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Basic notions and properties of ordered
semihyperrings

Bijan Davvaz and Saber Omidi

Abstract. In this paper, we introduce the concept of semihyperring (R,+, ·)
together with a suitable partial order ≤. Moreover, we introduce and study
hyperideals in ordered semihyperrings. Simple ordered semihyperrings are
defined and its characterizations are obtained. Finally, we study some prop-
erties of quasi-simple and B-simple ordered semihyperrings.

1 Introduction

Hyperrings extend the classical notion of rings, substituting both or only
one of the binary operations of addition and multiplication by hyperoper-
ations. Hyperrings were introduced by several authors in different ways.
If only the addition is a hyperoperation and the multiplication is a binary
operation, then we say that R is a Krasner hyperring [31]. Davvaz [11] has
defined some relations in hyperrings and prove isomorphism theorems. For
a more comprehensive introduction about hyperrings, we refer to [15].

As a generalization of a ring, semiring was first introduced by Van-
diver [40] in 1934. A semiring is a structure (R,+, ·, 0) with two binary
operations + and · such that (R,+, 0) is a commutative semigroup, (R, ·)
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is a semigroup, multiplication is distributive from both sides over addition
and 0 ·x = 0 = x ·0 for all x ∈ R. Semiring theory has many applications to
other branches. Semirings are studied in relations with applications in [20].
In [41], Vougiouklis generalizes the notion of hyperring and named it as
semihyperring, where both the addition and multiplication are hyperoper-
ation. Semihyperrings are a generalization of Krasner hyperrings. Note
that a semiring with zero is a semihyperring. Davvaz in [12] studied the
notion of semihyperrings in a general form. Ameri and Hedayati defined
k-hyperideals in semihyperrings in [2].

Hyperstructures, in particular hypergroups, were introduced in 1934 by
Marty [33] at the eighth congress of Scandinavian Mathematicians. The no-
tion of algebraic hyperstructure has been developed in the following decades
and nowadays by many authors, especially Corsini [9, 10], Davvaz [13–15],
Mittas [34], Spartalis [37], Stratigopoulos [39] and Vougiouklis [42]. Ba-
sic definitions and notions concerning hyperstructure theory can be found
in [9].

In [22], Heidari and Davvaz studied a semihypergroup (H, ◦) together
with a binary relation ≤, where ≤ is a partial order relation such that satis-
fies the monotone condition. Indeed, an ordered semihypergroup (H, ◦,≤) is
a semihypergroup (H, ◦) together with a partial order ≤ such that satisfies
the monotone condition as follows:

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z, for all x, y, z ∈ H.

Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that
a ≤ b. The case x ◦ z ≤ y ◦ z is defined similarly. Indeed, the concept of
ordered semihypergroups is a generalization of the concept of ordered semi-
groups. The concept of ordering hypergroups introduced by Chvalina [6] as
a special class of hypergroups and studied by many authors, for example,
see [5, 7, 16, 23, 24]. In [4], polygroups which are partially ordered are
introduced and some properties and related results are given.

As we know, partially ordered rings play an important role in the ab-
stract algebra. (R,+, ·) is a partially ordered ring [19] if R has a partial
order ≤ satisfying the following conditions: (1) a ≤ b implies a+ c ≤ b+ c
for each c ∈ R; (2) 0 ≤ a and 0 ≤ b imply 0 ≤ a ·b. It is an easy consequence
of (1) and (2) of the above definition, if a, b, c ∈ R with a ≤ b and 0 ≤ c,
then a · c ≤ b · c. A semigroup (S, ·) is a partially ordered semigroup, if there
is defined on S a partial order ≤, which is compatible with the operation
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· in S. Ordered semigroups have been extensively investigated by many
authors, for example, see [1, 8, 28, 29, 36]. There is a classical book by
Fuchs [17] where ordered algebraic structures are discussed.

