A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

Document Type : Research Paper

Author

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

Abstract

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an additional motivation for developing commutator theory. On the other hand, commutator theory suggests: (a) another notion of central extension that turns out to be equivalent to the Galois-theoretic one under surprisingly mild additional conditions; (b) a way to describe internal groupoids in ‘nice’ categories. This is essentially a 20 year story (with only a couple of new observations), from introducing categorical Galois theory in 1984 by the author, to obtaining and publishing final forms of results (a) and (b) in 2004 by M. Gran and by D. Bourn and M. Gran, respectively.

Keywords


[1]    D. Arias and M. Ladra, Central extensions of precrossed modules, Appl.  Categ.  Structures 12(4) (2004), 339–354.
 [2]    D. Arias and M. Ladra, Baer invariants and cohomology of precrossed modules, Appl. Categ.  Structures 22(1) (2014), 289–304.
 [3]    M. Barr, ``Exact Categories'', Lecture Notes in Math. 236, Springer, Berlin, 1971, 1-120.
 [4]    F. Borceux and D. Bourn, ``Mal'cev, Protomodular, Homological and Semi-Abelian Categories'', Mathematics and its Applications, Kluwer, 2004.
 [5]    F. Borceux and G. Janelidze, ``Galois Theories'', Cambridge Stud. Adv. Math. 72, Cambridge University Press, 2001.
 [6]    D. Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in   Math.  1488 (1991), 43-62.
 [7]    D. Bourn, Mal’cev categories and fibration of pointed objects, Appl. Categ. Structures 4 (1996), 307-327.
 [8]    D. Bourn, Commutator theory in regular Mal’tsev categories, Fields Inst. Commun.  43 (2004), 61-75.
 [9]    D. Bourn, Fibration of points and congruence modularity, Algebra Universalis 52(4) (2004), 403-429.
 [10]    D. Bourn, Internal profunctors and commutator theory; applications to extensions classification and categorical Galois theory, Theory  Appl. Categ. 24(17) (2010), 451–488.
 [11]    D. Bourn and M. Gran, Central extensions in semi-abelian categories, J.  Pure Appl. Algebra 175(1-3) (2002), 31-44.
 [12]    D. Bourn, D and M. Gran, Centrality and normality in protomodular categories, Theory Appl. Categ. 9(8) (2002), 151–165.
 [13]    D. Bourn and M. Gran, Centrality and connectors in Maltsev categories, Algebra Universalis 48(3) (2002), 309-331.
 [14]    D. Bourn and M. Gran, Categorical aspects of modularity, Fields Inst.  Commun. 43 (2004), 77-100.
 [15]    D. Bourn and A. Montoli, Intrinsic Schreier-Mac Lane extension theorem II: The case of action accessible categories, J.  Pure  Appl. Algebra 216(8-9) (2012), 1757–1767.
 [16]    D. Bourn and D. Rodelo, Comprehensive factorization and I-central extensions, J.  Pure Appl. Algebra 216(3) (2012), 598–617.
 [17]    R. Brown and G. Janelidze, Van Kampen theorems for categories of covering morphisms in lextensive categories, J.  Pure Appl.  Algebra 119(3) (1997), 255-263.
 [18]    R. Brown and G. Janelidze, Galois theory of second order covering maps of simplicial sets, J.  Pure Appl. Algebra 135(1) (1999), 23-31.
 [19]    R. Brown and G. Janelidze, Galois theory and a new homotopy double groupoid of a map of spaces, Appl. Categ.  Structures 12 (2004), 63-80.
 [20]    M. Bunge and S. Lack, Van Kampen theorems for toposes, Adv.  Math.  179(2) (2003), 291-317.
 [21]    A. Carboni, Categories of affine spaces, J.  Pure Appl. Algebra 61(3) (1989), 243-250.
 [22]    A. Carboni and G. Janelidze, Decidable (=separable) objects and morphisms in lextensive categories, J.  Pure Appl. Algebra 110(3) (1996), 219-240.
