈ Fn+1 ∩ Yn(x), whence y ∈ ↑z ⊆ ↑ (Fn+1 ∩ Yn(x)) = Yn+1(x).
Now, if ↑x ∈ S ′ for all x ∈ F0 then each of the sets {Yn(x) : n ∈ ω}

and, by (∗), the set {Yn : n ∈ ω} would be finite, a contradiction. By
contraposition, (ii) is fulfilled, and then (1) yields S ′ = S; in other words,
S satisfies the ACC.

The other implications in the diagram are clear sinceP is embedded in
S. DC ensures the implications (3)⇒ (1) and (3′)⇒ (1′), which make all
eight conditions equivalent.

While we saw that the implication (1)⇒ (3′) holds in ZF, an additional
reasoning in Section 5 will show that the implications (2)⇒ (3′) and (3)⇒
(3′) are equivalent to the unprovable Axiom of Choice for countable families
of finite sets. Whether (1) implies (2′) or even (1′) (in ZF) remains open.
But we are able to prove the equivalence of the implication (2)⇒ (2′) to
several of the previously considered topological principles, restricted to A-
spaces, using

Lemma 4.2. The class A of A-spaces contains all discrete spaces, consists
of locally supercompact spaces, and is stable under the formation of subspaces
and of ordinal sums. In particular, the ordinal sum of an A-space and an
infinite discrete, hence non-compact space is an A-space.

Proof. Since in an A-space all cores are open, each point has a least neigh-
borhood (namely, its core), which is supercompact. That subspaces of A-
spaces are again A-spaces is clear; but notice that subspaces of locally su-
percompact spaces (C-spaces) need not be locally supercompact; in fact,
every space is a subspace of a B-space, hence of a C-space [17]. The ordinal
sum of two disjoint spaces X and Y has as open sets the open sets in Y and
the sets U ∪ Y with U open in X. From this it is evident that the ordinal
sum of two A-spaces is an A-space.
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Theorem 4.3. The following principles are equivalent:

SLA the Separation Lemma for superspatial locales,

SSA the Strict Sobriety Theorem for A-spaces,

WA the Well-filter Theorem for A-spaces,

CIA the Compact Intersection Theorem for A-spaces,

NIA the Non-void Intersection Theorem for A-spaces,

NL the Noetherian Lift Lemma: if P is noetherian then so is F↑P ,

NF the Noetherian Foot Intersection Lemma: in every noetherian poset,
the intersection of any filter base of feet is a foot,

NC the Noetherian Compactness Lemma: the free unital semilattice over
a noetherian poset has a compact top (unit element).

These principles are not only strictly weaker than UP but also strictly
weaker than DC, which is independent of UP.

Proof. By Lemma 4.2, all required hypotheses are fulfilled in order to apply
Proposition 1.4 (1) to the class X = A of A-spaces, which gives the equiva-
lence of the first five principles listed in Theorem 4.3.

Passing from sober A-spaces to noetherian posets, WA asserts that for
every ⊇-directed, that is, ⊆-filtered subset F of S = F↑P , any upper set U
with

⋂F ⊆ U contains some member of F . But the latter simply means
that F has a greatest (!) element in the order of S (as

⋂F itself is an upper
set). Thus, WA⇔ NL.

Similarly, one proves the equivalences CIA⇔ NF and NIA⇔ NC. For
this, notice that if a foot Y is the join of some set F ⊆ S (with respect
to ⊇) then Y must be the intersection

⋂F : by definition, Y ⊆ ⋂F , and
conversely, for any x ∈ ⋂F , the foot ↑x is an upper bound of F , whence
x ∈ ↑x ⊆ Y . A top element is compact if and only if it is not a directed join
of smaller elements. In S, this condition means that ∅ is not the intersection
of a filter base of (non-empty!) feet.

UP and ITA are equivalent, by Theorem 2.4, and ITA implies NIA.
On the other hand, DC implies NL, by Proposition 4.1.

For the independence of UP and DC in ZF, consult [28].
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In Section 5, we shall see that the principles in Theorem 4.3 imply at
least Cω

<ω, the Axiom of Choice for countable families of finite sets, but it
might be that they imply even stronger axioms like DS.

Let us mention that weak choice principles make it possible to lift some
other important properties from a poset to the free unital semilattice over
it; for example, that is the case for certain continuity properties. A poset
is continuous, respectively quasicontinuous, if each principal filter ↑x is the
filtered intersection of cores, respectively of feet, that meet every directed
set D with D↑ ⊆ ↑x. Using facts from Section 2, one proves a result that
Heckmann and Keimel [25] deduced from Zorn’s Lemma.

Corollary 4.4. UP implies that a dcpo is quasicontinuous if and only if
the free unital semilattice over it is continuous (but not necessarily a dcpo).

In ZF + UP, the functor F↑ induces an equivalence between the category
of quasicontinuous dcpo’s and that of continuous unital semilattices whose
prime elements form an up-complete ∧-dense subset.