The present paper is organized as follows: In section 2, we recall some
concepts of semihyperrings. In section 3, we introduce the notion of or-
dered semihyperrings and present several examples of them. In section
4, we intend to concentrate our efforts on the characterizations of simple,
quasi-simple and B-simple ordered semihyperrings in terms of hyperideals,
quasi-hyperideals and bi-hyperideals.

2 Basic terminology

This section explains some basic notions and definitions that have been used
in this paper. In what follows, we summarize some basic definitions about
semihypergroups and semihyperrings.

A mapping ◦ : H × H → P∗(H), where P∗(H) denotes the family of
all non-empty subsets of H, is called a hyperoperation on H. The couple
(H, ◦) is called a hypergroupoid. In the above definition, if A and B are two
non-empty subsets of H and x ∈ H, then we denote

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H,
x ◦ (y ◦ z) = (x ◦ y) ◦ z, that is⋃

u∈y◦z
x ◦ u =

⋃
v∈x◦y

v ◦ z.

A hypergroup is a semihypergroup (H, ◦) such that H◦x = x◦H = H for
all x ∈ H, which is called reproduction axiom. A canonical hypergroup [34]
is a non-empty set H endowed with an additive hyperoperation + : H×H →
P∗(H), satisfying the follwing properties: (1) x+ (y + z) = (x+ y) + z for
any x, y, z ∈ H; (2) x+ y = y + x for any x, y ∈ H; (3) There exists 0 ∈ H
such that 0 + x = x + 0 = x, for any x ∈ H; (4) For every x ∈ H, there
exists one and only one x′ ∈ H, such that 0 ∈ x+ x′; (we shall write −x for
x′ and we call it the opposite of x.) (5) z ∈ x + y implies that y ∈ −x + z
and x ∈ z − y, that is (H,+) is reversible. A Krasner hyperring [31] is an
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algebraic hypersructure (R,+, ·) which satisfies the following axioms: (1)
(R,+) is a canonical hypergroup; (2) (R, ·) is a semigroup having zero as a
bilaterally absorbing element, that is, x·0 = 0·x = 0; (3) The multiplication
· is distributive with respect to the hyperoperation +.

Definition 2.1. [41] A semihyperring is an algebraic hypersructure (R,+, ·)
which satisfies the following axioms:

(1) (R,+) is a commutative semihypergroup with a zero element 0 satis-
fying x+ 0 = 0 + x = {x}, that is, (i) For all x, y, z ∈ R, x+ (y+ z) =
(x+ y) + z, (ii) For all x, y ∈ R, x+ y = y+x, (iii) There exists 0 ∈ R
such that x+ 0 = 0 + x = {x} for all x ∈ R;

(2) (R, ·) is a semihypergroup;

(3) The multiplication · is distributive with respect to the hyperoperation
+, that is, x · (y+ z) = x · y+ x · z and (x+ y) · z = x · z + y · z for all
x, y, z ∈ R;

(4) The element 0 ∈ R is an absorbing element, that is, x · 0 = 0 · x = 0
for all x ∈ R.

A semihyperring R is called commutative if (R, ·) is a commutative semi-
hypergroup. A non-empty subset A of a semihyperring (R,+, ·) is called a
subsemihyperring of R if for all x, y ∈ A, x + y ⊆ A and x · y ⊆ A. A
non-empty subset I of a semihyperring (R,+, ·) is called a left (respectively
right) hyperideal of (R,+, ·) if for all x, y ∈ I, x + y ⊆ I and r · x ⊆ I for
all x ∈ I and r ∈ R (respectively x · r ⊆ I). A non-empty subset I of R is
called a hyperideal of R if it is both left and right hyperideal of R, that is,
x+ y ⊆ I, for all x, y ∈ I and x · r, r · x ⊆ I, for all x ∈ I and r ∈ R.

3 Ordered semihyperrings

First, we introduce the notion of ordered semihyperrings and present some
examples of them.

