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Equivalences in Bicategories
Omar Abbad

Abstract. In this paper, we establish some connections between the con-
cept of an equivalence of categories and that of an equivalence in a bicategory.
Its main result builds upon the observation that two closely related concepts,
which could both play the role of an equivalence in a bicategory, turn out not
to coincide. Two counterexamples are provided for that goal, and detailed
proofs are given. In particular, all calculations done in a bicategory are fully
explicit, in order to overcome the difficulties which arise when working with
bicategories instead of 2-categories.

1 Introduction and Preliminaries

The work deals with equivalences as 1-cells in a bicategory. Therefore, we
refer the reader to [4], [5], or [8] for an exact and detailed definition of
bicategories. For other basic categorical definitions, the reader could consult,
for example, [5] or [9]. Below, we will give the definition of an equivalence
in a bicategory similar to that given in [10], followed by further definitions
essentially given in [2] (see also [6] or [7]).

Two sections are provided for this purpose. The first one introduces the
main definition of an equivalence in a bicategory and some auxiliary defi-
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nitions. The second section provides new characterizations of such equiva-
lences, in order to get this, at about the end of this paper, a result which
essentially makes the link between the definition provided for an equivalence
in a bicategory and that of an equivalence as a classical functor between two
categories (Proposition 3.6). We then immediately provide two counterex-
amples to show that the two close definitions used in the literature, of an
equivalence in a bicategory, do not coincide (Theorem 3.7).

Some new definitions, like a conjugate of an equivalence (as a 1-cell
in a bicategory), co-fullness, and co-faithfulness have been introduced to
facilitate this presentation.

At the end of the paper, we mention an idea to how to internalize the
concept of equivalences in bicategories.

2 Equivalences in bicategories

In this section we provide a definition of an equivalence in a bicategory and
we give different implications that can have this definition in connection
with other classic concepts.

Definition 2.1. Let f : X → Y be a 1-cell in a bicategory C. We say that
f is

(i) full if, for every object C ∈ C, the functor

C(C, f) : C(C,X) → C(C, Y )

h 7→ f ◦ h = fh

(α : k ⇒ h) 7→ f ◦ α = 1f ∗ α

is full. The α is a 2-cell in the bicatory C and ∗ is the horizontal composition
of 2-cells. We will use these notations throughout the text;

(ii) faithful if, for every object C ∈ C, the functor

C(C, f) : C(C,X)→ C(C, Y )

is faithful;
(iii) an equivalence if, there exist a 1-cell f∗ : Y → X and two invertible

2-cells εf : f ◦f∗ ⇒ 1Y and ηf : 1X ⇒ f∗◦f. The f∗ will be called a conjugate
of f.
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Remark 2.2. It follows immediately from the definition of an equivalence
f that:

(i) Any conjugate of f is also an equivalence.
(ii) f is a conjugate of f∗.
(iii) Any 1-cell isomorphic to a conjugate of f is also a conjugate of f ,

and any 1-cell isomorphic to f is also an equivalence.
(iv) Any two conjugates of f are isomorphic.

Example 2.3. (i) For every X ∈ C, 1X is an equivalence. More generally,
if f is invertible, then it is an equivalence, since f−1 is an evident conjugate
of f . In fact, the inverse of f , if it exists, is the strong version of the
conjugate of f , which is sometimes called, in the literature, “quasi inverse”
of f (see [10, Definition 16] ).

(ii) An equivalence between two categories is an equivalence as a 1-cell
in the 2-category Cat (2-cells are the natural transformations between func-
tors).

Let us see some consequences emerging from the above definitions.

Proposition 2.4. If f : X → Y is an equivalence, then it is full and faithful.

