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On the pointfree counterpart of the local
definition of classical continuous maps

Bernhard Banaschewski

Abstract. The familiar classical result that a continuous map from a space
X to a space Y can be defined by giving continuous maps ϕU : U → Y on
each member U of an open cover C of X such that ϕU | U ∩ V = ϕV | U ∩ V
for all U, V ∈ C was recently shown to have an exact analogue in pointfree
topology, and the same was done for the familiar classical counterpart con-
cerning finite closed covers of a space X (Picado and Pultr [4]). This note
presents alternative proofs of these pointfree results which differ from those
of [4] by treating the issue in terms of frame homomorphisms while the latter
deals with the dual situation concerning localic maps. A notable advantage
of the present approach is that it also provides proofs of the analogous results
for some significant variants of frames which are not covered by the localic
arguments.

A continuous map ϕ : X → Y between topological spaces is said to be locally
defined if one is given an open cover C of X and a continuous map ϕU : U →
Y for each U ∈ C such that ϕU | U ∩V = ϕV | U ∩V for all U, V ∈ C, and ϕ
is then taken as the common extension of the ϕU , U ∈ C, whose existence is
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ensured by these conditions and whose continuity readily follows from them.
Now, quite remarkably, as shown in [4], there is an exact counterpart of this
notion in pointfree topology, that is, in the category of frames, despite the
(possible) absence of points there which seem to play a crucial rôle here.
The purpose of this note is to present an alternative to the proof given loc.
cit.; specifically, while the latter uses arguments about sublocales, it will
be shown here that surprisingly simple considerations involving only frame
homomorphisms also prove the result in question. As a particular aspect of
this approach, we note that the arguments used here apply equally well to
the κ-frames for any regular cardinal κ (and so in particular to the bounded
distributive lattices (= ω-frames) and the σ-frames (= ω1-frames) and to
the preframes – which is clearly not the case for the earlier proofs.

Concerning background, we only require familiarity with the most basic
notions concerning frames and their homomorphism, as presented in the
introductory parts of Picado and Pultr [4]. Specifically, a cover of a frame L
is a subset C of L whose joint

∨
C equals e, the top of L;

∏
stands for the

usual product of frames; for any element a of a frame L, ↓a = {s ∈ L | s ≤ a}
which is the image of L by the frame homomorphism (·) ∧ a : L → ↓a,
s 7→ s ∧ a, and similarly for ↑a = {s ∈ L | s ≥ a} and (·) ∨ a : L → ↑a,
s 7→ s∨a. Regarding the relation between spaces and frames, O is the usual
functor so that OX is the frame of all open subsets U of X, and for any
continuous map ϕ : X → Y between spaces Oϕ : OY → OX is the frame
homomorphism U 7→ ϕ−1[U ].

The first step towards the result is the following which seems to be new
although it really is quite obvious.

Lemma 1.1. For any cover C of a frame L, if

N = {u = (ua)a∈C ∈
∏
{↓a | a ∈ C} | ua∧a∧b = ub∧a∧b for all a, b ∈ C}

then k : L→ N , s 7→ (s ∧ a)a∈C , is an isomorphism.

Proof. Each k(s) obviously belongs to N which, in turn, is a subframe of∏{↓a | a ∈ C} so that k is indeed a homomorphism, by the familiar proper-
ties of products of frames, trivially one-one since C is a cover of L. Further,
k is onto: for any u ∈ N and a, b ∈ C, ua ∧ b ≤ a ∧ b so that

ua ∧ b = ua ∧ b ∧ a ∧ b = ub ∧ a ∧ b ≤ ub,
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the second step by the definition of N , and hence

k
(∨
{ua | a ∈ C}

)
=
((∨

{ua | a ∈ C}
)
∧ b
)
b∈C

= (ub)b∈C = u.

Proposition 1.2. For any frames L and M , if C is a cover of L and
ha : M →↓a is a homomorphism for each a ∈ C such that

ha(s) ∧ a ∧ b = hb(s) ∧ a ∧ b (a, b ∈ C, s ∈M)

then there exists a unique frame homomorphism h : M → L such that h(s)∧
a = ha(s) for all a ∈ C and s ∈M .

Proof. Note that the homomorphism

M →
∏
{↓a | a ∈ C}, s 7→ (ha(s))a∈C ,

actually maps into the N of Lemma 1.1 by the given condition on the ha, and
the corresponding homomorphism f : M → N then determines h = k−1f ,
with k−1 provided by Lemma 1.1. Consequently, f = kh so that

(ha(s))a∈C = f(s) = kh(s) = (h(s) ∧ a)a∈C ,

as claimed, and this condition clearly makes h unique.