Definition 3.1. An ordered semihyperring (R,+, ·,≤) is a semihyperring
equipped with a partial order relation ≤ such that for all a, b, c ∈ R, we
have
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(1) a ≤ b implies a + c ≤ b + c, meaning that for any x ∈ a + c, there
exists y ∈ b+ c such that x ≤ y.

(2) a ≤ b and 0 ≤ c imply a · c ≤ b · c, meaning that for any x ∈ a · c,
there exists y ∈ b · c such that x ≤ y. The case c · a ≤ c · b is defined
similarly.

Semihyperrings are viewed as ordered semihyperrings under the equality
order relation. Indeed: Let (R,+, ·) be a semihyperring. Define the order
on R by ≤:= {(a, b) : a = b}. Then (R,+, ·,≤) is an ordered semihyperring.
An ordered semihyperring (R,+, ·,≤) is an ordered subsemihyperring of
(T,+, ·,≤) if R is a subsemihyperring of T and the order on R is the restric-
tion to R of the order on T . Let (R,+, ·) and (T,⊕,�) be semihyperrings.
A mapping ϕ : R→ T is said to be homomorphism if ϕ(x+y) ⊆ ϕ(x)⊕ϕ(y)
and ϕ(x · y) ⊆ ϕ(x) � ϕ(y). A homomorphism of ordered semihyperrings
ϕ : (R,+, ·,≤)→ (T,⊕,�,�) is a semihyperring homomorphism such that
for all a, b ∈ R, a ≤ b implies ϕ(a) � ϕ(b). The kernel of ϕ, kerϕ, is defined
by kerϕ = {x ∈ R : ϕ(x) = 0}.

In the following we present several examples of ordered semihyperrings
with different covering relations.

Example 3.2. Let R = {0, a, b, c} be a set with two hyperoperations ⊕ and
� as follows:

⊕ 0 a b c

0 0 a b c
a a a {0, a, b} {0, a, c}
b b {0, a, b} {0, b} {0, b, c}
c c {0, a, c} {0, b, c} {0, c}

� 0 a b c

0 0 0 0 0
a 0 0 0 0
b 0 0 0 {0, a}
c 0 0 {0, a} {0, b}

Then, (R,⊕,�) is a semihyperring [25]. We have (R,⊕,�,≤) is an ordered
semihyperring where the order relation ≤ is defined by:

≤ := {(0, 0), (a, a), (b, b), (c, c), (0, a), (0, b), (0, c), (a, b), (a, c), (b, c)}.

The covering relation and the figure of R are given by:

≺ = {(0, a), (a, b), (b, c)}.
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Example 3.3. Consider the semihyperring R = {0, a, b} with the hyperad-
dition ⊕ and the hypermultiplication � defined as follows:

⊕ 0 a b

0 0 a b
a a {0, a} R
b b R {0, b}

� 0 a b

0 0 0 0
a 0 {0, a} {0, b}
b 0 {0, b} {0, a}

Then, (R,⊕,�) is a semihyperring. We have (R,⊕,�,≤) is an ordered
semihyperring, where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (0, b)}.

b
0

bb
�
�
�@

@
@

ba

Example 3.4. Let R = {0, a, b, c} be a set with the hyperaddition ⊕ and
the multiplication � defined as follows:

⊕ 0 a b c

0 0 a b c
a a {a, b} b c
b b b {0, b} c
c c c c {0, c}

� 0 a b c

0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c
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Then, (R,⊕,�) is a semihyperring. We have (R,⊕,�,≤) is an ordered
semihyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (c, c), (0, a), (0, b), (0, c), (a, b), (a, c), (b, c)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (a, b), (b, c)}.

b0

ba

bb

bc

Hyperideals of semihyperrings play an important role in the structure
theory of ordered semihyperrings. In the following, we define hyperideals in
ordered semihyperrings and study some of their related properties.

