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Birkhoff’s Theorem from a geometric
perspective: A simple example

F. William Lawvere

Abstract. From Hilbert’s theorem of zeroes, and from Noether’s ideal
theory, Birkhoff [1] derived certain algebraic concepts (as explained by Tholen
[10]) that have a dual significance in general toposes, similar to their role in
the original examples of algebraic geometry. I will describe a simple example
that illustrates some of the aspects of this relationship.

The dualization from algebra to geometry in the basic Grothendieck spirit
can be accomplished (without intervention of topological spaces) by the fol-
lowing method, known as Isbell conjugacy [3], [5].

1 Isbell Conjugacy

Any given small category can be used as the category of figure shapes,
within the larger category of contravariant set-valued functors on it, which
we call the category of pre-spaces. This full embedding is achieved by the
basic Yoneda construction. The general pre-space consists of figures of the
various shapes, which have been called ‘generalized elements’ by Kock, ‘el-
ements’ by Volterra, and ‘points’ by Grothendieck; however, we will reserve
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the term ‘points’ for figures whose shapes are co-simple objects in the given
small category. A crucial role in a generalized Birkhoff concept will be played
by a category intermediate between figures and points, consisting of gen-
eralized points in a sense suggested by the Leibniz notion of monads. The
morphisms of the given small category operate (on the ‘right’) on these pos-
sibly singular figures, permitting the definition via divisibility of incidence
relations (intersection, et cetera). Those incidence relations are preserved
by the natural transformations that are the morphisms of pre-spaces; these
morphisms can therefore be thought of as generalized continuous maps. The
word ‘space’ can be reserved for the objects of an appropriate reflective sub-
category of the pre-spaces; if the reflection is left exact, the spaces will also
form a topos.

The other Yoneda embedding contravariantly assigns to each object of
the original category a covariant set-valued functor (a representable pre-
algebra that provides function types for all the ‘pre-algebras’). The mor-
phisms in the original small category act as ‘left’ algebraic operations on the
functions, so that the natural transformations act as homomorphisms in the
sense that they commute with these operations. Again, the consideration of
a reflective sub-category is sometimes appropriate (with the word ‘algebra’
reserved for its objects).

The pre-spaces and the pre-algebras are connected by adjoint functors
called ‘spectrum’ and ‘function algebra’, defined by naturality as follows:

Spec(A)(C) = Nat(A,Cop), F (X)(C) = Natop(X,C)

for each pre-algebra A and each pre-space X, where C and Cop result from
the two Yoneda embeddings. The two Yoneda embeddings are transformed
into each other by these ‘conjugate’ adjoints. In case the given small cat-
egory has finite products, it is often reasonable to define ‘algebras’ to be
those pre-algebras that actually preserve the products; all the function al-
gebras coming from pre-spaces will be algebras in that sense. On the other
hand, if the small category has coproducts that are extensive [7] , then the
pre-spaces that take those co-products to products may reasonably be called
‘spaces’; the spectrum of any pre-algebra is a space. Thus the two adjoint
functors Spec and F typically restrict to an adjoint pair connecting such
algebras and such spaces; this adjointness is considered to be the basic rela-
tion of algebraic geometry. It should not be expected that this adjointness



Birkhoff’s Theorem from a geometric perspectives 3

be an equivalence of categories, but it provides useful invariants of spaces
and of algebras.

2 Points and ‘Zeroes’

Of particular interest are figures whose shape is a ‘co-simple’ object of the
given small category; such figures are called points. Birkhoff pointed out the
importance of an intermediate category of shapes more general than points.
In the case of commutative algebra his intermediate category includes the
spectra of those special local rings called sub-directly irreducible. Their
special virtue is that they lead to a faithful representation of more general
algebras, in terms of a striking picture that I will explain. In a general
setting I will discuss a partial analog of this intermediate category.

Hilbert’s theorem showed that every non-trivial space has at least one
point (i.e. a figure whose shape is co-simple). The expression ‘zeroes’ for
these points derives from the special role of subtraction in the particular
algebras known as commutative rings. The basic content is the existence
of solutions to equations which require that two functions take the same
value. Of course, when subtraction exists, such solutions are just points
at which the difference of the two functions vanishes, i.e. Nullstellen for
that difference function. (This sort of reduction can be achieved without
subtraction in any category with sufficient exactness properties: in each
object of the form Y × Y we can collapse the diagonal Y to a single point
that we could call ‘zero’. Then the solutions of an equation involving a
pair of maps from X to Y will constitute the same subspace of X as the
one where the single map, obtained by following their paired map by the
quotient map, takes on the single value ‘0’.)

3 The Leibniz Core and the Birkhoff Property of an Object

The Noether-Birkhoff theorem is stronger than Hilbert’s theorem: By con-
sidering a small generalization of ‘co-simple’, one obtains not merely the
existence of points, but the sufficiency of the resulting notion of ‘general-
ized points’; here sufficiency refers to the capacity to separate functions. In
terms of algebras sufficiency means that a certain induced homomorphism
to a product of very special algebras will always be monomorphic. The
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geometric way to guarantee such a monomorphic map of algebras involves
an induced ‘pseudo-epimorphism’ from an amalgam of special ‘tiny’ spaces.
Here ‘pseudo’ refers to the ‘perception’ powers of a space R that represents
functions on X as X → R. In the classical case R itself is a representable
figure shape serving as a function type. These functions constitute the al-
gebras that we aim to faithfully represent. The Leibniz Core of a space
X is the union L(X) of all its generalized points; this is obtained as the
right adjoint of the inclusion functor from the subcategory of those spaces
that ‘look like clouds of Leibnizian monads’. The more general figures that
substantiate cohesion between points are omitted in the reduction from X to
L(X), but each point may have self-cohesion (which is retained in L(X)).

