Categories and General Algebraic Structures with Applications Volume 8, Number 1, January 2018, 9-18.

On finitely generated modules whose first nonzero Fitting ideals are regular

Somayeh Hadjirezaei* and Somayeh Karimzadeh

Abstract. A finitely generated *R*-module is said to be a module of type (F_r) if its (r-1)-th Fitting ideal is the zero ideal and its *r*-th Fitting ideal is a regular ideal. Let *R* be a commutative ring and *N* be a submodule of R^n which is generated by columns of a matrix $A = (a_{ij})$ with $a_{ij} \in R$ for all $1 \leq i \leq n, j \in \Lambda$, where Λ is a (possibly infinite) index set. Let $M = R^n/N$ be a module of type (F_{n-1}) and $\mathbf{T}(M)$ be the submodule of *M* consisting of all elements of *M* that are annihilated by a regular element of *R*. For $\lambda \in \Lambda$, put $M_{\lambda} = R^n / < (a_{1\lambda}, ..., a_{n\lambda})^t >$. The main result of this paper asserts that if M_{λ} is a regular *R*-module, for some $\lambda \in \Lambda$, then $M/\mathbf{T}(M) \cong M_{\lambda}/\mathbf{T}(M_{\lambda})$. Also it is shown that if M_{λ} is a regular torsionfree *R*-module, for some $\lambda \in \Lambda$, then $M \cong M_{\lambda}$. As a consequence we characterize all non-torsionfree modules over a regular ring, whose first nonzero Fitting ideals are maximal.

* Corresponding author

Keywords: Fitting ideals, type of a module, torsion submodule. *Mathematics Subject Classification* [2010]: 13C05, 13C10, 13C12.

Received: 8 May 2016, Accepted: 15 September 2016

ISSN Print: 2345-5853 Online: 2345-5861

© Shahid Beheshti University

1 Introduction and Preliminaries

Let R be a commutative ring with identity and M be a finitely generated Rmodule. For a set $\{x_1, \ldots, x_n\}$ of generators of M there is an exact sequence

$$0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0 , \qquad (1)$$

where \mathbb{R}^n is a free \mathbb{R} -module with the set $\{e_1, \ldots, e_n\}$ of basis, the \mathbb{R} -homomorphism φ is defined by $\varphi(e_j) = x_j$ and N is the kernel of φ . Let N be generated by $u_{\lambda} = a_{1\lambda}e_1 + \ldots + a_{n\lambda}e_n$, with λ in some index set Λ . Assume that A be the following matrix:

$$\left(\begin{array}{ccc} \dots & a_{1\lambda} & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_{n\lambda} & \dots \end{array}\right)$$

(We call A the matrix presentation of the sequence (1)). Let $\operatorname{Fitt}_i(M)$ be an ideal of R generated by the minors of size n - i of matrix A. For $i \ge n$, $\operatorname{Fitt}_i(M)$ is defined R and for i < 0, $\operatorname{Fitt}_i(M)$ is defined as the zero ideal. It is known that $\operatorname{Fitt}_i(M)$ is the invariant ideal determined by M, that is, it is determined uniquely by M and it does not depend on the choice of the set of generators of M [4]. The ideal $\operatorname{Fitt}_i(M)$ will be called the *i*-th Fitting ideal of the module M. It follows from the definition that $\operatorname{Fitt}_i(M) \subseteq \operatorname{Fitt}_{i+1}(M)$, for every *i*. The most important Fitting ideal of M is the first of the $\operatorname{Fitt}_i(M)$ that is nonzero. We shall denote this Fitting ideal by I(M).

An element of R is regular if it is a nonzerodivisor and an ideal of R is regular if it contains a regular element. Assume that $\mathbf{T}(M)$, the torsion submodule of M, be the submodule of M consisting of all elements of M that are annihilated by a regular element of R. An R-module M is a torsion module if $M = \mathbf{T}(M)$ and is a torsionfree R-module if $\mathbf{T}(M) = 0$.

One of the most interesting question for modules is, "Can we characterize modules according to the first nonzero Fitting ideal of them?" D.A. Buchsbaum and D. Eisenbud have shown in [2] that if R is a Noetherian ring then, M is a finitely generated projective R-module of constant rank if and only if I(M) = R. Also a lemma of J. Lipman asserts that if R is a quasilocal ring and $M = R^n/K$, where K is a submodule of R^n , then I(M) is regular principal if and only if K is finitely generated free and M/T(M) is free of rank n-q ([6]) and J. Ohm generalized this result to global case [7]. At this point, a natural question arises: if I(M) is any ideal, how much can we say about the structure of M? In this paper this question is partly answered.

