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A characterization of finitely generated
multiplication modules

Somayeh Karimzadeh and Somayeh Hadjirezaei

Abstract. Let R be a commutative ring with identity and M be a finitely
generated unital R-module. In this paper, first we give necessary and suffi-
cient conditions that a finitely generated module to be a multiplication mod-
ule. Moreover, we investigate some conditions which imply that the module
M is the direct sum of some cyclic modules and free modules. Then some
properties of Fitting ideals of modules which are the direct sum of finitely
generated module and finitely generated multiplication module are shown.
Finally, we study some properties of modules that are the direct sum of mul-
tiplication modules in terms of Fitting ideals.

1 Introduction and Preliminaries

Let R be a unitary commutative ring and M be a finitely generated R-
module. Let X = {x1, ..., xn} be a set of generators of M . A relation of M
is a vector (a1, ..., an) in Rn such that

∑n
i=1 aixi = 0. For a positive integer

k = 0, ..., n−1, the k-th Fitting ideal of M is defined to be the ideal Fittk(M)
generated by the determinants of all (n − k) × (n − k) subdeterminants of
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the matrix 
a11 . . . a1n
...

...
...

ai1 . . . ain
...

...
...

 ,

where the vectors (ai1, ..., ain) are the relations of M . If k ≥ n, we define
Fittk(M) = R. These ideals form an ascending sequence of invariant ideals
for M , independently of the choice of X (see Fitting’s lemma [4, Corollary
20.4]). The most important Fitting ideal of M is the first of the Fittj(M)
that is nonzero. We shall denote this Fitting ideal by I(M). If P is a prime
ideal of R, then Fittj(M)P =Fittj(MP ), for every j. Also, if I(M) contains
a nonzerodivisor, then I(MP ) =I(M)P for every prime ideal P of R.
An element of R is regular if it is a nonzerodivisor and an ideal of R is regu-
lar if it contains a regular element. Let M be a finitely generated R-module.
T(M), the torsion submodule of M , is the submodule of M consisting of all
elements of M that are annihilated by a regular element of R. M is said to
be a torsion module if M =T(M) and a torsion-free module if T(M) = 0.
An R-moduleM is called a multiplication module if for each submoduleN of
M , N = IM for some ideal I of R. In this case, we can take I = (N : M) [2].
P. Vamos in [10] shows that every Artinian finitely generated distributive
module is cyclic. A. Barnard in [2], interestingly shows that an R-module
M is distributive, if and only if, every finitely generated submodule is a mul-
tiplication module. Using this interesting fact, the above result of Vamos is
generalized in [2], by proving that, in fact, every finitely generated Artinian
multiplication module is cyclic. Since then, the concept of multiplication
modules received attention by some authors, in particular, by those work-
ing on the theory of prime submodules, see [5]. In this article, we are also
following the methods used in [2], to state and prove our main result.

2 Fitting ideals of multiplication modules

In this section, we study some properties of finitely generated multiplication
modules and Fitting ideals of them. We will denote by µ(M) the minimal
number of generators of M and define ω(M) = min{k | Fittk(M) 6= 0}.
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Proposition 2.1. Let (R,P ) be a local ring and M be a finitely generated
R-module. Then M can be generated by n elements if and only if Fittn(M) =
R.

Proof. [4, Proposition 20.6].

Theorem 2.2. Let M be a finitely generated R-module. If Fittr(M) =
I(M) is a regular principal ideal and Fittr+1(M) = R, then M = N ⊕ Rr,
where N is a multiplication module.

Proof. I(M) is a regular principal ideal of R, thus by [7, Theorem 6.2],
M = T (M) ⊕ Rr. So, Fitt0(T (M)) = Fittr(M) and Fitt1(T (M)) =
Fittr+1(M) = R. Let P be a prime ideal of R. We have Fitt0((T (M))P ) =
(Fitt0(T (M))P and (Fitt1(T (M)))P = Fitt1((T (M))P ) = RP . By Propo-
sition 2.1, (T (M))P is a cyclic module. Therefore, by [2, Proposition 5],
T (M) is a multiplication module.

Corollary 2.3. Let M be a finitely generated torsion R-module. If I(M) =
Fittr(M) is a regular multiplication ideal and Fittr+1(M) = R, then M is a
multiplication module.