In algebraic geometry, analytic geometry, and smooth geometry such a
sub-category has been usefully explained with the help of nilpotent quantities,
but there is a more qualitative characterization of a suitable such interme-
diate category of ‘Leibnizian’ spaces: every connected component of a Leib-
nizian space has exactly one point. (This exemplifies the notion of intensive
quality in the axiomatic theory of cohesion.) [6]

There are several situations where such a category intermediate between
point-like spaces and general spaces plays a significant role in analyzing the
cohesion and motion within the general spaces. The Leibniz picture of a
cloud of monads can be more concretely realized, for example in the study
of singularities of smooth maps; the self-cohesion of each point where a
given smooth function vanishes can be expressed by higher-order differen-
tial information, and the topos of all smooth spaces allows for subspaces
(typically the spectra of algebras that are linearly finite-dimensional) where
everything except this infinitesimal information is omitted.

4 Boole, Cantor, and Discreteness

In any topos there is the sub-topos of all the spaces satisfying the sheaf
property with respect to the double-negation modal operator on the truth-
value space. This Boolean subtopos in some very special cases is ‘essential’
in the sense that the associated sheaf functor has a further left adjoint
[8]. That left adjoint we will call the inclusion of discrete spaces. This
gives rise to a comonad that we might call the Cantor comonad, because it
captures exactly the first step of Cantor’s set theory: to extract from any
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Menge its subspace of ‘lauter Einsen’ (extending the ancient Greek notion
of arithmos to infinite spaces) [2]. In case this comonad is left exact, it
expresses the Boolean topos of sheaves alternatively as a quotient topos,
with the quotient functor being the one assigning to the Mengen (or spaces)
their underlying abstract sets in a relativization of the sense that is used
in modern mathematics. (The abstract sets implicit in the small categories
and set functors occurring in the above conjugate construction of examples
can also be understood in this more precise Boole-Cantor way.)

These two properties (existence and left-exactness of the Cantor comonad)
can be further strengthened to permit a simple description of the desired
intermediate category. Namely, a connected components functor is a still
further left adjoint that moreover preserves finite products. The adjunction
morphisms that accompany the functors in the resulting quartet can be
composed to yield, in particular, a natural transformation from the Cantor
points of any space to the discrete space of connected components of that
same space; the epimorphicity of this map would express Hilbert’s theorem
of zeroes, in the sense that in each component the required points would
exist at least after passing to a covering (involving field extensions in the
classical case). However, here we use a possible stronger property of this
natural map to single out the intermediate subcategory of interest.

Definition 4.1. The Leibniz spaces are just those spaces for which the
natural map from points to components is a bijection. A Birkhoff space R
is a space having the uniqueness property with respect to the Leibniz core
functor: for any X, any ’infinitesimal’ map L(X)→ R can be integrated in
at most one way to a global function X → R.

Remark 4.2. The Leibniz core of a space X can be characterized as the
largest sub-space of X that retracts onto the Cantor core of X.

5 The Example of Reflexive Graphs

We now apply the above definitions to the ordinary topos of reflexive di-
rected (multi)graphs [9]. These are pre-spaces whose figure types are de-
scribed by a small category with five non-identity maps and two objects,
one of which is terminal. The corresponding ‘pre-algebras’ can be pictured
as cylinders, each of which has a graph as its spectrum [4].
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Proposition 5.1.
(BC) The Boolean subtopos consists of those graphs with the property that
between any two points there is a unique arrow, whereas the Cantor subcat-
egory consists of those graphs that have no non-identity arrows; the obvi-
ous fact that these two totally different subcategories are equivalent to one
another as categories (ignoring the inclusion functors) expresses a simple
example of functorial Unity and Identity of Opposites (UIO) [4].
(L) The Leibniz graphs are those consisting entirely of loops, so that the
inclusion L(X) → X omits those arrows from X whose source and target
are distinct.
(B) The ‘Birkhoff graphs’, namely those R for which a map X → R is
uniquely determined by its restriction to L(X), are characterized by the
property that

∀a, b, ∀x, y : a→ b⇒ x = y.

The usual name for such a graph is reflexive binary relation.

In the general context discussed above the subcategory of Birkhoff spaces
will be closed under subobjects as well as under products (and indeed every
space will have a largest Birkhoff quotient), and this can be directly verified
in the example of graphs. Hence there are many non-representable spaces
that are Birkhoff spaces, but the following example shows that not all spaces
in the topos are Birkhoff. The truth-value graph is not a Birkhoff graph
and indeed in any topos where the inclusion map from L(X)→ X is monic
but not epic for some X, the truth-value object cannot have the Birkhoff
property, because the constantly-true map has the same restriction as the
classifying map for this subobject, yet they are not equal.

I thank Francisco Marmolejo and Matias Menni for enlightening discus-
sions concerning the topics treated in this note.
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