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On finitely generated modules whose first
nonzero Fitting ideals are regular

Somayeh Hadjirezaei∗ and Somayeh Karimzadeh

Abstract. A finitely generated R-module is said to be a module of type
(Fr) if its (r − 1)-th Fitting ideal is the zero ideal and its r-th Fitting ideal
is a regular ideal. Let R be a commutative ring and N be a submodule of
Rn which is generated by columns of a matrix A = (aij) with aij ∈ R for all
1 ≤ i ≤ n, j ∈ Λ, where Λ is a (possibly infinite) index set. Let M = Rn/N
be a module of type (Fn−1) and T(M) be the submodule of M consisting of
all elements of M that are annihilated by a regular element of R. For λ ∈ Λ,
putMλ = Rn/ < (a1λ, ..., anλ)t >. The main result of this paper asserts that
if Mλ is a regular R-module, for some λ ∈ Λ, then M/T(M) ∼= Mλ/T(Mλ).
Also it is shown that ifMλ is a regular torsionfree R-module, for some λ ∈ Λ,
then M ∼= Mλ. As a consequence we characterize all non-torsionfree modules
over a regular ring, whose first nonzero Fitting ideals are maximal.
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1 Introduction and Preliminaries

Let R be a commutative ring with identity andM be a finitely generated R-
module. For a set {x1, . . . , xn} of generators of M there is an exact sequence

0 // N // Rn
ϕ //M // 0 , (1)

where Rn is a free R-module with the set {e1, . . . , en} of basis, the R-
homomorphism ϕ is defined by ϕ(ej) = xj and N is the kernel of ϕ. Let
N be generated by uλ = a1λe1 + . . . + anλen, with λ in some index set Λ.
Assume that A be the following matrix:




. . . a1λ . . .
...

...
...

. . . anλ . . .


 .

(We call A the matrix presentation of the sequence (1) ). Let Fitti(M) be
an ideal of R generated by the minors of size n− i of matrix A. For i ≥ n,
Fitti(M) is defined R and for i < 0, Fitti(M) is defined as the zero ideal. It
is known that Fitti(M) is the invariant ideal determined by M, that is, it is
determined uniquely by M and it does not depend on the choice of the set of
generators of M [4]. The ideal Fitti(M) will be called the i-th Fitting ideal
of the moduleM . It follows from the definition that Fitti(M) ⊆ Fitti+1(M),
for every i. The most important Fitting ideal ofM is the first of the Fitti(M)
that is nonzero. We shall denote this Fitting ideal by I(M).

An element of R is regular if it is a nonzerodivisor and an ideal of R
is regular if it contains a regular element. Assume that T(M), the torsion
submodule of M , be the submodule of M consisting of all elements of M
that are annihilated by a regular element of R. An R-moduleM is a torsion
module if M = T(M) and is a torsionfree R-module if T(M) = 0.

One of the most interesting question for modules is, “Can we characterize
modules according to the first nonzero Fitting ideal of them?” D.A. Buchs-
baum and D. Eisenbud have shown in [2] that if R is a Noetherian ring then,
M is a finitely generated projective R-module of constant rank if and only
if I(M) = R. Also a lemma of J. Lipman asserts that if R is a quasilocal
ring and M = Rn/K, where K is a submodule of Rn, then I(M) is regular
principal if and only if K is finitely generated free and M/T (M) is free of
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rank n−q ( [6]) and J. Ohm generalized this result to global case [7]. At this
point, a natural question arises: if I(M) is any ideal, how much can we say
about the structure of M? In this paper this question is partly answered.

2 The main results

A finitely generated module is said to be a module of type (Fr) if its (r−1)-th
Fitting ideal is the zero ideal and its r-th Fitting ideal is a regular ideal.

Let M be a finitely generated R-module. Then there exist some n ∈ N
and a submodule N of Rn such that M ∼= Rn/N . The purpose of this paper
is to study the module of type (Fn−1).

Lemma 2.1. Let R be a Noetherian ring and M be a finitely generated
R-module of type (Fr). Then exactly one of the following holds:

(1) M is projective of constant rank r.
(2) M can not be generated by r elements.

Proof. Let M can be generated by r elements. So, by definition we have
Fittr(M) = R. Since M is a module of type (Fr), so Fittr−1(M) = 0.
Hence by [2, Lemma 1], M is projective of constant rank r.

Let (R,m) be a local ring and M be a finitely generated R-module. It
is known that all minimal generator sets of M have the same cardinal. We
will denote the minimal number of generators of M by µ(M).

