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On finitely generated modules whose first
nonzero Fitting ideals are regular

Somayeh Hadjirezaei* and Somayeh Karimzadeh

Abstract. A finitely generated R-module is said to be a module of type
(Fr) if its (r — 1)-th Fitting ideal is the zero ideal and its r-th Fitting ideal
is a regular ideal. Let R be a commutative ring and N be a submodule of
R™ which is generated by columns of a matrix A = (as;;) with a;; € R for all
1<i<mn,j€A, where A is a (possibly infinite) index set. Let M = R"/N
be a module of type (F,—1) and T(M) be the submodule of M consisting of
all elements of M that are annihilated by a regular element of R. For A € A,
put My = R"/ < (aix,...,anx)" >. The main result of this paper asserts that
if M) is a regular R-module, for some A € A, then M/T (M) = Mx/T(My).
Also it is shown that if M} is a regular torsionfree R-module, for some A € A,
then M = M,. As a consequence we characterize all non-torsionfree modules
over a regular ring, whose first nonzero Fitting ideals are maximal.
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1 Introduction and Preliminaries

Let R be a commutative ring with identity and M be a finitely generated R-
module. For a set {z1,...,z,} of generators of M there is an exact sequence

0 N R"—> M 0, (1)

where R" is a free R-module with the set {ej,...,e,} of basis, the R-
homomorphism ¢ is defined by ¢(ej) = x; and N is the kernel of ¢. Let
N be generated by uy = ajzer + ... + apren, with A in some index set A.
Assume that A be the following matrix:

a1

Ap)

(We call A the matrix presentation of the sequence (1) ). Let Fitt;(M) be
an ideal of R generated by the minors of size n — ¢ of matrix A. For i > n,
Fitt;(M) is defined R and for ¢ < 0, Fitt;(M) is defined as the zero ideal. It
is known that Fitt;(M) is the invariant ideal determined by M, that is, it is
determined uniquely by M and it does not depend on the choice of the set of
generators of M [4]. The ideal Fitt;(M) will be called the i-th Fitting ideal
of the module M. It follows from the definition that Fitt;(M) C Fitt; (M),
for every i. The most important Fitting ideal of M is the first of the Fitt;(M)
that is nonzero. We shall denote this Fitting ideal by I(M).

An element of R is regular if it is a nonzerodivisor and an ideal of R
is regular if it contains a regular element. Assume that T(M), the torsion
submodule of M, be the submodule of M consisting of all elements of M
that are annihilated by a regular element of R. An R-module M is a torsion
module if M = T(M) and is a torsionfree R-module if T(M) = 0.

One of the most interesting question for modules is, “Can we characterize
modules according to the first nonzero Fitting ideal of them?” D.A. Buchs-
baum and D. Eisenbud have shown in [2] that if R is a Noetherian ring then,
M is a finitely generated projective R-module of constant rank if and only
if I(M) = R. Also a lemma of J. Lipman asserts that if R is a quasilocal
ring and M = R"/K, where K is a submodule of R", then I(M) is regular
principal if and only if K is finitely generated free and M /T (M) is free of
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rank n—q ( [6]) and J. Ohm generalized this result to global case [7]. At this
point, a natural question arises: if I(M) is any ideal, how much can we say
about the structure of M7 In this paper this question is partly answered.

2 The main results

A finitely generated module is said to be a module of type (F;.) if its (r—1)-th
Fitting ideal is the zero ideal and its r-th Fitting ideal is a regular ideal.

Let M be a finitely generated R-module. Then there exist some n € N
and a submodule N of R™ such that M = R™/N. The purpose of this paper
is to study the module of type (F,—1).

Lemma 2.1. Let R be a Noetherian ring and M be a finitely generated
R-module of type (F). Then exactly one of the following holds:

(1) M is projective of constant rank r.

(2) M can not be generated by r elements.

Proof. Let M can be generated by r elements. So, by definition we have
Fitt,(M) = R. Since M is a module of type (F},), so Fitt,_1(M) = 0.
Hence by [2, Lemma 1|, M is projective of constant rank r. O

Let (R,m) be a local ring and M be a finitely generated R-module. It
is known that all minimal generator sets of M have the same cardinal. We
will denote the minimal number of generators of M by u(M).