5 König’s Lemma

The equivalence theorems derived in the previous sections would be of minor
interest if the involved statements themselves (not only their equivalence)
could be established in ZF without choice. But that is not the case, because
they all imply the weak choice principle Cω

<ω, which is not provable in ZF.
Call a (binary) relation R locally finite if the sets

xR = {y : xR y}

are finite for all x in the domain of R. The powers Rn are defined as
iterated relation products. The covering relation R of a poset with strict
order < is given by xR y if and only if x < y holds but no z satisfies
x < z < y; in case < is the transitive closure of R, we speak of a concatenated
poset. For example, all finite posets are concatenated. In [9], it is shown
that passing from a partial order to its covering relation yields a bijection
between concatenated posets and diagrams, that is, pairs (X,R) where R
is a relation on X with R ∩Rn = ∅ for n ≥ 2.

By a tree we mean here a poset with a least element in which all (prin-
cipal) ideals are chains, and by an ω-tree a poset with least element such
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that all ideals are ω-chains and the tree, respectively, its covering relation
is locally finite, that is, each element has only a finite number of covers.
Dénes König was a pioneer in the investigation of such trees (see [34]); to-
day, they play an important role in various fields of logic, set theory, graph
theory and computer science. Of particular interest are ω-trees of words (cf.
Jech [30, p.115]).

Lemma 5.1. (1) The ω-trees are the concatenated locally finite trees.
(2) Let S be a set and S∗ the set of all finite sequences (words) over S,
ordered by the prefix relation. If T is a lower set in S∗ such that for each
t ∈ T the set {s ∈ S : (t, s) ∈ T} is finite, then T is an ω-tree.

Proof. (1) That an ω-tree is concatenated follows from the condition that
each principal ideal must be a finite chain. Conversely, assume T is a con-
catenated tree with locally finite covering relation. Let D be an ideal of
T , hence a chain. If D has a greatest element, it is a finite chain (by the
concatenation property), and we are done. Otherwise, define recursively
elements dn ∈ D by

dn = min{d ∈ D : dk < d for k < n} .

(The minimum exists since the principal ideals are finite, whereas D is infi-
nite.) It remains to verify {dn : n < ω} = D. By the recursive construction,
dn covers dn−1 in D and, as D is a lower set, also in T . Now, for any d ∈ D,
if dm < d for all m then ↓d would be infinite; hence, we must have d ≤ dn
for some n and then d ∈ ↓dn = {dk : k ≤ n}.

(2) is an easy consequence of (1).

We shall see that the Noetherian Lift Lemma is closely related to a
famous graph-theoretical tool, namely

KL König’s (Generalized) Infinity Lemma: if R is a locally finite relation
and x is an element with xRn 6= ∅ for all n, then there is a sequence
(xn) with x0 = x and xnRxn+1 for all n.

Theorem 5.2. The following principles are mutually equivalent consequences
of the Noetherian Lift Lemma NL, hence of UP and of DC:

Cω
<ω the Axiom of Choice for countable families of finite sets,
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Uω
<ω the principle that countable unions of finite sets are countable.

Tω
<ω Tychonoff’s Theorem for countable families of finite spaces,

Dω
<ω the Principle of Dependent Choices for locally finite relations,

KL König’s Infinity Lemma for locally finite relations,

KT König’s Infinity Lemma for covering relations of ω-trees,

KT′ König’s Infinity Lemma for covering relations of word trees,

CL the Chain Lift Lemma: if a poset P fulfils the ACC then so does F↑P ,

WL the Weak Lift Lemma: if P is noetherian then F↑P fulfils the ACC.

Proof. Clearly, NL implies WL. The equivalence of the statements Cω
<ω,

Uω
<ω, Dω

<ω,KL, KT and KT′ can be found, more or less explicitly, in the
literature on weak choice axioms (see, for example, Felscher [21], Herrlich
[26], Howard and Rubin [28]). For Cω

<ω⇔Tω
<ω, see Krom [35] or Herrlich

[26]. Let us verify the more difficult implications in the following “bicyclic”
diagram:

WL ⇐ CL ⇐ Uω
<ω ⇒ KL

⇓ ⇑ ⇓
KT ⇒ KT′ ⇒ Cω

<ω ⇐ Dω
<ω

Uω
<ω ⇒ CL: Let Y0 = ↑F0 ⊃ Y1 = ↑F1 ⊃ ... be a properly ascending

chain in S = F↑P (ordered by ⊇), with finite sets Fi = MinYi of mini-
mal elements. Enumerate the union U =

⋃ {Fn : n ∈ ω}. We construct
recursively a properly ascending sequence in P , using the same notation
and argument as in the proof of (0)⇒ (3′) in Proposition 4.1. Take any x0

in F0 such that there are infinitely many Y 0
n = Yn(x0). Assume for some

m ∈ ω \ {0} and all i < m we have found elements xi in P and sequences
(Y i
n) = (↑F in) in S with x0 < ... < xm−1 so that {Y i

n : n ∈ ω} is an infinite
chain in S with ↑xi = Y i

0 , Y i
n ⊇ Y i

n+1 and F in = MinY i
n ⊆ Fn. This has

been achieved for m=1. Suppose m>1. Then there is a first nm such that
Y m−1
nm is properly contained in Y m−1

0 = ↑xm−1. Put Zmn = Y m−1
n+nm . Pick the

first element x= xm of the finite set MinZm0 = Fm−1
nm in the enumeration

of U such that the set {Zmn (x) : n ∈ ω} is infinite. Put Y m
n = Zmn (xm).