Example 2.2. Let (R,m) be a local ring and m be a finitely generated
regular ideal of R. Let M be a finitely generated module with µ(M) = n
and I(M) = m. Then M is a module of type (Fn−1). Because let X =
{x1, · · · , xn} be a minimal generator set of M and

0 // N // Rn
ϕ //M // 0

be an exact sequence, where Rn is a free R-module with the set {e1, . . . , en}
of basis, the R-homomorphism ϕ is defined by ϕ(ej) = xj and N is the
kernel of ϕ. Assume that

A =




. . . a1λ . . .
...

...
...

. . . anλ . . .
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is the matrix presentation of this sequence, with λ in some index set Λ. Since
X is a minimal generator set of M , it is easily seen that aiλ ∈ m, for every
i, 1 ≤ i ≤ n and every λ ∈ Λ. Let m = I(M) = Fitti(M). Since aiλ ∈ m,
hence m = Fitti(M) ⊆ mn−i. If n = i, then m = Fittn(M) = R, which is a
contradiction. Hence by Nakayama’s Lemma i = n − 1. So M is a module
of type (Fn−1).

An R-module M is called a regular module if I(M) is a regular ideal.

Theorem 2.3. Let R be a commutative ring and N be a submodule of
Rn consisting of elements Aλ = (a1λ, ..., anλ)t with λ in some index set
Λ. Let M ∼= Rn/N be an R-module of type (Fn−1). For λ ∈ Λ, put
Mλ = Rn/ < (a1λ, ..., anλ)t >. If Mλ is a regular module, for some λ ∈ Λ,
then M/T(M) ∼= Mλ/T(Mλ).

Proof. Clearly

0 // N // Rn
ϕ //M // 0

is an exact sequence and

A =




. . . a1λ . . .
...

...
...

. . . anλ . . .




is the matrix presentation of this sequence. Let Ml be a regular R-module,
for some l ∈ Λ. This means that I(Ml) is a regular ideal.

Put Ml = Rn/ < Al >. Set xi = ei + N and yi = ei+ < Al > for all
1 ≤ i ≤ n. Then M =< x1, ..., xn > and Ml =< y1, ..., yn > . Define

f : M/T(M) −→Ml/T(Ml); f(
n∑

i=1

aixi + T(M)) =
n∑

i=1

aiyi + T(Ml).

Let x =
∑n

i=1 aixi ∈ T(M). Hence there exists a regular element q in R
such that qx =

∑n
i=1 qaixi = 0. So there exist some elements rk ∈ R,

1 ≤ k ≤ m such that qai =
∑m

k=1 rkaiλk , 1 ≤ i ≤ n, λk ∈ Λ. For every
i, j, 1 ≤ i, j ≤ n and every λ ∈ Λ, we have qaiajλ =

∑m
k=1 rkaiλkajλ. Thus

q(aiajλ− ajaiλ) =
∑m

k=1 rk(aiλkajλ− ajλkaiλ). Since M is a module of type
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(Fn−1), so Fittn−2(M) = 0. Hence aiλkajλ − ajλkaiλ = 0 and so we have
q(aiajλ − ajaiλ) = 0. Since q is regular, hence

aiajλ − ajaiλ = 0. (1)

Now put y =
∑n

i=1 aiyi. Since Ml = Rn/ < Al >=< y1, ..., yn >, we
have a1ly1 + · · · + anlyn = 0. Let s, 1 ≤ s ≤ n be arbitrary. We have
aslys = −a1ly1 − · · · − anlyn. Therefore asly =

∑n
i=1 aslaiyi = aslasys +∑n

s 6=i=1 aslaiyi =
∑n

s 6=i=1−asailyi+
∑n

s 6=i=1 aslaiyi =
∑n

s 6=i=1(aslai−ailas)yi.
Therefore by (2), we have asly = 0. Since asl is arbitrary, so I(Ml)y = 0.
On the other hand, by hypothesis, I(Ml) is a regular ideal, hence y ∈
T(Ml). Therefore f is welldefined. It is clear that f is onto. Now let
y =

∑n
i=1 aiyi ∈ T(Ml). So there exists a regular element p ∈ R such

that p(a1, ..., an)t ∈< Al >⊆ N . Thus
∑n

i=1 aixi ∈ T(M). Therefore f is an
isomorphism.

Proposition 2.4. Let M ∼= Rn/N be an R-module of type (Fn−1). If Mλ

is a regular torsionfree module, for some λ ∈ Λ, then M = Mλ = Rn/ <
(a1λ, ..., anλ)t >.

Proof. LetMλ be a regular torsionfree R-module, for some λ ∈ Λ. SinceMλ

is a regular module, hence by the proof of Theorem 2.3, x =
∑n

i=1 aixi ∈
T(M) if and only if

∑n
i=1 aiyi ∈ T(Mλ) = 0. For every l ∈ Λ, we have∑n

i=1 ailxi = 0 ∈ T(M). Hence
∑n

i=1 ailyi ∈ T(Mλ) = 0. Thus
(a1l, ..., anl)

t ∈< Aλ >, for every l ∈ Λ. So N ⊆< Aλ >. This means
that M = Mλ.