2 The main results

A finitely generated module is said to be a module of type (F_r) if its (r-1)-th Fitting ideal is the zero ideal and its r-th Fitting ideal is a regular ideal.

Let M be a finitely generated R-module. Then there exist some $n \in \mathbb{N}$ and a submodule N of \mathbb{R}^n such that $M \cong \mathbb{R}^n/N$. The purpose of this paper is to study the module of type (F_{n-1}) .

Lemma 2.1. Let R be a Noetherian ring and M be a finitely generated R-module of type (F_r) . Then exactly one of the following holds:

- (1) M is projective of constant rank r.
- (2) M can not be generated by r elements.

Proof. Let M can be generated by r elements. So, by definition we have $\operatorname{Fitt}_r(M) = R$. Since M is a module of type (F_r) , so $\operatorname{Fitt}_{r-1}(M) = 0$. Hence by [2, Lemma 1], M is projective of constant rank r.

Let (R, m) be a local ring and M be a finitely generated R-module. It is known that all minimal generator sets of M have the same cardinal. We will denote the minimal number of generators of M by $\mu(M)$.

Example 2.2. Let (R, m) be a local ring and m be a finitely generated regular ideal of R. Let M be a finitely generated module with $\mu(M) = n$ and I(M) = m. Then M is a module of type (F_{n-1}) . Because let $X = \{x_1, \dots, x_n\}$ be a minimal generator set of M and

$$0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0$$

be an exact sequence, where \mathbb{R}^n is a free \mathbb{R} -module with the set $\{e_1, \ldots, e_n\}$ of basis, the \mathbb{R} -homomorphism φ is defined by $\varphi(e_j) = x_j$ and N is the kernel of φ . Assume that

$$A = \left(\begin{array}{ccc} \dots & a_{1\lambda} & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_{n\lambda} & \dots \end{array}\right)$$

is the matrix presentation of this sequence, with λ in some index set Λ . Since X is a minimal generator set of M, it is easily seen that $a_{i\lambda} \in m$, for every $i, 1 \leq i \leq n$ and every $\lambda \in \Lambda$. Let $m = I(M) = \text{Fitt}_i(M)$. Since $a_{i\lambda} \in m$, hence $m = \text{Fitt}_i(M) \subseteq m^{n-i}$. If n = i, then $m = \text{Fitt}_n(M) = R$, which is a contradiction. Hence by Nakayama's Lemma i = n - 1. So M is a module of type (F_{n-1}) .

An *R*-module *M* is called a regular module if I(M) is a regular ideal.

Theorem 2.3. Let R be a commutative ring and N be a submodule of R^n consisting of elements $A_{\lambda} = (a_{1\lambda}, ..., a_{n\lambda})^t$ with λ in some index set Λ . Let $M \cong R^n/N$ be an R-module of type (F_{n-1}) . For $\lambda \in \Lambda$, put $M_{\lambda} = R^n/ < (a_{1\lambda}, ..., a_{n\lambda})^t >$. If M_{λ} is a regular module, for some $\lambda \in \Lambda$, then $M/\mathbf{T}(M) \cong M_{\lambda}/\mathbf{T}(M_{\lambda})$.

Proof. Clearly

$$0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0$$

is an exact sequence and

$$A = \left(\begin{array}{ccc} \dots & a_{1\lambda} & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_{n\lambda} & \dots \end{array}\right)$$

is the matrix presentation of this sequence. Let M_l be a regular *R*-module, for some $l \in \Lambda$. This means that $I(M_l)$ is a regular ideal.