Then xm−1 < xm (as xm ∈ ↑xm = Y m
0 ⊆ Y m−1

nm ⊂ Y m−1
0 = ↑xm−1), and
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{Y m
n : n ∈ ω} is an infinite chain in S with Y m

n ⊇ Y m
n+1. This gives a prop-

erly ascending sequence (xn) in P .

WL ⇒ KT: Let T be an ω-tree and consider an element x ∈ T with
Fn = xRn 6= ∅ for all n, where R denotes the covering relation (whence
all yR are finite). Passing to the subtree ↑x, we may assume that x is the
least element of T . By induction, one verifies that the non-empty sets Fn
are finite and disjoint; thus, (↑Fn : n ∈ ω) is a properly ascending sequence
in F↑T (indeed, we have the inclusion Fn+1 =

⋃ {yR : y ∈ xRn} ⊆ ↑Fn,
and assuming z ∈ Fn ⊆ ↑Fn+1, we would find a y ∈ Fn+1 with y ≤ z; but,
since T is concatenated, y ≤ z would force z to lie in some Fm with m > n).
Now, by contraposition, WL yields an ideal D of T , hence an ω-chain,
with no greatest element; then D may be refined to a properly ascending
sequence x0Rx1Rx2 ... with x0 = x (no choice required, since in an ω-tree,
the inserted elements to obtain non-refinable chains are unique).

Uω
<ω ⇒ KL: Given a locally finite relation R, consider the set Y of all

x such that xRn 6= ∅ for all n. By induction, the sets xRn are finite, so
their union Ux =

⋃ {xRn : n ∈ ω} is countable by Uω
<ω. Fix an x ∈ Y and

an enumeration of Ux, and put Yx = Y ∩Ux. For each y ∈ Yx, the set yR
is contained in Ux (since y ∈ xRn implies yR ⊆ xRn+1), and so Y ∩ yR is
contained in Yx. Further, the finiteness of yR assures that the set Y ∩ yR
is non-empty: assuming, on the contrary, that for each z ∈ yR there is
a (least) nz with zRnz = ∅, one would obtain for n= max{nz : y R z} that
zRn is empty for all z ∈ yR, hence yRn+1= ∅, in contrast to y ∈ Y . Now,
one may define a map ϕ : Yx → Yx by taking for ϕ(y) the first element of
Y ∩ yR with respect to the enumeration of Ux. Then xn = ϕn(x) defines a
sequence with the desired property xnRxn+1 (cf. [21]).

We do not know whether NL is equivalent to CL, hence to Cω
<ω. But:

Proposition 5.3. AN is strictly stronger than NL. Hence, if all posets
with ACC are noetherian then so are the free unital semilattices over them.

Proof. By Theorem 3.2, AN implies DS, hence Cω
<ω, which is equivalent to

CL, by Theorem 5.2; and clearly CL+AN entails NL. If NL would imply
AN then, by Theorem 4.3, UP⇒NL⇒AN⇒DS, whereas it is known
that UP does not imply DS (see [28]).
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A unital meet-semilattice S is distributive if for x, y, z ∈ S with x∧y ≤ z
there are x0 ≥ x and y0 ≥ y with x0 ∧ y0 = z. This together with co-well-
foundedness of S (or the ACC plus DC) makes the set P of primes ∧-dense
in S, hence S is isomorphic to F↑P .

Corollary 5.4. In ZF + DC, the category of posets with ACC is equivalent
to the category of distributive unital meet-semilattices with ACC.

Another related result is also attributed to König (cf. [22, 5–2.5]):

KP König’s Lemma for Posets:
infinite posets satisfying the ACC and the DCC contain infinite an-
tichains.

Since this is provable for denumerable posets in ZF (see [22]), KP follows
from DS. In [15] it is shown that DS is equivalent to the conjunction of
Cω
<ω with

DF Distributive lattices satisfying the ACC and the DCC are finite.

Diagram of Choice Principles

AC�NWAW DC�- �- -� TT

?
SSL -� SLI -� SH -� HW-� RL -� TRL-� TY

?

? ? ? ? ? ? ?? 6 6 6 6 6 66

UP -� SLX-� SSX-� WX -� CIX -� NIX -� ITX

? ? ? ? ? ??
NL -� SLA-� SSA -� WA -� CIA NIA� ITA-�

?

? ? ? ? ? ? ??

6

AN

?

DS

KP

Dω
<ω
-� Cω

<ω
-� Uω

<ω
-� Tω

<ω
-� CL -� KL -� KT -� KT′

TT is Tychonoff’s Theorem: products of compact spaces are compact

TY is Tychonoff’s Theorem for a class of sober spaces containing (2,P2)

X denotes any class of spaces that is stable under forming closed subspaces

and contains all powers of a space V with specialization poset r∨r r .
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