Proof. We denote by

ahgf : (hg)f ⇒ h(gf)

rf : f ◦ 1X ⇒ f

lf : 1Y ◦ f ⇒ f,

respectively, the natural isomorphisms of, associativity of composition, right
and left units in a bicategory.
f is faithful: Let us assume that there exist two 2-cells α, γ : g ⇒ h such
that f ◦ α = β = f ◦ γ and let us show α = γ. We have

f∗ ◦ (f ◦ α) = f∗ ◦ (f ◦ γ). (1)

By the naturality of the isomorphisms afgh, introduced above, we get

[(f∗ ◦ f) ◦ α] ◦ agff∗ = ahff∗ ◦ [f∗ ◦ (f ◦ α)]. (2)

Using (1) and (2), we get

a−1
hff∗ ◦ [(f∗ ◦ f) ◦ α] ◦ agff∗ = a−1

hff∗ ◦ [(f∗ ◦ f) ◦ γ] ◦ agff∗
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or

(f∗ ◦ f) ◦ α = (f∗ ◦ f) ◦ γ,

which implies

(ηf ? 1h) ◦ (1f∗◦f ? α) ◦ (η−1
f ? 1g) = (ηf ? 1h) ◦ (1f∗◦f ? γ) ◦ (η−1

f ? 1g). (3)

The equality (3) is exactly the equality between the vertical composi-
tions of the two diagrams

C
g //

1g
��

X
1X //

ηf
��

X

C
g //
α
��

X
f∗◦f//

1f∗◦f
��

X

C
h //
1h
��

X
f∗◦f//

η−1
f ��

X

C
h

// X
1X

// X

C
g //

1g
��

X
1X //

ηf
��

X

C
g //
γ
��

X
f∗◦f//

1f∗◦f
��

X

C
h //
1h
��

X
f∗◦f//

η−1
f ��

X

C
h

// X
1X

// X

By applying the Interchange law (coming from the fact that the hori-
zontal composition is a functor between hom-categories) to both members
of the equality (3) (or directly to the two diagrams), we get

11X ? α = 11X ? γ,

and so

α = γ.

f is full: If g, h : C → X are two 1-cells and β : f ◦ g ⇒ f ◦ h is a 2-cell, we
shall find α : g ⇒ h such that f ◦ α = β. The α will be the composition of
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the 2-cells
C

g //

l−1
g ��

X

C
g // X

1X //
ηf◦g ��

X

C
g // X

f∗◦f //
af∗fg ��

X

C
f◦g // Y

f∗ //

f∗◦β ��
X

C
f◦h // Y

f∗ //
a−1
f∗fh ��

X

C
h // X

f∗◦f //

η−1
f ◦h ��

X

C
h // X

1X //

lh
��

X

C
h

// X.

We need to check that f ◦α = β. Let us consider the equivalence between
the following equalities:

f ◦ α = β (4)
f∗ ◦ (f ◦ α) = f∗ ◦ β (5)
(f∗ ◦ f) ◦ α = a−1

f∗fh ◦ (f∗ ◦ β) ◦ af∗fg (6)

(η−1
f ◦h)◦((f∗◦f)◦α) = (η−1

f ◦ h) ◦ a−1
f∗fh ◦ (f∗ ◦ β) ◦ af∗fg (7)

lh ◦ (1X ◦ α) = lh ◦ (η−1
f ◦ h) ◦ a−1

f∗fh ◦ (f∗ ◦ β) ◦ af∗fg ◦ (ηf ◦ g) (8)

α ◦ lg = lh ◦ (η−1
f ◦ h) ◦ a−1

f∗fh ◦ (f∗ ◦ β) ◦ af∗fg ◦ (ηf ◦ g) (9)

α = lh◦(η−1
f ◦ h) ◦ a−1

f∗fh ◦ (f∗ ◦ β) ◦ af∗fg◦(ηf ◦g)◦l−1
g , (10)

which is exactly the expression of α emanating from the above diagram.
(5) ⇔ (6), by the naturality of the isomorphisms afgh,
(7) ⇔ (8), by the Interchange law,
(8) ⇔ (9), by the naturality of the isomorphisms lf .