Definition 3.5. Let (R,+, ·,≤) be an ordered semihyperring. A non-empty
subset I of R is called a left hyperideal of R if it satisfies the following
conditions:

(1) x+ y ⊆ I for all x, y ∈ I;

(2) r · x ⊆ I for all x ∈ I and r ∈ R;

(3) When x ∈ I and r ∈ R such that r ≤ x, imply that r ∈ I.

A right hyperideal of an ordered semihyperring R is defined in a similar
way. I is called a hyperideal of R if it is both left and right hyperideal of R.
It is clear that {0} and R are hyperideals of R. A left, right or hyperideal
I of an ordered semihyperring R is called proper if I 6= {0} and I 6= R. A
proper hyperideal I of R is called minimal if there is no proper hyperideal
K of R such that K ⊆ I. Equivalently, if for any hyperideal K of R such
that K ⊆ I, then we have K = {0} or K = I.



50 Bijan Davvaz and Saber Omidi

Example 3.6. Let (R,⊕,�,≤) be the ordered semihyperring defined as in
Example 3.4. It is easy to see that I = {0, a, b} is a right hyperideal of R,
but it is not a left hyperideal of R.

Lemma 3.7. Let (R,+, ·,≤) be an ordered Krasner hyperring and {Ik : k ∈
Λ} be a family of hyperideals of R. Then,

⋂
k∈Λ

Ik is a hyperideal of R.

Proof. Let x, y ∈
⋂
k∈Λ

Ik. Then x, y ∈ Ik for each k ∈ Λ. Since each Ik is

a hyperideal of R, it follows that x + y ⊆ Ik for all k ∈ Λ. Thus we have
x + y ⊆

⋂
k∈Λ

Ik. Now, let x ∈ R and a ∈
⋂
k∈Λ

Ik. Since a ∈
⋂
k∈Λ

Ik, we have

a ∈ Ik for all k ∈ Λ. Since each Ik is a hyperideal of R, it follows that
x · a ⊆ Ik for all k ∈ Λ. So, we have x · a ⊆

⋂
k∈Λ

Ik. If x ∈
⋂
k∈Λ

Ik, y ∈ R and

y ≤ x, then x ∈ Ik for each k ∈ Λ. Since Ik is a hyperideal of R, we obtain
y ∈ Ik for all k ∈ Λ. Thus y ∈

⋂
k∈Λ

Ik. This completes the proof.

Theorem 3.8. Let ϕ be a homomorphism from an ordered semihyperring
(R,+, ·,≤) into an ordered semihyperring (T,⊕,�,�). Then, ker ϕ is a
hyperideal of R.

Proof. Let x ∈ kerϕ. Then we have ϕ(x) = 0. Since ϕ is a homomorphism,
it follows that {ϕ(0)} = ϕ(0) + 0 = ϕ(0) ⊕ ϕ(x) ⊇ ϕ(0 + x) = ϕ({x}) =
{ϕ(x)}. This implies that ϕ(0) = ϕ(x) = 0. Thus we have 0 ∈ kerϕ. Since
0 ∈ kerϕ, it follows that kerϕ 6= ∅.

Let x1, x2 ∈ kerϕ. Then ϕ(x1) = 0 = ϕ(x2). Since ϕ is a homomor-
phism, it follows that ϕ(x1 + x2) ⊆ ϕ(x1) ⊕ ϕ(x2) = 0 ⊕ 0 = {0}. Hence
x1 + x2 ⊆ kerϕ. Now, let r ∈ R and x ∈ kerϕ. Then we have ϕ(x) = 0.
Since ϕ is a homomorphism, it follows that ϕ(r·x) ⊆ ϕ(r)�ϕ(x) = ϕ(r)�0 =
0. So, r·x ⊆ kerϕ. Similarly, we have x·r ⊆ kerϕ. Now, let x ∈ kerϕ, r ∈ R
and r ≤ x. Since ϕ is a homomorphism, it follows that ϕ(r) ≤ ϕ(x) = 0.
Thus ϕ(r) = 0. So, r ∈ kerϕ. This completes the proof.