Proof. Let P be a maximal ideal of R. Since I(M) is a regular multiplication
ideal, (I(M))P is a regular principal ideal. By Theorem 4.4, MP

∼= N ⊕Rr,
for some nonnegative integer r and some multiplication module N . But MP

is a torsion module, so MP
∼= N . Since RP is a local ring, by [2, Proposition

4], N is a cyclic module. Hence by [2, Proposition 5], M is a multiplication
module.

Lemma 2.4. Let M be a finitely generated R-module. Suppose that µ(M) =
r and ω(M) = s. If the Fitting ideals of M are regular principal ideals,
then there exist α1, ..., αr−s ∈ R such that (αi+1) ⊆ (αi) and Fittk(M) =
(α1...αr−k) for all s ≤ k ≤ r − 1.

Proof. Let P be a maximal ideal of R. By [1, Theorem 2.6], we have MP
∼=

⊕r−si=1 (RP /(ai/1)) ⊕ Rs, where (ai+1/1) ⊆ (ai/1). So, by [1, Proposition
2.5], Fittk(MP ) = (a1...ar−k). Assume that Fittk(M) = (βr−k), s ≤ k ≤
r − 1. Since Fittr−i−1(M) ⊆ Fittr−i(M), (βi+1) ⊆ (βi). Hence there exists
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γi+1 ∈ R such that βi+1 = γi+1βi. Therefore, Fittr−1(MP ) = (a1/1) =
(Fittr−1(M))P = (β1)P = (β1/1). Put α1 = β1. Since

Fittr−2(MP ) = (a1/1)(a2/1) = (α1/1)(a2/1)

= (Fittr−2(M))P = (β2)P = (β2/1) = (γ2/1)(α1/1),

(a2/1) = (γ2/1). Put αi = γi. So, Fittk(MP ) = (α1...αr−k)P = (Fittk(M))P .
This implies that (α1...αr−k) = Fittk(M).

Theorem 2.5. Let M be a finitely generated module over an integral domain
R. Suppose that the Fitting ideals of M are principal. If I(M) is a prime
ideal of R, then M is a direct sum of a multiplication module and a free
module.

Proof. Let µ(M) = r and ω(M) = s. By Lemma 2.4, there exist
α1, ..., αr−s ∈ R such that I(M) = 〈α1...αr−s〉. Since I(M) is a prime ideal,
there exists i, 1 ≤ i ≤ r − s, such that αi ∈ I(M). If i = r − s, then there
exists r ∈ R such that αr−s = rα1...αr−s. Therefore, 1R = rα1...αr−s−1.
This means that Fittr−i(M) = R for all i, 1 ≤ i ≤ r−s−1. So by Theorem
4.4, M is a direct sum of a multiplication module and a free module. If
r − s > i, then there exists r ∈ R such that αi = rα1...αi−1αi+1...αr−s.
So, 1R = rα1...αi−1αi+1...αr−s. Hence I(M) = R. It is a contradiction by
I(M) is a prime ideal.

Theorem 2.6. Let M be a finitely generated torsion-free module over an
integral domain R. Then, the Fitting ideals of M are multiplication ideals
if and only if M is projective.

Proof. (=⇒) Let r = ω(M) and P be a maximal ideal of R. Since M
is a torsion-free R-module, MP is a torsion-free RP -module. Fitti(MP ) is
a principal ideal because Fitti(M) is a multiplication ideal. Thus, by [1,
Theorem 2.6], MP

∼= ⊕ni=1(RP /(ai))⊕RrP . Since T (MP ) = 0, MP
∼= (RP )r.

By [6, Corrollary 1, p.58], M is a projective module.
(⇐=) It is clear.

In what follows we are characterizing, intrinsically, finitely generated
modules which are multiplication.
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Theorem 2.7. Let M be a finitely generated R-module. Then Fitt1(M) = R
if and only if M is a multiplication module.

Proof. (=⇒) Let P be a maximal ideal ofR. Since Fitt1(MP ) = Fitt1(M)P =
RP , by Proposition 2.1, MP is a cyclic module. By [2, Proposition 5], M is
multiplication.
(⇐=) Conversely, assume that M be a multiplication module and P be a
maximal ideal of R. By [2, Proposition 5], MP is a cyclic RP -module. Hence
Fitt1(M)P = Fitt1(MP ) = RP . So, Fitt1(M) = R.

Corollary 2.8. Let M be a finitely generated R-module. If Fitt1(M) = R,
then Fitt0(M) = AnnR(M).

Proof. By [4, Proposition 20.7] and Theorem 2.7, it is clear.