 [23]    A. Carboni and G. Janelidze, Boolean Galois theories, Georgian Math. J.  9(4) (2002), 645-658 (Also preprint  Dept. Math. Instituto Superior Téchnico, Lisbon 15, 2002).
 [24]    A. Carboni, G. Janelidze, G.M. Kelly, and R. Paré, On localization and stabilization of factorization systems, Appl. Categ.  Structures 5 (1997), 1-58.
 [25]    A. Carboni, G. Janelidze, and A.R. Magid, A note on Galois correspondence for commutative rings, J.  Algebra 183 (1996), 266-272.
 [26]    A. Carboni, G.M. Kelly, and M.C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl. Categ.  Structures 1(4) (1993), 385-421.
 [27]    A. Carboni, J. Lambek, and M.C. Pedicchio, Diagram chasing in Mal’cev categories, J.  Pure Appl. Algebra 69(3) (1990), 271-284.
 [28]    A. Carboni, M.C. Pedicchio, and N. Pirovano, Internal graphs and internal groupoids in Mal’cev categories, CT1991 Proceedings, Canadian Math. Soc. Conf. Proc. 13 (1992), 97-109.
 [29]    J.M. Casas, E. Khmaladze, M. Ladra, and T. Van der Linden, Homology and central extensions of Leibniz and Lie n-algebras, Homology Homotopy Appl.  13(1) (2011), 59–74.
 [30]    J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ.  Structures 22(1) (2014), 253–268.
 [31]    D. Chikhladze, Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids, Homology Homotopy Appl. 6(1) (2004), 501–505.
 [32]    C. Cassidy, M. Hébert, and G.M. Kelly, Reflective subcategories, localizations, and factorization systems, J.  Aust. Math.  Soc. (Series A) 38 (1985), 287-329.
 [33]    D. Chikhladze, Separable morphisms of simplicial sets, J.  Homotopy Relat. Struct. 1(1)  (2006), 169–173.
 [34]    M.M. Clementino, A note on the categorical van Kampen theorem, Topology  Appl.  158(7) (2011), 926–929.
 [35]    M.M. Clementino and D. Hofmann, Descent morphisms and a Van Kampen in categories of lax algebras, Topology  Appl. 159(9) (2012), 2310–2319.
 [36]    M.M. Clementino, D. Hofmann, and A. Montoli, Covering morphisms in categories of relational algebras, Appl. Categ.  Structures 22(5-6) (2014), 767–788.
 [37]    M. Duckerts-Antoine, ``Fundamental groups in E-semi-abelian categories'', PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, 2013.
 [38]    M. Duckerts, T. Everaert, and M. Gran, A description of the fundamental group in terms of commutators and closure operators, J.  Pure Appl. Algebra 216(8-9) (2012), 1837–1851.
 [39]    M. Duckerts-Antoine, Fundamental group functors in descent-exact homological categories, to appear (and available electronically as http://www.mat.uc.pt/preprints/ps/p1538.pdf).
 [40]    S. Eilenberg and S. Mac Lane, Natural isomorphisms in group theory, Proc. Natl. Acad. Sci. 28(12) (1942), 537-543.
 [41]    S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans.  Amer.  Math. Soc. 58(2) (1945), 231-294.
 [42]    V. Even, A Galois-theoretic approach to the covering theory of quandles, Appl. Categ. Structures 22(5-6) (2014), 817–831.
 [43]    V. Even and M. Gran, On factorization systems for surjective quandle homomorphisms, J.  Knot Theory  Ramifications 23(11) (2014), 1450060 (15 pages).
 [44]    V. Even and M. Gran, Closure operators in the category of quandles, Topology  Appl.  200(1) (2016), 237-250.
 [45]    V. Even, M. Gran, and A. Montoli, A characterization of central extensions in the variety of quandles, to appear in Theory Appl. Categ. 31(8) (2016), 201-216.
 [46]    T. Everaert, ``An approach to non-abelian homology based on Categorical Galois Theory'', PhD Thesis, Free University of Brussels, Brussels, 2007.