Example 2.2. Let (R,m) be a local ring and m be a finitely generated
regular ideal of R. Let M be a finitely generated module with u(M) = n
and I(M) = m. Then M is a module of type (F,,—1). Because let X =
{z1, -+ ,x,} be a minimal generator set of M and

0 N R 2o M 0

be an exact sequence, where R" is a free R-module with the set {e1,...,e,}
of basis, the R-homomorphism ¢ is defined by ¢(e;) = z; and N is the
kernel of . Assume that

(3D)
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is the matrix presentation of this sequence, with A in some index set A. Since
X is a minimal generator set of M, it is easily seen that a;) € m, for every
i, 1 <i<nandevery A € A. Let m = I(M) = Fitt;(M). Since a;\ € m,
hence m = Fitt;(M) C m™ % If n =i, then m = Fitt,,(M) = R, which is a
contradiction. Hence by Nakayama’s Lemma ¢ = n — 1. So M is a module
of type (F—1).

An R-module M is called a regular module if I(M) is a regular ideal.

Theorem 2.3. Let R be a commutative Ting and N be a submodule of
R™ consisting of elements Ay = (a1x,...,anx)" with X in some index set
A. Let M = R"™/N be an R-module of type (Fp—1). For A\ € A, put
My = R"/ < (aix, -, an))t >. If My is a regular module, for some \ € A,
then M /T (M) = My/T(M,).

Proof. Clearly

0 N R YoM 0
is an exact sequence and
aix
A= :
Ap )\

is the matrix presentation of this sequence. Let M; be a regular R-module,
for some [ € A. This means that I(};) is a regular ideal.

Put M; = R"/ < A; >. Set z; = ¢; + N and y; = e;+ < A; > for all
1<i<n. Then M =< z1,...,xn, > and M; =< y1, ..., Yn > . Define

n

fiM/T(M) — M/T(M); fO aiwi + T(M)) =Y aiy; + T(M,).
i=1 =1

Let x = Y ; a;z; € T(M). Hence there exists a regular element ¢ in R
such that gz = Y " | qa;z; = 0. So there exist some elements r;, € R,
1 < k < m such that ga; = Y ;" rkain,, 1 < @ < n, A\ € A. For every
i,j,1 < 1,7 <nand every A € A, we have qa;ajy = Y ;- rp@ir,ajx. Thus
qlaiajy —ajan) = > 5y Te(@ir,ajx — ajxr,ain). Since M is a module of type
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(Fn-1), so Fitt,_o(M) = 0. Hence a;x,a;x — ajr,a;x = 0 and so we have
q(aiajy — aja;n) = 0. Since ¢ is regular, hence

a;ajy — aja;y = 0. (1)

Now put y = >°" a;y;. Since M; = R"/ < Aj >=< y1,...,Yn >, We
have ayy1 + - 4+ anyn = 0. Let s,1 < s < n be arbitrary. We have
asys = —auy1 — -+ — ayyn. Therefore agy = Y1, aga;y; = agasys +
Z;gi:l As51Q3Y; = Z?;éi:l _asailyi'f'zg;,gi:l As13Yi = Z;ﬂ;:l (aslai_az’las)yi~
Therefore by (2), we have agy = 0. Since ag is arbitrary, so I(M;)y = 0.
On the other hand, by hypothesis, I(M;) is a regular ideal, hence y €
T(M;). Therefore f is welldefined. It is clear that f is onto. Now let
y = Y. qay; € T(M). So there exists a regular element p € R such
that p(aq,...,an)" €< Ay >C N. Thus >."' ; a;z; € T(M). Therefore f is an
isomorphism. ]

Proposition 2.4. Let M = R"/N be an R-module of type (Fp—1). If M)
is a regular torsionfree module, for some \ € A, then M = My = R"/ <
(@1, oy @ny)t >,

Proof. Let M) be a regular torsionfree R-module, for some A € A. Since M)
is a regular module, hence by the proof of Theorem 2.3, x = Y | a;z; €
T(M) if and only if Y ", a;y; € T(M)) = 0. For every | € A, we have
Yorjagx; = 0 € T(M). Hence > ayy; € T(My) = 0. Thus
(a1g, ..., an)t €< Ay >, for every I € A. So N C< Ay >. This means
that M = M,. O

Corollary 2.5. Let M = R"/N be a finitely generated R-module of type
(Fn-1). If My is a regular torsionfree module, for some X € A, then
de(M> =1.