The converse of the last proposition is not always true (see Theorem 3.7),
but we immediately have the following consequence.

Corollary 2.5. For f : X → Y , if there exists a 1-cell f∗ : Y → X and an
isomorphism ηf : 1X ⇒ f∗ ◦ f, then f is full and faithful.

Proof. It suffices to check in the proof of Proposition 2.4 that we have not
used the isomorphism εf : f ◦ f∗ ⇒ 1Y .
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Many interesting properties can be deduced from the previous results.

Proposition 2.6. The following two statements are equivalent:
(1) f is full, faithful, there exists a 1-cell f∗ and an isomorphism εf : f ◦

f∗ ⇒ 1Y .
(2) For every C ∈ C, C(C, f) is an equivalence.

Proof. (1) ⇒(2): To show this implication it suffices to prove that for every
C and for every g : C → Y , there exists h : C → X such that f ◦h ∼= g. But
this results immediately from the sequence of the evident isomorphisms

g ∼= 1Y ◦ g ∼= (f ◦ f∗) ◦ g ∼= f ◦ (f∗ ◦ g)

and by taking h = f∗ ◦ g.

(2)⇒(1): Clearly, to show this implication, it is enough to show the
existence of f∗ : Y → X and an isomorphism εf : f ◦f∗ ⇒ 1Y . We may take
C = Y . Then C(Y, f) is an equivalence, and so for 1Y : Y → Y , there exists
f∗ : Y → X such that 1Y ∼= f ◦ f∗.

By Proposition 2.4, we get the following corollary.

Corollary 2.7. If f is an equivalence, then for every C ∈ C, C(C, f) is an
equivalence.

Remark 2.8. (i) The converse of Corollary 2.7 is not always true. In fact, we
will prove later that we need more conditions on f for it to be an equivalence.

(ii) In the definition of an equivalence, if in addition the two isomor-
phisms ηf and εf are natural, then one can choose those isomorphisms so
that the usual triangular identities

f
ηf◦f +3

1f

�&

ff∗f

f◦εf

��

f∗
f∗◦ηf +3

1f∗

�&

f∗ff∗

εf◦f∗

��
f f∗

are verified. To prove this, the reader could consider, for example, the idea
used in the proof of Proposition 27 in [3].
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3 New characterizations

Via the new concepts of co-full and co-faithful 1-cells, we will establish the
main result of this work, Theorem 3.7, which provides two counterexamples
against the equivalence of two apparent close concepts of an equivalence in
a bicategory.

Definition 3.1. Let f : X → Y be a 1-cell in a bicategory C. We say that
f is

(i) co-full if, for every object C ∈ C, the functor

C(f, C) : C(Y,C) → C(X,C)

h 7→ h ◦ f = hf

(α : k ⇒ h) 7→ α ◦ f = α ∗ 1f

is full,
(ii) co-faithful if, for every object C ∈ C, the functor

C(f, C) : C(Y,C)→ C(X,C)

is faithful.

Proposition 3.2. If f : X → Y is an equivalence, then it is co-full and
co-faithful.

Proof. Straightforward, by using the same arguments used in the proof of
Proposition 2.4 and changing ηf by εf .

We need less conditions on f to have the result given above.

Corollary 3.3. For f : X → Y , if there exists a 1-cell f∗ and an isomor-
phism εf : f ◦ f∗ ⇒ 1Y , then f is co-full and co-faithful.

Proof. Notice that we have no need of the isomorphism ηf : 1X ⇒ f∗ ◦ f , in
the proof of Proposition 3.2.

Proposition 3.4. The following two statements are equivalent:
(1) f is co-full, co-faithful, there exist a 1-cell f? and an isomorphism

ηf : 1X ⇒ f∗ ◦ f .
(2) For every C ∈ C, C(f, C) is an equivalence.
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Proof. See the proof of Proposition 2.6.

Corollary 3.5. If f is an equivalence, then for every C ∈ C, C(f, C) is an
equivalence.