Corollary 2.5. Let M ∼= Rn/N be a finitely generated R-module of type
(Fn−1). If Mλ is a regular torsionfree module, for some λ ∈ Λ, then
pdR(M) = 1.

Proof. By Proposition 2.4, we have M ∼= Rn/ < (a1λ, . . . , anλ)t >= Mλ.
Since Mλ is a regular module, hence 0 // R // Rn //M // 0 , is
a free resolution of M . So pdR(M) = 1.

Lemma 2.6. Let M ∼= Rn/N be a finitely generated non-torsionfree R-
module of type (Fn−1) . Then M/T(M) is free of rank n− 1 if there exists
λ ∈ Λ such that < a1λ, ..., anλ > is a principal regular ideal.
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Proof. By [7, Theorem 6.2], < a1λ, ..., anλ > is a principal regular ideal if
and only if Mλ/T(Mλ) is free of rank n − 1. (Note that if < a1λ, ..., anλ >
is a regular ideal, then < (a1λ, ..., anλ)t > is a free R-module). Therefore by
Theorem 2.3, M/T(M) is free of rank n− 1 if there exists some λ ∈ Λ such
that < a1λ, ..., anλ > is a principal regular ideal.

Theorem 2.7. Let (R,m) be a Noetherian local ring and M ∼= Rn/N be an
R-module of type (Fn−1). Assume that there exists an element (a1l, ..., anl)

t ∈
N such that asl is a regular prime element of R, for some s, 1 ≤ s ≤ n.
Then exactly one of the following holds:

(1) M ∼= R/ I(M)⊕Rn−1,
(2) M ∼= Rn/ < (a1l, ..., anl)

t >.

Proof. Clearly
0 // N // Rn

ϕ //M // 0

is an exact sequence. Assume that

A =




. . . a1λ . . .
...

...
...

. . . anλ . . .




be the matrix presentation of this sequence. Put p = asl and Ml = Rn/ <
(a1l, ..., anl)

t > . We consider two cases:
Case 1) Let p = asl | ail, for every i, 1 ≤ i ≤ n. Thus I(Ml) =<

a1l, ..., anl >= (p) is a regular principal ideal. So by Lemma 2.6, M/T(M)
is free of rank n − 1. Hence M ∼= T(M) ⊕ Rn−1. If T(M) = 0, then
M ∼= Rn−1. Let T(M) 6= 0. Since M is a module of type (Fn−1), so by
Lemma 2.1, µ(M) = n. Because R is a local ring, it is easily seen that
n = µ(M) = µ(T(M)) + µ(Rn−1) = µ(T(M)) + n− 1. Hence µ(T(M)) = 1
and so T(M) is a cyclic R-module. On the other hand by [1, page 174],
I(M) = Fitt0(T(M)). Since T(M) is a cyclic module, hence T(M) ∼=
R/Fitt0(T(M)) and so M ∼= R/ I(M)⊕Rn−1.

Case 2) Now let there exist some t, 1 ≤ t ≤ n such that p = asl - atl. We
claim that M ∼= Ml, in this case. First we show that T(Ml) = 0. Assume
that there exists some regular element q ∈ R and an element s′ ∈ R such
that q(a1, ..., an)t = s′(a1l, ..., anl)

t, for some (a1, ..., an)t ∈ Rn. Therefore
for 1 ≤ i ≤ n, we have

qai = s′ail. (2)
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So qas = s′asl = s′p. Thus p | qas. Since p is a prime element, then p | q or
p | as.

Let p | q. Thus there exists an element t′ ∈ R such that q = pt′. So
pt′as = s′p. Since p is regular, one gets that

s′ = t′as. (3)

By (3) and (4) we have pt′ai = t′asail, for every i, 1 ≤ i ≤ n. Since t′ is a
regular element, so, for every i,

pai = asail. (4)

Since p - atl, hence p | as. Therefore there exists t′′ ∈ R such that as = pt′′.
By (5), we have pai = pt′′ail. So ai = t′′ail, for every i, 1 ≤ i ≤ n. Hence
(a1, ..., an)t = t′′(a1l, ..., anl)

t. Thus T(Ml) = 0.
Now, let p - q. Then p | as. Thus there exists some t′′ ∈ R such that

as = t′′p. From (3), we have qas = s′p. Thus qt′′p = s′p. So s′ = qt′′. Again
by (3), qai = qt′′ail. Hence (a1, ..., an)t = t′′(a1l, ..., anl)

t and so T(Ml) = 0.
By Proposition 2.4, we have M = Ml = Rn/ < (a1l, ..., anl)

t >.