 [47]    T. Everaert, Higher central extensions and Hopf formulae, J.  Algebra 324(8) (2010), 1771–1789.
 [48]    T. Everaert, Higher central extensions in Mal'tsev categories, Appl. Categ.  Structures 22(5-6) (2014), 961–979.
 [49]    T. Everaert, J. Goedecke, and T. Van der Linden, Resolutions, higher extensions and the relative Mal'tsev axiom, J.  Algebra 371 (2012), 132–155.
 [50]    T. Everaert, J. Goedecke, and T. Van der Linden, The fundamental group functor as a Kan extension, Cah.  Topol. Géom. Différ.  Catég. 54(3) (2013), 185–210.
 [51]    T. Everaert and M. Gran, Precrossed modules and Galois theory, J.  Algebra 297(1) (2006), 292–309.
 [52]    T. Everaert and M. Gran, On low-dimensional homology in categories, Homology Homotopy Appl.  9(1) (2007), 275–293.
 [53]    T. Everaert and M. Gran, Homology of n-fold groupoids, Theory  Appl. Categ.  23(2) (2010), 22–41.
 [54]    T. Everaert and M. Gran, Monotone-light factorisation systems and torsion theories, Bull.  Sci.  Math. 137(8) (2013), 996-1006.
 [55]    T. Everaert and M. Gran, Protoadditive functors, derived torsion theories and homology, J.  Pure Appl. Algebra 219(8) (2015), 3629–3676.
 [56]    T. Everaert, M. Gran, and T. Van der Linden, Higher Hopf formulae for homology via Galois theory, Adv. Math.  217 (2008), 2231-2267.
 [57]    T. Everaert and T. Van der Linden, Baer invariants in semi-abelian categories I: General theory, Theory Appl. Categ. 12(1) (2004), 1-33.
 [58] T. Everaert and T. Van der Linden, A note on double central extensions in exact Mal'tsev categories, Cah.  Topol.  G'{e}om. Diff'{e}r. Cat'{e}g. LI 2 (2010), 143–153.
 [59]    T. Everaert and T. Van der Linden, Galois theory and commutators, Algebra Universalis 65(2) (2011), 161–177.
 [60]    T. Everaert and T. Van der Linden, Relative commutator theory in semi-abelian categories, J.  Pure Appl.  Algebra 216(8-9) (2012), 1791–1806.
 [61]    T.H. Fay, On commuting congruences in regular categories, Math.  Colloq.,  University of Cape Town 11 (1977), 13-31.
 [62]    T.H. Fay, On categorical conditions for congruences to commute, Algebra Universalis 8 (1978), 173-179.
 [63]    R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Math.  Soc.  Lecture Note Ser. 125, Cambridge University Press, 1987.
 [64]    A. Fr"{o}hlich, Baer-invariants of algebras, Trans. Amer.  Math.  Soc.  109 (1963), 221-244.
 [65]    J. Funk and B. Steinberg, The universal covering of an inverse semigroup, Appl. Categ.  Structures 18(2) (2010), 135–163.
 [66]    J. Furtado-Coelho, ``Varieties of $Gamma$-groups and associated functors'', PhD Thesis, University of London, 1972.
 [67]    J. Furtado-Coelho, Homology and generalized Baer invariants, J.  Algebra 40 (1976), 596-609.
 [68]    J. Goedecke and T. Van der Linden, On satellites in semi-abelian categories: Homology without projectives, Math.  Proc. Cambridge Philos. Soc. 147(3) (2009), 629-657.
 [69]    M. Gran, ``Central extensions of internal groupoids in Maltsev categories'', PhD Thesis, Université Catholique de Louvain, Louvain-la-Neuve, 1999.
 [70]    M. Gran, Central extensions and internal groupoids in Maltsev categories, J.  Pure Appl. Algebra 155(2-3) (2001), 139–166.
 [71]    M. Gran, Commutators and central extensions in universal algebra, J.  Pure Appl.  Algebra 174(3) (2002), 249–261.