Put $M_l = R^n / \langle A_l \rangle$. Set $x_i = e_i + N$ and $y_i = e_i + \langle A_l \rangle$ for all $1 \le i \le n$. Then $M = \langle x_1, ..., x_n \rangle$ and $M_l = \langle y_1, ..., y_n \rangle$. Define

$$f: M/\mathbf{T}(M) \longrightarrow M_l/\mathbf{T}(M_l); f(\sum_{i=1}^n a_i x_i + \mathbf{T}(M)) = \sum_{i=1}^n a_i y_i + \mathbf{T}(M_l).$$

Let $x = \sum_{i=1}^{n} a_i x_i \in T(M)$. Hence there exists a regular element q in Rsuch that $qx = \sum_{i=1}^{n} qa_i x_i = 0$. So there exist some elements $r_k \in R$, $1 \leq k \leq m$ such that $qa_i = \sum_{k=1}^{m} r_k a_{i\lambda_k}, 1 \leq i \leq n, \lambda_k \in \Lambda$. For every $i, j, 1 \leq i, j \leq n$ and every $\lambda \in \Lambda$, we have $qa_i a_{j\lambda} = \sum_{k=1}^{m} r_k a_{i\lambda_k} a_{j\lambda}$. Thus $q(a_i a_{j\lambda} - a_j a_{i\lambda}) = \sum_{k=1}^{m} r_k (a_{i\lambda_k} a_{j\lambda} - a_{j\lambda_k} a_{i\lambda})$. Since M is a module of type (F_{n-1}) , so Fitt_{n-2}(M) = 0. Hence $a_{i\lambda_k}a_{j\lambda} - a_{j\lambda_k}a_{i\lambda} = 0$ and so we have $q(a_i a_{j\lambda} - a_j a_{i\lambda}) = 0$. Since q is regular, hence

$$a_i a_{j\lambda} - a_j a_{i\lambda} = 0. \tag{1}$$

Now put $y = \sum_{i=1}^{n} a_i y_i$. Since $M_l = R^n / \langle A_l \rangle = \langle y_1, ..., y_n \rangle$, we have $a_{1l}y_1 + \cdots + a_{nl}y_n = 0$. Let $s, 1 \leq s \leq n$ be arbitrary. We have $a_{sl}y_s = -a_{1l}y_1 - \cdots - a_{nl}y_n$. Therefore $a_{sl}y = \sum_{i=1}^{n} a_{sl}a_i y_i = a_{sl}a_s y_s + \sum_{s \neq i=1}^{n} a_{sl}a_i y_i = \sum_{s \neq i=1}^{n} -a_s a_{il} y_i + \sum_{s \neq i=1}^{n} a_{sl}a_i y_i = \sum_{s \neq i=1}^{n} (a_{sl}a_i - a_{il}a_s) y_i$. Therefore by (2), we have $a_{sl}y = 0$. Since a_{sl} is arbitrary, so $I(M_l)y = 0$. On the other hand, by hypothesis, $I(M_l)$ is a regular ideal, hence $y \in \mathbf{T}(M_l)$. Therefore f is welldefined. It is clear that f is onto. Now let $y = \sum_{i=1}^{n} a_i y_i \in \mathbf{T}(M_l)$. So there exists a regular element $p \in R$ such that $p(a_1, ..., a_n)^t \in \langle A_l \rangle \subseteq N$. Thus $\sum_{i=1}^{n} a_i x_i \in \mathbf{T}(M)$. Therefore f is an isomorphism.

Proposition 2.4. Let $M \cong \mathbb{R}^n/N$ be an \mathbb{R} -module of type (F_{n-1}) . If M_{λ} is a regular torsionfree module, for some $\lambda \in \Lambda$, then $M = M_{\lambda} = \mathbb{R}^n/\langle (a_{1\lambda}, ..., a_{n\lambda})^t \rangle$.

Proof. Let M_{λ} be a regular torsionfree R-module, for some $\lambda \in \Lambda$. Since M_{λ} is a regular module, hence by the proof of Theorem 2.3, $x = \sum_{i=1}^{n} a_i x_i \in T(M)$ if and only if $\sum_{i=1}^{n} a_i y_i \in T(M_{\lambda}) = 0$. For every $l \in \Lambda$, we have $\sum_{i=1}^{n} a_i l x_i = 0 \in T(M)$. Hence $\sum_{i=1}^{n} a_i l y_i \in T(M_{\lambda}) = 0$. Thus $(a_{1l}, ..., a_{nl})^t \in \langle A_{\lambda} \rangle$, for every $l \in \Lambda$. So $N \subseteq \langle A_{\lambda} \rangle$. This means that $M = M_{\lambda}$.