3 Modules over regular rings

The Krull dimension of R is the supremum of all lengths of chains of prime
ideals of R. Let R be a Noetherian local ring with maximal ideal m and
Krull dimension d. Recall that R is called a regular local ring if m has a
generating set with d elements. The generating set of d elements for m is
called a regular system of parameters of R. The ring R is called a regular
ring if RP is regular local ring, for every prime ideal P of R.

Proposition 3.1. Let (R,m) be a regular local ring and M be a finitely gen-
erated R-module. If I(M) contains a part of a regular system of parameters,
then exactly one of the following holds:

(1) M ∼= R/ I(M)⊕Rn−1,
(2) M ∼= Rn/ < (a1, ..., an)t >, for some n ∈ N and a1, ..., an ∈ R.

Proof. Let µ(M) = n and

0 // N // Rn
ϕ //M // 0
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be an exact sequence. Let A = (aij)n×m be the matrix presentation of this
sequence. (Note that since every regular local ring is Noetherian, hence
ker(ϕ) is finitely generated, and so A has finitely many columns). Since
µ(M) = n, it is easily seen that aij ∈ m, for all i, j. We have Fitti(M) ⊆
mn−i. Since I(M) contains a part of a system of parameters, so by [5,
Theorem 9.1.1], I(M) 6⊆ m2. Thus I(M) = Fittn−1(M). This means that
M is a module of type (Fn−1). Since I(M) 6⊆ m2, hence there exist some
i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ m such that aij 6∈ m2. Because every regular
local ring is a UFD ( [3, Theorem 19.19]), hence aij is an irreducible element.
It is easily seen that every irreducible element in a UFD is prime. So by
Theorem 2.7, M ∼= R/ I(M)⊕Rn−1 or M ∼= Rn/ < (a1, ..., an)t >, for some
n ∈ N and ai ∈ R, 1 ≤ i ≤ n.

Corollary 3.2. Let (R,m) be a regular local ring and M be a finitely gen-
erated R-module. If I(M) = m, then

(1) M ∼= R/m⊕Rn−1, if M is not torsionfree,
(2) M ∼= Rn/ < (a1l, ..., anl)

t >, if M is torsionfree.

Proof. Since m is generated by a regular system of parameters, so by Propo-
sition 3.1, we are done.

Now, we generalize Corollary 3.2, to global case.

Theorem 3.3. Let Q be a maximal ideal of a regular ring R. Let M be a
finitely generated R-module such that the RQ-module MQ is not torsionfree.
Then I(M) = Q if and only if M ∼= P ⊕ R/Q, where P is a projective
R-module.

Proof. Let I(M) = Q ∈ Max(R). Then I(MQ) = QRQ and I(Mq) = Rq
for every maximal ideal Q 6= q. By [2, Lemma 1], for every Q 6= q ∈
Max(R), there exists some positive integer m such that Mq

∼= Rmq . Since
MQ is not a torsionfree RQ-module, Corollary 3.2 yields that MQ

∼= RnQ ⊕
RQ/QRQ, for some positive integer n. So (M/T(M))q is free for every
maximal ideal q of R. Therefore M/T(M) is a projective R-module. On
the other hand, T(MQ) ∼= RQ/QRQ. Thus T(MQ) is a simple RQ-module.
Put A = {annR(y) : T(MQ) =< y

1 >}. Let T(MQ) =< x
1 > such that

annR(x) is maximal in A. It is easily seen that annR(x) = Q. Define
f : R/Q // T(M) ; f(r +Q) = rx. It is clear that fq is an isomorphism
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for every maximal ideal q of R. Hence T(M) ∼= R/Q. Therefore M ∼=
M/T(M)⊕T(M) ∼= P⊕R/Q, for some projective R-module P . Conversely,
let M ∼= P ⊕ R/Q, for some projective R-module P and maximal ideal Q.
Then it is clear that I(M) = Q.

Corollary 3.4. Let R be a Noetherian regular ring and Q be a maximal
ideal of R. Let M be a finitely generated R-module with I(M) = Q. Then

(1) If the RQ-module MQ is torsionfree, then pdR(M) = 1,
(2) If the RQ-module MQ is not torsionfree, then pdR(M) = gldim(RQ).

Proof. Let Q 6= q be a maximal ideal of R. So I(Mq) = I(M)q = Rq. Thus
by [2, Lemma 1], Mq is a free Rq-module. Also we have I(MQ) = QRQ.
If the RQ-module MQ is torsionfree, then by Corollary 3.2, MQ

∼= RnQ/ <

(a1, ..., an)t >, for some a1, ..., an ∈ RQ. So pdR(M) = supq pd(Mq) = 1.
Next, assume that the RQ-moduleMQ is not torsionfree. So by Corollary

3.2, MQ
∼= RQ/QRQ ⊕Rn−1

Q . Hence pdR(M) = supq pd(Mq) = gldim(RQ).
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