Theorem 2.9. Let M be a finitely generated torsion R-module and P be
a maximal ideal of R. Suppose that the Fitting ideals of M are regular
principal ideals. If I(M) is a P -primary ideal, then M ∼= ⊕ni=1R/(ai),
where (ai+1) ⊆ (ai) for every 1 ≤ i ≤ n− 1.

Proof. Let P 6= Q be a maximal ideal of R. Since

Fitti(MQ) = (Fitti(M))Q = RQ

by [4, Proposition 20.8] and by [8, Theoerm 4.58], MQ is free. But MQ

is torsion, so MQ = 0. Since Fitti(MP ) = (Fitti(M))P are regular princi-
pal ideals and MP is torsion, by [1, Theorem 2.6], MP

∼= ⊕ni=1RP /(ai/1),
where (ai+1/1) ⊆ (ai/1). By [1, Proposition 2.5], Fittn−1(MP ) = (a1/1) =
(Fittn−1(M))P = (β1)P , so (a1/1) = (β1/1). We have (α2) = Fittn−2(M) ⊆
Fittn−1(M) = (β1), so there exists β2 ∈ R such that α2 = β2β1. Hence
Fittn−2(MP ) = (a1/1)(a2/1) = (Fittn−2(M))P = (α2)P . So, (a1/1)(a2/1) =
(β1/1)(a2/1) = (β1/1)(β2/1). Therefore, (a2/1) = (β2/1) ⊆ (β1/1). Hence
MP
∼= (RP /(β1/1))⊕ (RP /(β2/1))⊕ ...⊕ (RP /(βn/1)). We show that (βi)

is a P -primary ideal for all i, 1 ≤ i ≤ n. Suppose that q be a prime
ideal of R and (βi) ⊆ q, then I(M) ⊆ Fittn−i(M) = (β1...βi) ⊆ q. So
q = P and (βi) is P -primary because I(M) is P -primary. Thus, there
exist m1, ...,mn ∈ M such that MP = (m1/1) ⊕ ... ⊕ (mn/1). Thus,
AnnRP (mi/1) = (βi/1) = (βi)P = (AnnR(mi))P . Since (AnnR(mi))Q =
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RQ = (βi)Q, for every maximal ideal Q 6= P of R, hence AnnR(mi) = (βi).
If x ∈ Rml ∩ Σn

i=1,i 6=lRmi, then there exists t ∈ R such that x = tml.
So, x/1 = tml/1 ∈ RP (ml/1) ∩ Σn

i=1,i 6=lRP (mi/1). Therefore, tml/1 = 0.
Hence there exists s ∈ R−P such that stml = 0. So, st ∈ AnnR(ml) = (βl)
and s /∈ P . This implies that t ∈ (βl) = AnnR(ml) and x = 0. Put
N = (m1)⊕ ...⊕ (mn). Then NQ = MQ for all maximal ideal Q of R, hence
M ∼= R/(β1)⊕ ...⊕R/(βn).

Proposition 2.10. Let M be a finitely generated R-module and P be a
maximal ideal of R. Suppose that the Fitting ideals of M are regular princi-
pal. If I(M) = Fittr(M) is a P -primary ideal, then M ∼= ⊕ni=1R/(ai)⊕Rr,
where (ai+1) ⊆ (ai) for 1 ≤ i ≤ n− 1.

Proof. By [7, Theorem 6.2], M = T (M)⊕Rr. So, Fitt0(T (M)) = Fittr(M)
and Fitti(T (M)) = Fittr+i(M). Since the Fitting ideals of T (M) are regular
principal ideals of R, thus by Theorem 2.9, T (M) = ⊕ni=1R/(ai), where
(ai+1) ⊆ (ai).

3 Fitting ideals of direct sum of finitely generated modules

In this section, we exhibit some properties of Fitting ideals of direct sum of
a finitely generated module and a finitely generated multiplication module.
We define λ(M) = max{k : Fittk(M) 6= R}, where M is an R-module.

Proposition 3.1. Let M be a finitely generated R-module such that M =
M1⊕M2, for some R-modules M1,M2, where n2 = ω(M1) and n1 = λ(M1).
If M2 is a multiplication module, then

Fittk(M) =


R if k > n1 + 1
AnnR(M2) + Fittn1(M1) if k = n1 + 1
Fittk(M1)AnnR(M2) + Fittk−1(M1) if n2 < k ≤ n1

Fittk(M1)AnnR(M2) if k = n2

0 if k < n2.