 [72]    M. Gran, Applications of categorical Galois theory in universal algebra, Fields Inst.  Commun.  43 (2004), 243-280.
 [73]    M. Gran, ``Structures galoisiennes dans les catégories algébriques et homologiques'', Habilitation à Diriger des Recherches, Université du Littoral Côte d'Opale, 2007.
 [74]    M. Gran and G. Janelidze, Covering morphisms and normal extensions in Galois structures associated with torsion theories, Cah. Topol. Géom. Différ.  Catég. 50(3) (2009), 171-188.
 [75]    M. Gran and S. Lack, Semi-localizations of semi-abelian categories, J.  Algebra 454 (2016), 206-232.
 [76]    M. Gran and D. Rodelo, Some remarks on pullbacks in Gumm categories, Textos  Mat.  46 (2014), University of Coimbra, 125-136 (Also available as arXiv:1408.1342v1 [math.CT] 6 Aug 2014).
 [77]    M. Gran and V. Rossi, Galois theory and double central extensions, Homology Homotopy Appl.  6(1) (2004), 283–298.
 [78]    M. Gran and V. Rossi, Torsion theories and Galois coverings of topological groups, J.  Pure Appl. Algebra 208(1) (2007), 135-151.
 [79]    M. Gran and T. Van der Linden, On the second cohomology group in semi-abelian categories, J.  Pure Appl.  Algebra 212(3) (2008), 636-651.
 [80]    M. Grandis and G. Janelidze, Galois theory of simplicial complexes, Topology  Appl.  132(3) (2003), 281-289.
 [81]    J.R.A. Gray and T. Van der Linden, Tim Peri-abelian categories and the universal central extension condition, J. Pure Appl. Algebra 219(7) (2015), 2506–2520.
 [82]    A. Grothendieck, Revêtements étales et groupe fondamental, SGA 1, exposé V, Lecture Notes in Math.  224, Springer, 1971.
 [83]    H.P. Gumm, An easy way to the commutator in modular varieties, Arch.  Math.  34(3) (1980), 220-228.
 [84]    H.P. Gumm, ``Geometrical methods in congruence modular algebra'', Mem.  Amer.  Math.  Soc.   286, 1983, 79 pages.
 [85]    J. Hagemann and C. Hermann, A concrete ideal multiplication for algebraic systems and its relationship to congruence distributivity, Arch.  Math. 32 (1979), 234-245.
 [86]    T. Heindel and P. Sobociński, Being van Kampen is a universal property, Log. Methods Comput. Sci.  7(1) (2011),  22 pages.
 
 [87]    P.J.  Higgins, Groups with multiple operators, Proc. London Math.  Soc.  3(6) (1956), 366-416.
 [88]    G. Janelidze, Magid's theorem in categories, Bull. Georgian Acad.  Sci.  114(3) (1984), 497-500 (in Russian).
 [89]    G. Janelidze, Abelian extensions (of invertible rank, with normal basis) of commutative rings with an infinite number of idempotents, Proc. Math. Inst. Georgian Acad. Sci. LXXVII (1985), 36-49 (in Russian).
 [90]    G. Janelidze, The fundamental theorem of Galois theory, Math. USSR Sbornik 64(2) (1989), 359-384.
 [91]    G. Janelidze, Galois theory in categories: the new example of differential fields, Proceedings of the  Conference on  Categorical Topology,  Prague 1988, World Scientific 1989, 369-380.
 [92]    G. Janelidze, Pure Galois theory in categories, J.  Algebra 132 (1990), 270-286.
 [93]    G. Janelidze, Internal categories in Mal’tsev varieties, York University Preprint, Toronto, 1990.
 [94]    G. Janelidze, What is a double central extension? (the question was asked by Ronald Brown), Cah.  Topol.  Géom. Différ.  Catég. XXXII-3 (1991), 191-202.
 [95]    G. Janelidze, Precategories and Galois theory, Lecture Notes in Math. 1488 (1991), 157-173.