Proof. By Proposition 2.4, we have M = R"/ < (a1y,...,a.)! >= M.
Since M) is a regular module, hence 0 R R" M 0, is
a free resolution of M. So pdr(M) = 1. O]

Lemma 2.6. Let M = R"™/N be a finitely generated non-torsionfree R-
module of type (Fy,—1) . Then M/T(M) is free of rank n — 1 if there exists
A € A such that < ayy, ..., ap) > is a principal reqular ideal.
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Proof. By |7, Theorem 6.2|, < ajy,...,a,x > is a principal regular ideal if
and only if M) /T(M,) is free of rank n — 1. (Note that if < ayy,...,an\ >
is a regular ideal, then < (aqy, ..., anA)t > is a free R-module). Therefore by
Theorem 2.3, M /T (M) is free of rank n — 1 if there exists some A € A such
that < aiy, ..., a,) > is a principal regular ideal. ]

Theorem 2.7. Let (R, m) be a Noetherian local ring and M = R™/N be an
R-module of type (F,_1). Assume that there exists an element (a1, ..., an)t €
N such that ag is a reqular prime element of R, for some s, 1 < s < n.
Then ezxactly one of the following holds:

(1) M= R/I(M)® R,

(2) M= Rn/ < (all,...,anl)t >.

Proof. Clearly

0 N R YoM 0

is an exact sequence. Assume that

aix
A=

An\

be the matrix presentation of this sequence. Put p = ag and M; = R"/ <
(a1g, ..., an)t > . We consider two cases:

Case 1) Let p = ag | ay, for every i, 1 < i < n. Thus [(M;) =<
aig, ..., an; >= (p) is a regular principal ideal. So by Lemma 2.6, M /T (M)
is free of rank n — 1. Hence M = T(M) @ R"'. If T(M) = 0, then
M = R" 1. Let T(M) # 0. Since M is a module of type (F,_1), so by
Lemma 2.1, u(M) = n. Because R is a local ring, it is easily seen that
0= p(M) = u(T(M)) + u(R*) = u(T(M)) +n — 1. Hence j(T(M)) = 1
and so T(M) is a cyclic R-module. On the other hand by [1, page 174],
I(M) = Fitto(T(M)). Since T(M) is a cyclic module, hence T(M) =
R/ Fitto(T(M)) and so M = R/1(M) @ R" L.

Case 2) Now let there exist some ¢, 1 < ¢ < n such that p = agq 1 ay. We
claim that M = M, in this case. First we show that T(M;) = 0. Assume
that there exists some regular element ¢ € R and an element s’ € R such
that q(a1,...,an)" = §'(ay, ..., an)t, for some (aq,...,a,)" € R". Therefore
for 1 <i < n, we have

qa; = s'a. (2)
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So qas = s'ag = s'p. Thus p | gas. Since p is a prime element, then p | ¢ or
b | As.

Let p | g. Thus there exists an element ¢ € R such that ¢ = pt’. So
pt'as = s'p. Since p is regular, one gets that

s =ta,. (3)

By (3) and (4) we have pt'a; = t'asay;, for every i, 1 < i < n. Since t’ is a
regular element, so, for every i,

Pa; = g0 (4)

Since p 1 ay, hence p | as. Therefore there exists ¢ € R such that as = pt”.
By (5), we have pa; = pt"a;. So a; = t"ay, for every i, 1 < i < n. Hence
(a1, ...;an)t = t"(ayy, ..., an)t. Thus T(M;) = 0.

Now, let p 1 g. Then p | as. Thus there exists some t” € R such that
as = t"p. From (3), we have qas = s'p. Thus ¢t"p = s'p. So s’ = ¢qt”. Again
by (3), qa; = qt"a;. Hence (ay,...,a,)t = t"(ay, ..., an)! and so T(M;) = 0.
By Proposition 2.4, we have M = M; = R"/ < (ay, ..., an)" >. O

3 Modules over regular rings

The Krull dimension of R is the supremum of all lengths of chains of prime
ideals of R. Let R be a Noetherian local ring with maximal ideal m and
Krull dimension d. Recall that R is called a regular local ring if m has a
generating set with d elements. The generating set of d elements for m is
called a regular system of parameters of R. The ring R is called a regular
ring if Rp is regular local ring, for every prime ideal P of R.