Proof. Use Corollary 3.3.

Now we are able to give a new characterization of an equivalence as a
1-cell, by means of equivalences as functors.

Proposition 3.6. The following two statements are equivalent:
(1) f is an equivalence.
(2) For every C ∈ C, C(C, f) and C(f, C) are equivalences.

Proof. (1) ⇒(2): Results immediately from Corollareies 2.7 and 3.5.
(2)⇒(1): By Propositions 2.6 and 3.4.

At this stage we have enough ingredients to prove relatively readily the
item (i) of Remark 2.8. This will be the main result of the present paper.

Theorem 3.7. The two parts of the item (2) of the above proposition, no
one implies the other in general.

Proof. We shall give counterexamples to show that each of the following two
equivalences are false in general:

(a) f is an equivalence if and only if for every C ∈ C, C(f, C) is an equiv-
alence.

(b) f is an equivalence if and only if for every C ∈ C, C(C, f) is an equiv-
alence.

By Proposition 3.6, this amounts to give counterexamples to show that
each of the following two implications is false in general:

(a′) for every C ∈ C, if C(C, f) is an equivalence then, for every C ∈ C,
C(f, C) is an equivalence.

(b′) for every C ∈ C, if C(f, C) is an equivalence then, for every C ∈ C,
C(C, f) is an equivalence.

For (a′), consider the following bicategory C:
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• 0-cells: {1, 2, 3},

• 1-cells: fii = idi for all i ∈ {1, 2, 3} and

1
f ′11→ 1; 1

f12→ 2; 1
f ′12→ 2; 1

f13→ 3; 1
f ′13→ 3; 3

f31→ 1; 3
f32→ 2

1f ′11 99

f ′12

%%
f12

//

f ′13

??

f13

CC2 3
f32

oo

f31

��

The composition for those 1-cells are defined as follows:

f12 ◦ f31 = f32; f ′12 ◦ f31 = f32;

f32 ◦ f13 = f ′12; f32 ◦ f ′13 = f ′12;

f13 ◦ f31 = f33; f ′13 ◦ f31 = f33;

f31 ◦ f13 = f ′11; f31 ◦ f ′13 = f ′11;

f12 ◦ f ′11 = f ′12; f ′12 ◦ f ′11 = f ′12;

f13 ◦ f ′11 = f ′13; f ′13 ◦ f ′11 = f ′13;

f ′11 ◦ f31 = f31; f ′11 ◦ f ′11 = f ′11.

We can easily check the associativity of the compositions.

• 2-cells: The 2-cells in C are defined as

–

i

fij
''

fij

77�� 1fij j ,

whenever fij is defined for i, j ∈ {1, 2, 3}. Those are the invertible
2-cells.
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– The non invertible 2-cells are:
α11 : f11 ⇒ f ′11; β11 : f ′11 ⇒ f11; γ11 : f11 ⇒ f11(γ11 6=
1f11); θ11 : f ′11 ⇒ f ′11(θ11 6= 1f ′11

), with the following vertical
composition rules:

β11 ◦ α11 = γ11

α11 ◦ β11 = θ11

θ11 ◦ α11 = α11

α11 ◦ γ11 = α11

γ11 ◦ γ11 = γ11

θ11 ◦ θ11 = θ11

γ11 ◦ β11 = β11

β11 ◦ θ11 = β11

α12 : f12 ⇒ f ′12; β12 : f ′12 ⇒ f12; γ12 : f12 ⇒ f12(γ12 6=
1f12); θ12 : f ′12 ⇒ f ′12(θ12 6= 1f ′12

), with the following vertical
composition rules:

β12 ◦ α12 = γ12

α12 ◦ β12 = θ12

θ12 ◦ α12 = α12

α12 ◦ γ12 = α12

γ12 ◦ γ12 = γ12

θ12 ◦ θ12 = θ12

γ12 ◦ β12 = β12

β12 ◦ θ12 = β12

and α13 : f13 ⇒ f ′13; β13 : f ′13 ⇒ f13; γ13 : f13 ⇒ f13(γ13 6=
1f13); θ13 : f ′13 ⇒ f ′13(θ13 6= 1f ′13

), with the following vertical
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composition rules:

β13 ◦ α13 = γ13

α13 ◦ β13 = θ13

θ13 ◦ α13 = α13

α13 ◦ γ13 = α13

γ13 ◦ γ13 = γ13

θ13 ◦ θ13 = θ13

γ13 ◦ β13 = β13

β13 ◦ θ13 = β13.