Corollary 2.5. Let $M \cong \mathbb{R}^n/N$ be a finitely generated \mathbb{R} -module of type (F_{n-1}) . If M_{λ} is a regular torsionfree module, for some $\lambda \in \Lambda$, then $pd_R(M) = 1$.

Proof. By Proposition 2.4, we have $M \cong \mathbb{R}^n / \langle (a_{1\lambda}, \ldots, a_{n\lambda})^t \rangle = M_{\lambda}$. Since M_{λ} is a regular module, hence $0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R}^n \longrightarrow M \longrightarrow 0$, is a free resolution of M. So $pd_R(M) = 1$.

Lemma 2.6. Let $M \cong \mathbb{R}^n/N$ be a finitely generated non-torsionfree \mathbb{R} -module of type (F_{n-1}) . Then $M/\mathbf{T}(M)$ is free of rank n-1 if there exists $\lambda \in \Lambda$ such that $\langle a_{1\lambda}, ..., a_{n\lambda} \rangle$ is a principal regular ideal.

Proof. By [7, Theorem 6.2], $\langle a_{1\lambda}, ..., a_{n\lambda} \rangle$ is a principal regular ideal if and only if $M_{\lambda}/\mathbf{T}(M_{\lambda})$ is free of rank n-1. (Note that if $\langle a_{1\lambda}, ..., a_{n\lambda} \rangle$ is a regular ideal, then $\langle (a_{1\lambda}, ..., a_{n\lambda})^t \rangle$ is a free *R*-module). Therefore by Theorem 2.3, $M/\mathbf{T}(M)$ is free of rank n-1 if there exists some $\lambda \in \Lambda$ such that $\langle a_{1\lambda}, ..., a_{n\lambda} \rangle$ is a principal regular ideal. \Box

Theorem 2.7. Let (R,m) be a Noetherian local ring and $M \cong R^n/N$ be an R-module of type (F_{n-1}) . Assume that there exists an element $(a_{1l}, ..., a_{nl})^t \in N$ such that a_{sl} is a regular prime element of R, for some $s, 1 \leq s \leq n$. Then exactly one of the following holds:

(1) $M \cong R/I(M) \oplus R^{n-1}$, (2) $M \cong R^n / < (a_{1l}, ..., a_{nl})^t >$.

Proof. Clearly

$$0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0$$

is an exact sequence. Assume that

$$A = \left(\begin{array}{ccc} \dots & a_{1\lambda} & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_{n\lambda} & \dots \end{array}\right)$$

be the matrix presentation of this sequence. Put $p = a_{sl}$ and $M_l = R^n / \langle (a_{1l}, ..., a_{nl})^t \rangle$. We consider two cases:

Case 1) Let $p = a_{sl} | a_{il}$, for every $i, 1 \leq i \leq n$. Thus $I(M_l) = \langle a_{1l}, ..., a_{nl} \rangle = (p)$ is a regular principal ideal. So by Lemma 2.6, $M/\mathbf{T}(M)$ is free of rank n - 1. Hence $M \cong \mathbf{T}(M) \oplus R^{n-1}$. If $\mathbf{T}(M) = 0$, then $M \cong R^{n-1}$. Let $\mathbf{T}(M) \neq 0$. Since M is a module of type (F_{n-1}) , so by Lemma 2.1, $\mu(M) = n$. Because R is a local ring, it is easily seen that $n = \mu(M) = \mu(\mathbf{T}(M)) + \mu(R^{n-1}) = \mu(\mathbf{T}(M)) + n - 1$. Hence $\mu(\mathbf{T}(M)) = 1$ and so $\mathbf{T}(M)$ is a cyclic R-module. On the other hand by [1, page 174], $I(M) = \operatorname{Fitt}_0(\mathbf{T}(M))$. Since $\mathbf{T}(M) \oplus R^{n-1}$.

Case 2) Now let there exist some $t, 1 \leq t \leq n$ such that $p = a_{sl} \nmid a_{tl}$. We claim that $M \cong M_l$, in this case. First we show that $T(M_l) = 0$. Assume that there exists some regular element $q \in R$ and an element $s' \in R$ such that $q(a_1, ..., a_n)^t = s'(a_{1l}, ..., a_{nl})^t$, for some $(a_1, ..., a_n)^t \in R^n$. Therefore for $1 \leq i \leq n$, we have

$$qa_i = s'a_{il}.\tag{2}$$

So $qa_s = s'a_{sl} = s'p$. Thus $p \mid qa_s$. Since p is a prime element, then $p \mid q$ or $p \mid a_s$.