Proposition 3.1. Let (R, m) be a regular local ring and M be a finitely gen-
erated R-module. If (M) contains a part of a regular system of parameters,
then exactly one of the following holds:

(1) M= R/I(M)® R" !,

(2) M 2 R"/ < (a1, ...,an)" >, for some n € N and ay,...,a, € R.

Proof. Let u(M) =n and

0 N R YoM 0
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be an exact sequence. Let A = (aj;)nxm be the matrix presentation of this
sequence. (Note that since every regular local ring is Noetherian, hence
ker(y) is finitely generated, and so A has finitely many columns). Since
pu(M) = n, it is easily seen that a;; € m, for all i, j. We have Fitt;(M) C
m"™ % Since (M) contains a part of a system of parameters, so by [5,
Theorem 9.1.1], I(M) € m?. Thus I(M) = Fitt,_1(M). This means that
M is a module of type (F,_1). Since I(M) € m?, hence there exist some
i,7, 1 <i<nand 1< j < msuch that a;; ¢ m?2. Because every regular
local ring is a UFD ( [3, Theorem 19.19]), hence a;; is an irreducible element.
It is easily seen that every irreducible element in a UFD is prime. So by
Theorem 2.7, M =2 R/I(M)® R" ! or M = R"/ < (a1, ..., a,)! >, for some
n€Nanda; € R,1<1i<n. O

Corollary 3.2. Let (R, m) be a regular local ring and M be a finitely gen-
erated R-module. If I(M) = m, then

(1) M = R/m @ R, if M is not torsionfree,

(2) M 2 R"/ < (ayy,...,an)" >, if M is torsionfree.

Proof. Since m is generated by a regular system of parameters, so by Propo-
sition 3.1, we are done. O

Now, we generalize Corollary 3.2, to global case.

Theorem 3.3. Let @ be a mazximal ideal of a regular ring R. Let M be a
finitely generated R-module such that the Rg-module Mg is not torsionfree.
Then I(M) = Q if and only if M = P @& R/Q, where P is a projective
R-module.

Proof. Let I(M) = Q € Max(R). Then I(Mg) = QRg and I(M,;) = R,
for every maximal ideal @ # ¢. By [2, Lemma 1], for every @ # ¢q €
Maz(R), there exists some positive integer m such that M, = R;"*. Since
Mg is not a torsionfree Rg-module, Corollary 3.2 yields that Mg = Rf, @
Rg/QRg, for some positive integer n. So (M/T(M)), is free for every
maximal ideal ¢ of R. Therefore M/T(M) is a projective R-module. On
the other hand, T(Mg) = Rg/QRg. Thus T(Mg) is a simple Rg-module.
Put A = {anng(y) : T(Mg) =< § >}. Let T(Mg) =< § > such that
anng(z) is maximal in A. It is easily seen that anng(z) = Q. Define

f: R/IQ——=T(M); f(r+@Q) =rzx. It is clear that f, is an isomorphism
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for every maximal ideal g of R. Hence T(M) = R/Q. Therefore M =
M/T(M)®T(M) = P®R/Q, for some projective R-module P. Conversely,
let M = P® R/Q, for some projective R-module P and maximal ideal Q.
Then it is clear that I(M) = Q. O

Corollary 3.4. Let R be a Noetherian regular ring and @ be a mazximal
ideal of R. Let M be a finitely generated R-module with I(M) = Q. Then

(1) If the Rg-module Mg is torsionfree, then pdr(M) =1,

(2) If the Rg-module Mg is not torsionfree, then pdr(M) = gldim(Rq).
Proof. Let Q # ¢ be a maximal ideal of R. So I(M,) = I(M), = R,. Thus
by [2, Lemma 1|, M, is a free R,-module. Also we have I(Mg) = QRg.
If the Rg-module Mg is torsionfree, then by Corollary 3.2, Mg = %/ <
(at,...,an)" >, for some a1, ...,a, € Rg. So pdr(M) = sup, pd(My) = 1.

Next, assume that the Rg-module Mg is not torsionfree. So by Corollary
3.2, Mg = Rg/QRg ® Rg_l. Hence pdr(M) = sup, pd(M,) = gldim(Rq).

O
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