To put the above in perspective it may be useful to see what the present
approach amounts to in the classical situation. Consider, then, topological
spaces X and Y with an open cover C of X and a continuous map ϕU : U →
Y for each U ∈ C such that ϕU | U ∩V = ϕV | U ∩V for all U, V ∈ C. Then,
the usual functor O from spaces to frames determines a cover C of the frame
OX and frame homomorphisms

OϕU : OY → OU =↓U (⊆ OX)

for each U ∈ C such that

(OϕU )(W ) ∩ U ∩ V = ϕ−1
U [W ] ∩ U ∩ V

= {x ∈ U ∩ V | ϕU (x) ∈W}
= {x ∈ U ∩ V | ϕV (x) ∈W}
= (OϕV )(W ) ∩ U ∩ V,
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the second step exactly because ϕU | U∩V = ϕV | U∩V , and the proposition
now supplies a unique frame homomorphism h : OY → OX such that
U ∩h[W ] = ϕ−1

U [W ] for all U ∈ C and W ∈ OY . On the other hand, for the
common extension ϕ of the ϕU , just taken as a set map from X to Y ,

U ∩ h(W ) = ϕ−1
U [W ] = {x ∈ U | ϕU (x) ∈W}

= {x ∈ U | ϕ(x) ∈W} = U ∩ ϕ−1[W ],

for all U ∈ C andW ∈ OY so that ϕ−1[W ] = h[W ], showing ϕ is continuous
and h = Oϕ. In particular, the classical result in question is thus seen to be
a consequence of its pointfree counterpart.

Remark 1.3. Considering the above in categorical terms, it is clear by its
very definition (see, for instance, Mac Lane [2]) that the frame N , together
with the homomorphisms N → ↓a induced by the product projections of∏{↓a | a ∈ C}, provides the limit of the diagram

↓a

�� ↓(a ∧ b) (a, b ∈ C),

↓b

AA

and by Lemma 1.1 the same then holds for L and the maps (·)∧a : L→ ↓a,
a ∈ C. Of course, this hardly adds anything to the result as such but it still
seems worth pointing out.

Remark 1.4. Concerning Proposition 1.2, the desired h : M → L is obvi-
ously given by h(s) =

∨{ha(s) | a ∈ C}, and without Lemma 1.1 one could
just consider this mapM → L and show (i) it is a homomorphism such that
(ii) a ∧ h(s) = ha(s) for all a ∈ C and s ∈ M . In the end, though, this
seems to require no less work than the route chosen above while the latter
provides a much clearer picture of what is really going on.

Remark 1.5. Regarding the earlier comment that the arguments used here
are all equally applicable to the κ-frames for any regular cardinal κ, it should
be pointed out that, in this situation, the covers involved are of course
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those provided by the given setting, that is, the κ-small subsets C such
that

∨
C = e: this then trivially implies that all the other joins which

enter into the argument exist. Other than that, it is sufficient to observe
that all the entities involved in the above proof are κ-frames and κ-frame
homomorphisms whenever this is the case for the initial data to see that the
counterparts of Lemma 1.1 and Proposition 1.2 hold.

Further, the analogous situation arises in the case of preframes, albeit
somewhat less obviously. To see this, recall that a preframe is a partially
ordered set in which all finitary meets and updirected joins exist such that
the binary meet distributes over the latter [1], and a cover is then understood
to be an updirect subset C such that

∨
C = e. Now, for any (ua)a∈C in∏{↓a | a ∈ C} such that ua ∧ a ∧ b = ub ∧ a ∧ b, ua ≤ ub whenever a ≤ b

since ua ≤ ua ∧ a∧ b = ub ∧ a∧ b ≤ ub, and hence {ua | a ∈ C} is updirected
since C is. Thus, the joins in the relevant proof are indeed updirected so
that they do exist. Moreover, the entities used in the above proofs are again
readily seen to belong to the category of preframes provided this holds for
the initial data, and the desired results then follow.

We now turn to the related classical situation which involves finite closed
covers of topological spaces also considered in [4]: if X = S1 ∪ · · · ∪ Sn for
closed Si ⊆ X and ϕi : Si → Y is a continuous map for each i = 1, . . . , n
such that ϕi | Si ∩ Sk = ϕk | Si ∩ Sk for all i, k = 1, . . . , n, the common
extension of ϕ : X → Y of these ϕi is continuous. As shown loc. cit., this
also has a pointfree counterpart, and here we provide a new proof in the
same spirit as that given above.

Again, there is an obvious basic lemma which can then be applied to
obtain the proposition in question. As is to be expected, the present setting
deals with finite subsets F of a frame L such that

∧
F = 0, called the finite

cocovers of L, and the results are now as follows.

Lemma 1.6. For any finite cocover F of a frame L, if

N = {u = (ua)a∈F ∈
∏
{↑a | a ∈ F} | ua∨a∨b = ub∨a∨b for all a, b ∈ F}

then k : L→ N , s 7→ (s ∨ a)a∈F , is an isomorphism.