Let $p \mid q$. Thus there exists an element $t' \in R$ such that q = pt'. So $pt'a_s = s'p$. Since p is regular, one gets that

$$s' = t'a_s. \tag{3}$$

By (3) and (4) we have $pt'a_i = t'a_s a_{il}$, for every $i, 1 \le i \le n$. Since t' is a regular element, so, for every i,

$$pa_i = a_s a_{il}.\tag{4}$$

Since $p \nmid a_{tl}$, hence $p \mid a_s$. Therefore there exists $t'' \in R$ such that $a_s = pt''$. By (5), we have $pa_i = pt''a_{il}$. So $a_i = t''a_{il}$, for every $i, 1 \leq i \leq n$. Hence $(a_1, ..., a_n)^t = t''(a_{1l}, ..., a_{nl})^t$. Thus $\mathbf{T}(M_l) = 0$.

Now, let $p \nmid q$. Then $p \mid a_s$. Thus there exists some $t'' \in R$ such that $a_s = t''p$. From (3), we have $qa_s = s'p$. Thus qt''p = s'p. So s' = qt''. Again by (3), $qa_i = qt''a_{il}$. Hence $(a_1, ..., a_n)^t = t''(a_{1l}, ..., a_{nl})^t$ and so $\mathbf{T}(M_l) = 0$. By Proposition 2.4, we have $M = M_l = R^n / \langle (a_{1l}, ..., a_{nl})^t \rangle$. \Box

3 Modules over regular rings

The Krull dimension of R is the supremum of all lengths of chains of prime ideals of R. Let R be a Noetherian local ring with maximal ideal m and Krull dimension d. Recall that R is called a regular local ring if m has a generating set with d elements. The generating set of d elements for m is called a regular system of parameters of R. The ring R is called a regular ring if R_P is regular local ring, for every prime ideal P of R.

Proposition 3.1. Let (R, m) be a regular local ring and M be a finitely generated R-module. If I(M) contains a part of a regular system of parameters, then exactly one of the following holds:

(1) $M \cong R/I(M) \oplus R^{n-1}$, (2) $M \cong R^n/ < (a_1, ..., a_n)^t >$, for some $n \in \mathbb{N}$ and $a_1, ..., a_n \in R$.

Proof. Let $\mu(M) = n$ and

$$0 \longrightarrow N \longrightarrow R^n \xrightarrow{\varphi} M \longrightarrow 0$$

be an exact sequence. Let $A = (a_{ij})_{n \times m}$ be the matrix presentation of this sequence. (Note that since every regular local ring is Noetherian, hence $\ker(\varphi)$ is finitely generated, and so A has finitely many columns). Since $\mu(M) = n$, it is easily seen that $a_{ij} \in m$, for all i, j. We have $\operatorname{Fitt}_i(M) \subseteq m^{n-i}$. Since $\operatorname{I}(M)$ contains a part of a system of parameters, so by [5, Theorem 9.1.1], $\operatorname{I}(M) \not\subseteq m^2$. Thus $\operatorname{I}(M) = \operatorname{Fitt}_{n-1}(M)$. This means that M is a module of type (F_{n-1}) . Since $\operatorname{I}(M) \not\subseteq m^2$, hence there exist some $i, j, 1 \leq i \leq n$ and $1 \leq j \leq m$ such that $a_{ij} \notin m^2$. Because every regular local ring is a UFD ([3, Theorem 19.19]), hence a_{ij} is an irreducible element. It is easily seen that every irreducible element in a UFD is prime. So by Theorem 2.7, $M \cong R/\operatorname{I}(M) \oplus R^{n-1}$ or $M \cong R^n/ < (a_1, ..., a_n)^t >$, for some $n \in \mathbb{N}$ and $a_i \in R, 1 \leq i \leq n$.

Corollary 3.2. Let (R,m) be a regular local ring and M be a finitely generated R-module. If I(M) = m, then

(1) $M \cong R/m \oplus R^{n-1}$, if M is not torsionfree,

(2) $M \cong \mathbb{R}^n / \langle (a_{1l}, ..., a_{nl})^t \rangle$, if M is torsionfree.

Proof. Since m is generated by a regular system of parameters, so by Proposition 3.1, we are done.