 [96]    G. Janelidze, A note on Barr-Diaconescu covering theory, Contemp.  Math.  131(3) (1992), 121-124.
 [97]    G. Janelidze, Internal crossed modules, Georgian Math. J.  10(1) (2003), 99-114.
 [98]    G. Janelidze, Categorical Galois theory: revision and some recent developments, Galois Connections and Applications, Kluwer Academic Publishers B.V., 2004, 139-171.
 [99]    G. Janelidze, Galois groups, abstract commutators, and Hopf formula, Appl. Categ.  Structures 16(6) (2008), 653-761.
 [100]    G. Janelidze, Light morphisms of generalized T0-reflections, Topology  Appl. 156(12) (2009), 2109-2115.
 [101]    G. Janelidze and G.M. Kelly, Galois theory and a general notion of a central extension, J. Pure Appl.  Algebra 97(2) (1994), 135-161.
 [102]    G. Janelidze and G.M. Kelly, The reflectiveness of covering morphisms in algebra and geometry, Theory Appl.  Categ.  3 (1997), 132-159.
 [103]    G. Janelidze and G.M. Kelly, Central extensions in universal algebra: a unification of three notions, Algebra Universalis 44 (2000), 123-128.
 [104]    G. Janelidze and G.M. Kelly, Central extensions in Mal’tsev varieties, Theory Appl. Categ.  7(10) (2000), 219-226.
 [105]    G. Janelidze, L. Márki, and W. Tholen, Locally semisimple coverings, J.  Pure  Appl. Algebra 128(3) (1998), 281-289.
 [106]    G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, J.  Pure Appl.  Algebra 168(2-3) (2002), 367-386.
 [107]    G. Janelidze and M.C. Pedicchio, Internal categories and groupoids in congruence modular varieties, J.  Algebra 193 (1997), 552-570.
 [108]    G. Janelidze and M.C. Pedicchio, Pseudogroupoids and commutators, Theory Appl.  Categ.  8(15) (2001), 408-456.
 [109]    G. Janelidze, D. Schumacher, and R.H. Street, Galois theory in variable categories, Appl. Categ.  Structures
 1(1) (1993), 103-110.
 [110]    G. Janelidze and R.H. Street, Galois theory in symmetric monoidal categories, J. Algebra 220 (1999), 174-187.
 [111]    G. Janelidze and W. Tholen, Functorial factorization, well-pointedness and separability, J.  Pure Appl. Algebra 142(2) (1999), 99-130.
 [112]    G. Janelidze and W. Tholen, Extended Galois theory and dissonant morphisms, J.  Pure Appl.  Algebra 143(1-3) (1999), 231-253.
 [113]    [JT2010] G. Janelidze and W. Tholen, Strongly separable morphisms in general categories, Theory  Appl.  Categ.  23(5) (2010), 136-149.
 [114]    Z. Janelidze, Categorical terms for the shifting lemma, to appear.
 [115]    T. Janelidze-Gray, Composites of central extensions form a relative semi-abelian category, Appl. Categ.  Structures 22(5-6) (2014), 857-872.
 [116]    M. Jibladze and T. Pirashvili, Linear extensions and nilpotence of Maltsev theories, Beitr.  Algebra Geom. 46(1) (2005), 71–102.
 [117]    P.T. Johnstone, Affine categories and naturally Mal’tsev categories, J.  Pure Appl. Algebra 61(3) (1989), 251-256.
 [118]    E.W. Kiss, Three remarks on the modular commutator, Algebra Universalis 29(4) (1992), 455-476
 [119]    A. Kock, Generalized fibre bundles, Lecture Notes in Math. 1348 (1988),  Springer,  194-207.
 [120]    A. S.-T. Lue, Baer-invariants and extensions relative to a variety, Proc. Cambridge Philos. Soc. 63 (1967), 569-578.
 [121]    A. S.-T. Lue, Cohomology of groups relative to a variety, J.  Algebra 69 (1981), 155-174.
 [122]    S. Mac Lane, Groups, categories, and duality, Proc. Natl. Acad. Sci. U.S.A. 47 (1948), 263–267.