Proof. By [3, p. 174], Fittk(M) = Σi+j=kFitti(M1)Fittj(M2). Let k be a
positive integer. We consider the following cases:
Case i: k > n1 + 1. In this case both Fittn1+1(M1) and Fittk(M1) are R.
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So, Fittk(M) = R.
Case ii: k = n1 + 1. In this case

Fittk(M) = Fittn1+1(M1)Fitt0(M2) + Fittn1(M1)Fitt1(M2) + · · ·

+Fitt0(M1)Fittn1+1(M2) = AnnR(M2) + Fittn1(M1).

Case iii: n2 < k < n1. We have

Fittk(M) = Fittk(M1)Fitt0(M2) + Fittk−1(M1)Fitt1(M2) + · · ·+

Fitt0(M1)Fittk(M2) = Fittk(M1)AnnR(M2) + Fittk−1(M1).

The other cases are obvious.

Corollary 3.2. Let M be a finitely generated R-module such that M =
M1 ⊕M2, where n1 = λ(M1) = and n2 = ω(M1). If M2 is a multiplication
module and AnnR(M2) ⊆ AnnR(M1), then

Fittk(M) =


R if k > n1 + 1

Fittk−1(M1) if n2 < k ≤ n1 + 1
0 if k ≤ n2.

Proof. By [4, Proposition 20.7], AnnR(M1)Fittk(M1) ⊆ Fittk−1(M1). By
hypothesis, AnnR(M2) ⊆ AnnR(M1). This implies that
AnnR(M2)Fittk(M1) ⊆ Fittk−1(M1). By Proposition 2.1, we have

Fittn1+1(M) = AnnR(M2) + Fittn1(M1).

Since Fittn1+1(M1) = R, hence

Fittn1+1(M) = AnnR(M2) + Fittn1(M1) = Fittn1(M1).

By Proposition 2.1, we have

Fittk(M) = Fittk(M1)AnnR(M2) + Fittk−1(M1), n2 < k ≤ n1.

Therefore, Fittk(M) = Fittk−1(M1). If k = n2, then

Fittn2(M) = Fittn2(M1)Fitt0(M2) + Fittn2−1(M1)Fitt1(M2) + · · ·

= Fittn2(M1)AnnR(M2) ⊆ Fittn2−1(M1) = 0.
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Lemma 3.3. Let M = M1⊕M2 be the direct sum of two finitely generated
R-modules M1 and M2, where M2 is a multiplication module. Then:
(i) Fittk(M1) ⊆ Fittk+1(M) ⊆ Fittk+1(M1) for all k ≥ 0.
(ii) ω(M1) + 1 ≥ ω(M) ≥ ω(M1).
(iii) If R is an integral domain and AnnR(M2) 6= 0, then ω(M) = ω(M1).

Proof. (i) By Proposition 2.1, we have Fittk(M) = Fittk(M1)AnnR(M2) +
Fittk−1(M1). So, Fittk(M1) ⊆ Fittk+1(M) ⊆ Fittk+1(M1).
(ii) Let’s put n2 = ω(M1). By Proposition 2.1,

Fittn2+1(M) = Fittn2+1(M1)AnnR(M2) + Fittn2(M1).

Since Fittn2(M1) 6= 0, Fittn2+1(M) 6= 0. So, ω(M1)+1 ≥ ω(M). Therefore,
by Proposition 2.1, Fittn2−1(M) = 0, ω(M) ≥ ω(M1).
(iii) By Proposition 2.1, Fittn2(M) = Fittn2(M1)AnnR(M2) and R is an
integral domain, hence Fittn2(M) 6= 0. So, by (ii), ω(M) = ω(M1).

Proposition 3.4. Let R be a valuation ring and M be a finitely generated
R-module. Suppose that M = M1⊕M2, for some R-modules M1,M2, where
M2 is a multiplication module.
If AnnR(M2) and the Fitting ideals of M1 are principal and cancellation
ideals, then the Fitting ideals of M are principal and cancellation.

Proof. By Proposition 2.1, Fittn1+1(M) = AnnR(M2) + Fittn1(M1). So,
Fittn1+1(M) = AnnR(M2) or Fittn1+1(M) = Fittn1(M1). Hence
Fittn1+1(M) is a principal and cancellation ideal. Let n2 < k ≤ n1. By
Proposition 2.1, Fittk(M) = Fittk(M1)AnnR(M2) + Fittk−1(M1). We have
two cases:
Case i: Let Fittk(M) = Fittk−1(M1). Hence Fittk(M) is a principal and
cancellation ideal.
Case ii: Let Fittk(M) = Fittk(M1)AnnR(M2). It’s clear that Fittk(M) is a
principal ideal. Let I and J be two ideals of R and Fittk(M)I = Fittk(M)J .
Hence Fittk(M1)AnnR(M2)I = Fittk(M1)AnnR(M2)J . We obtain I = J .
Hence Fittk(M) is a cancellation ideal.
Suppose that Fittn2(M) 6= 0. By Proposition 2.1,

Fittn2(M) = Fittn2(M1)AnnR(M2).