The horizontal composition rules of those 2-cells are:

α12 ? α11 = α12; f12 ◦ γ11 = γ12; f ′12 ◦ γ11 = θ12; α12 ◦ f ′11 = θ12;
β12 ? β11 = β12; f12 ◦ θ11 = θ12; f ′12 ◦ θ11 = θ12; β12 ◦ f ′11 = θ12;
α12 ? β11 = θ12; f12 ◦ α11 = α12; f ′12 ◦ α11 = θ12; α12 ◦ f ′11 = θ12;
β12 ? α11 = θ12; f12 ◦ β11 = β12 ; f ′12 ◦ β11 = θ12; β12 ◦ f ′11 = θ12;
α13 ? α11 = α13; f13 ◦ γ11 = γ13; f ′13 ◦ γ11 = θ13; α13 ◦ f ′11 = θ13;
β13 ? β11 = β13; f13 ◦ θ11 = θ13; f ′13 ◦ θ11 = θ13; β13 ◦ f ′11 = θ13;
α13 ? β11 = θ13; f13 ◦ α11 = α13; f ′13 ◦ α11 = θ13; α13 ◦ f ′11 = θ13;
β13 ? α11 = θ13; f13 ◦ β11 = β13 ; f ′13 ◦ β11 = θ13; β13 ◦ f ′11 = θ13;

C is a 2-category: long but straightforward.
It is not hard to check that if we take f = f13, C(C, f) is an equivalence

for every C ∈ {1, 2, 3}. But, for C = 2 and, since the only 1-cell from 3 to 2
is f32, and f32◦f13 = f ′12, there exists no g : 3→ 2 such that g◦f13 = f12 (or
more precisely g◦f13

∼= f12), then C(f13, C) can not be essentially surjective,
therefore it can not be an equivalence.

For (b′), we could take, as a counterexample, the bicategory K = Cop, f =
f31, and we can check easily that for every C ∈ K, K(f31, C) is an equiva-
lence, but K(2, f31) can not be an equivalence.

Remark 3.8. (i) As a consequence of Theorem 3.7, the authors who define
the equivalence f by the property: “∀C ∈ C, C(C, f) is an equivalence”, give
a definition that can not be equivalent (in a general bicategory) to the one
given in (iii) of Definition 2.1. Nevertheless, in many bicategories, the two
properties
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p1. ∀C ∈ C, C(C, f) is an equivalence,

p2. ∀C ∈ C, C(C, f) and C(f, C) are equivalences,

are equivalent, and it seems to be relatively hard to find a counterexample
where those two properties are not equivalent; many authors adopt the first
property as a definition of equivalences.

(ii) The bicategories chosen in [2] are such that all 2-cells are invertible.
Especially in that case, p1 and p2 are equivalent!

(iii) It is easy enough to see that in a 2-category C,

C(C, g) ◦ C(C, f) = C(C, g ◦ f) (1)

and

C(f, C) ◦ C(g, C) = C(g ◦ f, C) (2)

(whenever g ◦ f exists), which implies directly the following properties:

P1. If f and g are faithful (co-faithful), then g ◦ f is faithful (co-faithful).

P2. If f and g are full (co-full), then g ◦ f is full (co-full).

P3. If f and g are equivalences, then g ◦ f is an equivalence.