 [123]    S. Mac Lane, Duality for groups, Bull. Amer.  Math. Soc. 56 (1950), 485-516.
 [124]    S. Mac Lane, Categorical algebra, Bull.  Amer. Math. Soc. 71 (1965), 40-106.
 [125]    S. Mac Lane, ``Categories for the Working Mathematician'', Springer, 1971; 2nd Edition 1998.
 [126]    A.R. Magid, ``The separable Galois theory of commutative rings'', Marcel Dekker, 1974.
 [127]    A.R. Magid, The separable Galois theory of commutative rings, 2nd Edition, Pure Appl. Math. (Boca Raton), CRC Press, Boca Raton, FL, 2014.
 [128]    J. Meisen, ``Relations in categories'', PhD Thesis, McGill University, Montreal, 1972.
 [129]    J. Meisen, Relations in regular categories, Lecture Notes in Math.  418 (1974), Springer,  96-102.
 [130]    A. Montoli, D. Rodelo, and T. Van der Linden, A Galois theory for monoids, Theory Appl.  Categ.  29(7) (2014), 198–214.
 [131]    M.C. Pedicchio, Maltsev categories and Maltsev operations, J. Pure Appl. Algebra 98(1) (1995), 67-71.
 [132]    M.C. Pedicchio, A categorical approach to commutator theory, J.  Algebra 177 (1995), 647-657.
 [133]    M.C. Pedicchio, Arithmetical categories and commutator theory, Appl. Categ.  Structures 4(2-3) (1996), 297-305.
 [134]    M.C. Pedicchio, Some remarks on internal pregroupoids in varieties, Comm.  Algebra 26(6) (1998), 1737-1744.
 [135]    G. Peschke, Universal extensions, Comptes Rendus Math. Acad. Sci., Paris 349 (9-10) (2011), 501–504.
 [136]    D. Rodelo and T. Van der Linden, The third cohomology group classifies double central extensions, Theory Appl.  Categ. 23(8) (2010), 150–169.
 [137]    D. Rodelo and T. Van der Linden, Higher central extensions via commutators, Theory Appl.  Categ.  27 (2012), 189–209.
 [138]    D. Rodelo and T. Van der Linden, Higher central extensions and cohomology, Adv. Math. 287 (2016), 31–108.
 [139]    V. Rossi, Admissible Galois structures and coverings in regular Mal'{c}ev categories, Appl. Categ.  Structures 14(4) (2006), 291–311.
 [140]    V. Rossi, ``Galois structures and coverings in universal and topological algebra'', PhD Thesis, Udine, 2006.
 [141]    J.D.H. Smith, ``Mal’cev Varieties'', Lecture Notes in Math. 554, Springer, 1976.
 [142]    A. Szendrei, ``Commutators and compatible operations'', First Thomasina Coverly Memorial Workshop on Ordered Sets and Universal Algebra, Vanderbilt University, Nashville, TN, USA, May 24-27, 2000.
 [143]     J.J. Xarez, The monotone-light factorization for categories via preorders, Fields Inst. Commun. 43 (2004), 533-541.
 [144]     J.J. Xarez, Separable morphisms of categories via preordered sets, Fields Inst. Commun. 43 (2004), 543-549.
 [145]     J.J. Xarez, Internal monotone-light factorization for categories via preorders, Theory  Appl. Categ. 13(15) (2004), 235–251.
 [146]     J.J. Xarez, A Galois theory with stable units for simplicial sets,  Theory Appl.  Categ. 15(7) (2005/6), 178–193.
 [147]     J.J. Xarez, Well-behaved epireflections for Kan extensions, Appl. Categ.  Structures 18(2) (2010), 219–230.
 [148]     J.J. Xarez, Concordant and monotone morphisms, Appl. Categ. Structures 21(4) (2013), 393–415.
 [149]     I.A. Xarez and J.J. Xarez, Galois theories of commutative semigroups via semilattices, Theory Appl.  Categ.  28(33) (2013), 1153–1169.