Hence Fittn2(M) is a principal and cancellation ideal.
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Proposition 3.5. Let M1, ...,Mn be finitely generated multiplication R-
modules, where AnnR(M1) ⊆ AnnR(M2) ⊆ ... ⊆ AnnR(Mn). Set M =
⊕ni=1Mi then

Fittk(M) =

{
R if k ≥ n
AnnR(Mk+1)...AnnR(Mn) if k = 0, 1, ..., n− 1.

Proof. We prove by induction on n. If n = 1, then it’s clear that Fitt0(M) =
AnnR(M1) and Fittk(M) = R, k ≥ 1. Suppose that, the assertion is true
for k ≤ n. If k = 0, 1, ..., n− 2, then

Fittk(M) = Σi+j=kFitti(⊕n−1
i=1 Mi)Fittj(Mn) = Fittk(⊕n−1

i=1 Mi)Fitt0(Mn)

+ · · ·+ Fitt0(⊕n−1
i=1 Mi)Fittk(Mn).

So, by induction hypothesis,

Fittk(M) = AnnR(Mk+1) · · ·AnnR(Mn−1)AnnR(Mn)

+ · · ·+ AnnR(Mk) · · ·AnnR(Mn−2)AnnR(Mn−1).

Since AnnR(Mi) ⊆ AnnR(Mi+1),
Fittk(M) = AnnR(Mk+1) · · ·AnnR(Mn). Let k = n− 1. We have

Fittn−1(M) = Σi+j=kFitti(⊕n−1
i=1 Mi)Fittj(Mn)

= Fittn−1(⊕n−1
i=1 Mi)Fitt0(Mn) + Fittn−2(⊕n−1

i=1 Mi).

By induction hypothesis,

Fittn−1(M) = Fitt0(Mn) + AnnR(Mn−1) = AnnR(Mn) + AnnR(Mn−1)

= AnnR(Mn).

Let k ≥ n, then

Fittk(M) = Σi+j=kFitti(⊕n−1
i=1 Mi)Fittj(Mn) = R.

Theorem 3.6. Let M1, ...,Mn be finitely generated multiplication R-modules,
where AnnR(M1) ⊆ AnnR(M2) ⊆ ... ⊆ AnnR(Mn). Set M = ⊕ni=1Mi. The
Fitting ideals of M are principal and cancellation if and only if AnnR(M1),
AnnR(M2), ...,AnnR(Mn) are principal and cancellation.
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Proof. (=⇒) By Proposition 3.5, Fittn−1(M) = AnnR(Mn), thus
AnnR(Mn) is principal and cancellation. Again by Proposition 3.5,

Fittn−2(M) = AnnR(Mn−1)AnnR(Mn).

Suppose that Fittn−2(Mn−1) = 〈α〉 and AnnR(Mn) = 〈β〉. So, there ex-
ists x ∈ AnnR(Mn−1) such that α = xβ. Let y ∈ AnnR(Mn−1). Since
AnnR(Mn−1) ⊆ AnnR(Mn), there exists t ∈ R such that y = tβ. We have
yβ ∈ Fittn−2(M), hence there exists r ∈ R such that yβ = rα = rxβ. So,
〈y〉〈β〉 = 〈rx〉〈β〉. Therefore, 〈y〉AnnR(Mn) = 〈rx〉AnnR(Mn). Therefore,
y ∈ 〈x〉. So, AnnR(Mn−1) = 〈x〉. Now, suppose that I, J be two ideals of
R and AnnR(Mn−1)I = AnnR(Mn−1)J . Hence AnnR(Mn)AnnR(Mn−1)I =
AnnR(Mn)AnnR(Mn−1)J . This implies that Fittn−2(M)I = Fittn−2(M)J .
Hence I = J . So, AnnR(Mn−1) is cancellation. Similarly

AnnR(M1), ...,AnnR(Mn−2)

are principal and cancellation.
(⇐=) It is clear.
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