Since the composition of 1-cells, in bicategories, is associative only up to
an isomorphism, equalities (1) and (2) are not always true. This makes the
above properties not as evident in bicategories as they are in 2-categories.
Nevertheless, we still get the following results.

Proposition 3.9. In a bicategory C, if f : X → Y and g : Y → Z are
P1. faithful (co-faithful), then g ◦ f is faithful (co-faithful),
P2. full (co-full), then g ◦ f is full (co-full),
P3. equivalences, then g ◦ f is an equivalence.

Proof. P1. If f and g are faithful, then g ◦ f is faithful: Let α1, α2 : h⇒ k
be two 2-cells such that

(g ◦ f) ◦ α1 = (g ◦ f) ◦ α2. (3)

Using the naturality of the isomorphisms afgh with α1, we get

[g ◦ (f ◦ α1)] ◦ agfh = agfk ◦ [(g ◦ f) ◦ α1)]. (4)
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The same equation is true with α2,

[g ◦ (f ◦ α2)] ◦ agfh = agfk ◦ [(g ◦ f) ◦ α2)]. (5)

The equations (3), (4), and (5) imply

g ◦ (f ◦ α1) = g ◦ (f ◦ α2).

Since g is faithful,

f ◦ α1 = f ◦ α2.

Now, since f is also faithful, α1 = α2, which proves that g ◦ f is faithful.
We use similar arguments to show that g ◦ f is co-faithful if g and f are

co-faithful.
P2. If f and g are full, then g ◦ f is full: Let us consider β : (g ◦ f) ◦h⇒

(g ◦ f) ◦ k and find α : h⇒ k such that β = (g ◦ f) ◦ α. By considering β1,
which is the composite of the 2-cells

g ◦ (f ◦ h)
agfh
=⇒ (g ◦ f) ◦ h β

=⇒ (g ◦ f) ◦ k agfk
=⇒ g ◦ (f ◦ k), (6)

then β1 : g ◦ (f ◦ h) ⇒ g ◦ (f ◦ k). But g is full, therefore there exists
θ : f ◦ h⇒ f ◦ k such that g ◦ θ = β1. Since f is full, there exists α : h⇒ k
such that θ = f ◦ α. In that way, we get

β1 = g ◦ (f ◦ α).

Using (6) we get

β = a−1
gfk ◦ β1 ◦ a−1

gfh. (7)

Using now the naturality of agfk, we get

[g ◦ (f ◦ α)] ◦ a−1
gfh = agfk ◦ [(g ◦ f) ◦ α]. (8)

(7) and (8) give
β = (g ◦ f) ◦ α.

This implies g ◦ f is full.
Using similar arguments, we easily show that g ◦ f is co-full if g and f

are co-full.
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P3. If f and g are equivalences, then g ◦ f is an equivalence: To show
this, it suffices to give a conjugate h of g ◦ f . Let us consider h = f∗ ◦ g∗.
We know that

(g ◦ f) ◦ h ∼= g ◦ (f ◦ f∗) ◦ g∗ ∼= g ◦ 1Y ◦ g∗ ∼= g ◦ g∗ ∼= 1Z ,

which form εg◦f .
In the other side, we have

h ◦ (g ◦ f) ∼= f∗ ◦ (g∗ ◦ g) ◦ f ∼= f∗ ◦ 1Y ◦ f ∼= f∗ ◦ f ∼= 1X ,

which form ηg◦f , and therefore h is a conjugate of g ◦ f .

Remark 3.10. It is well known (see, for example, [5, Proposition 8.1.4]),
that if C is a category, then the internal categories in C, the internal functors
in C, and the natural transformations in C, form a 2-category. Therefore, we
can speak about an equivalence for an internal functor. Evidently one may
use Definition 2.1, or any other equivalent definitions given in this paper.
As a perspective to this work, the reader may consider establishing the link
between the definition emanating from this work applied to equivalences for
internal functors and, for example, the definition given in [6]. That could be
a very interesting work, which would generate many important new ideas.
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