Proposition 1.7. For any frames L and M , if F is a finite cocover of L
and ha : M → ↑a is a homomorphism for each a ∈ F such that

ha(s) ∨ a ∨ b = hb(s) ∨ a ∨ b (a, b ∈ F, s ∈M)
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then there exists a unique frame homomorphism h : M → L such that h(s)∨
a = ha(s) for all s ∈M and a ∈ F .

Proof. The proofs here are exact copies of the earlier ones, with the modifi-
cation that joins and meets are interchanged. We omit the details.

To see that the frame situation considered here indeed corresponds to the
spatial case involving finite closed covers, let X = S1∪· · ·∪Sn and ϕi : Si →
Y be as described earlier. Then this determines frame homomorphisms

hi : OY → ↑CSi, W 7→ ϕ−1
i [W ] ∪ CSi,

where CSi = X\Si and ↑CSi is taken inOX while hi is based on the familiar
fact that OS ∼= ↑CS for any closed subspace S of X. Further {CS1, . . .CSn}
is clearly a finite cocover of OX.

Now, for any x ∈ ϕ−1
i [W ]∪CSi∪CSk, if x 6∈ CSi∪CSk then x ∈ Si∩Sk

so that ϕi(x) = ϕk(x) by hypothesis; hence ϕ−1
i [W ]∪CSi∪CSk ⊆ ϕ−1

k [W ]∪
CSi∪CSk and by symmetry this implies equality, showing that the hi satisfy
the condition given in the above proposition. Thus there exists a unique
frame homomorphism h : OY → OX such that

h(W ) ∪ CSi = hi(W ) = ϕ−1
i [W ] ∪ CSi (i = 1, . . . , n).

On the other hand, for the common set map extension ϕ of the ϕi, a simple
calculation shows that ϕ−1

i [W ] ∪ CSi = ϕ−1[W ] ∪ CSi and hence h(W ) ∪
CSi = ϕ−1[W ] ∪ CSi for all i; consequently ϕ−1[W ] = h(W ), saying ϕ is
continuous and h = Oϕ, as desired. Thus, again, the classical fact involved
here turns out to follow from the present pointfree result.

Remark 1.8. Here we have the exact counterpart of Remark 1.3, with the
diagram in question now given by

↑a

�� ↑(a ∨ b) (a, b ∈ F ).

↑b

AA
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Remark 1.9. Clearly, the comment in Remark 1.4 concerning Proposition
1.2 equally well applies here: the use of Lemma 1.6 can readily be avoided to
obtain Proposition 1.7 but the route chosen here seemed to provide deeper
insight.

Remark 1.10. As in the earlier situation, the proofs of Lemma 1.6 and
Proposition 1.7 can quite obviously be adjusted to provide proofs of the κ-
frame counterparts of these results. On the other hand, this is clearly not
the case concerning preframes.

We conclude with some remarks comparing the present treatment of
the topic with that of [4]. Clearly Proposition 1.2 is the exact translation
of Theorem 2.6 in [4] from the language of sublocales into that of frame
quotients so that the two are essentially the same although they do, of
course, differ in flavour. Specifically, the situation Proposition 1.2 deals
with is the direct image of the classical situation in question if one regards
the usual functor O as the guide: a continuous map ϕ : U → Y corresponds
to the frame homomorphism Oϕ : OY → OU where the latter is the open
quotient ↓U of OX and not the corresponding open sublocale of OX. As a
consequence, deriving the classical result in question from Theorem 2.6 of [4]
requires an appropriate translation from open sublocales to open quotients
which is not the case for Proposition 1.2, as shown earlier. Other than
that, there is of course the fundamental difference between the proofs in [4]
and here, where the crucial step is Lemma 1.1 which in essence trivializes
Proposition 1.2. There is a hint at the isomorphism of Lemma 1 in [4], given
by the comment 2.7 that the inclusion maps o(ai) → L provide the locale
colimit of the diagram

o(ai)

o(ai) ∪ o(aj)

66

''
o(aj)

but, of course, this appears as an afterthought rather than as a step of the
proof.
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Regarding Proposition 1.7, it is clear that the finite cocovers F of a
frame L correspond exactly to the covers of L by the closed sublocales ↑a,
a ∈ F , and Proposition 1.7 then says precisely the same as Theorem 3.4
of [4], expressed in terms of frame homomorphisms. Thus, the translation
from sublocales to frame quotients is rather more direct here than in the
earlier case. Of course, the proofs in question are formally different: that of
Proposition 1.7 does not depend on the inductive step implicitly used in the
proof of Theorem 3.4 which the simple direct argument avoids, and there
is the difference between using Lemma 1.6 and arguing at the level of the
relevant pushout maps, similar to the situation in the earlier case.
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