Now, we generalize Corollary 3.2, to global case.

Theorem 3.3. Let Q be a maximal ideal of a regular ring R. Let M be a finitely generated R-module such that the R_Q -module M_Q is not torsionfree. Then I(M) = Q if and only if $M \cong P \oplus R/Q$, where P is a projective R-module.

Proof. Let $I(M) = Q \in Max(R)$. Then $I(M_Q) = QR_Q$ and $I(M_q) = R_q$ for every maximal ideal $Q \neq q$. By [2, Lemma 1], for every $Q \neq q \in Max(R)$, there exists some positive integer m such that $M_q \cong R_q^m$. Since M_Q is not a torsionfree R_Q -module, Corollary 3.2 yields that $M_Q \cong R_Q^n \oplus R_Q/QR_Q$, for some positive integer n. So $(M/\mathbf{T}(M))_q$ is free for every maximal ideal q of R. Therefore $M/\mathbf{T}(M)$ is a projective R-module. On the other hand, $\mathbf{T}(M_Q) \cong R_Q/QR_Q$. Thus $\mathbf{T}(M_Q)$ is a simple R_Q -module. Put $\mathcal{A} = \{ann_R(y) : \mathbf{T}(M_Q) = < \frac{y}{1} > \}$. Let $\mathbf{T}(M_Q) = < \frac{x}{1} >$ such that $ann_R(x)$ is maximal in \mathcal{A} . It is easily seen that $ann_R(x) = Q$. Define $f : R/Q \longrightarrow \mathbf{T}(M)$; f(r+Q) = rx. It is clear that f_q is an isomorphism for every maximal ideal q of R. Hence $\mathbf{T}(M) \cong R/Q$. Therefore $M \cong M/\mathbf{T}(M) \oplus \mathbf{T}(M) \cong P \oplus R/Q$, for some projective R-module P. Conversely, let $M \cong P \oplus R/Q$, for some projective R-module P and maximal ideal Q. Then it is clear that I(M) = Q.

Corollary 3.4. Let R be a Noetherian regular ring and Q be a maximal ideal of R. Let M be a finitely generated R-module with I(M) = Q. Then

(1) If the R_Q -module M_Q is torsionfree, then $pd_R(M) = 1$,

(2) If the R_Q -module M_Q is not torsionfree, then $pd_R(M) = gldim(R_Q)$.

Proof. Let $Q \neq q$ be a maximal ideal of R. So $I(M_q) = I(M)_q = R_q$. Thus by [2, Lemma 1], M_q is a free R_q -module. Also we have $I(M_Q) = QR_Q$. If the R_Q -module M_Q is torsionfree, then by Corollary 3.2, $M_Q \cong R_Q^n / \langle (a_1, ..., a_n)^t \rangle$, for some $a_1, ..., a_n \in R_Q$. So $pd_R(M) = \sup_q pd(M_q) = 1$.

Next, assume that the R_Q -module M_Q is not torsionfree. So by Corollary 3.2, $M_Q \cong R_Q/QR_Q \oplus R_Q^{n-1}$. Hence $pd_R(M) = \sup_q pd(M_q) = gldim(R_Q)$.

Acknowledgement

The authors would like to thank the referee(s) for their useful comments and suggestions.

References

- Brown, W.C., "Matrices over Commutative Rings", Pure Appl. Math. 169, Marcel Dekker Inc., 1993.
- [2] Buchsbaum D.A. and Eisenbud, D., What makes a complex exact?, J. Algebra 25 (1973), 259-268.
- [3] Eisenbud, D., "Commutative Algebra with a view toward Algebraic Geometry", Springer-Verlag, 1995.
- [4] Fitting, H., "Die Determinantenideale eines Moduls", Jahresbericht d. Deutschen Math.-Vereinigung, 46 (1936), 195-228.
- [5] Gopalakrishnan, N.S., "Commutative Algebra", Oxonian Press, 1984.
- [6] Lipman, J., On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969) 423-426.

[7] Ohm, J., On the first nonzero Fitting ideal of a module, J. Algebra 320 (2008), 417-425.

Somayeh Hadjirezaei, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7718897111, Rafsanjan, Iran. Email: s.hajirezaei@vru.ac.ir

Somayeh Karimzadeh, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7718897111, Rafsanjan, Iran. Email: karimzadeh@vru.ac.ir