Theorem 3.9. Let ϕ be a homomorphism from an ordered semihyperring
(R,+, ·,≤) into an ordered semihyperring (T,⊕,�,�). If I is a hyperideal
of T , then ϕ−1(I) = {a ∈ R : ϕ(a) ∈ I} is a hyperideal of R containing
kerϕ.
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Proof. Since 0 ∈ ϕ−1(I), it follows that ϕ−1(I) 6= ∅. Let a, b ∈ ϕ−1(I).
Then ϕ(a), ϕ(b) ∈ I. Since I is a hyperideal of T , we have ϕ(a + b) ⊆
ϕ(a) ⊕ ϕ(b) ⊆ I. Hence a + b ⊆ ϕ−1(I). Let x ∈ R and a ∈ ϕ−1(I).
Then ϕ(a) ∈ I. Since ϕ is a homomorphism, it follows that ϕ(x · a) ⊆
ϕ(x) � ϕ(a) ⊆ I. Thus x · a ∈ ϕ−1(I). Similarly, a · x ∈ ϕ−1(I). Now,
suppose that a ∈ ϕ−1(I) and r ∈ R such that r ≤ a. Then ϕ(a) ∈ I.
Since r ≤ a and ϕ is a homomorphism, we have ϕ(r) � ϕ(a). Since I is
a hyperideal of T , it follows that ϕ(r) ∈ I. So, r ∈ ϕ−1(I). This proves
that ϕ−1(I) is a hyperideal of R, as desired. Moreover, if x ∈ kerϕ, then
ϕ(x) = 0 ∈ I. Hence x ∈ ϕ−1(I). Therefore, kerϕ ⊆ ϕ−1(I).

4 Main results

Let A be a non-empty subset of an ordered semihyperring (R,+, ·,≤). Then
the subset {x ∈ R : x ≤ a for some a ∈ A} is denoted by (A]. For A = {a},
we write (a] instead of ({a}]. If A and B are non-empty subsets of R, then
we have

(1) A ⊆ (A];

(2) ((A]] = (A];

(3) (A] · (B] ⊆ (A ·B];

(4) ((A] · (B]] = (A ·B];

(5) If A ⊆ B, then (A] ⊆ (B].

It can be easily verified that the condition (3) in Definition 3.5 is equivalent
to (I] ⊆ I.

Let A be a non-empty subset of an ordered semihyperring R. The inter-
section of all hyperideals of R containing A, is the hyperideal of R generated
by A. A hyperideal generated by a non-empty subset A of R will be denoted
by 〈A〉. So,

⋂
{I | A ⊆ I and I is a hyperideal of R} = 〈A〉.

Definition 4.1. An element a in an ordered semihyperring R is called
regular if there exists an element x ∈ R such that a ≤ axa. An ordered
semihyperring R is called regular if each element of R is regular.

Equivalent definitions:
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(1) a ∈ (aRa], ∀a ∈ R.

(2) A ⊆ (ARA], ∀A ⊆ R.

Example 4.2. Let (R,⊕,�,≤) be the ordered semihyperring defined as in
Example 3.3. Now, it is easy to see that R is a regular ordered semihyper-
ring.

Theorem 4.3. Let I be a hyperideal of an ordered semihyperring
(R,+, ·,≤). Then (I] is a hyperideal of R generated by I.

Proof. Since I ⊆ (I], it follows that ∅ 6= (I]. Assume that x ∈ R and
a, b ∈ (I]. Then there exist r, s ∈ I such that a ≤ r and b ≤ s. Since R is
an ordered semihyperring, we obtain a+ b ≤ r + b and r + b ≤ r + s. Since
I is a hyperideal of R, we have a+ b ≤ r+ s ⊆ I. Hence, for any u ∈ a+ b,
there exists v ∈ I such that u ≤ v. Thus we have u ∈ (I]. So, a + b ⊆ (I].
Also, we have x · a ≤ x · r ⊆ I and a · x ≤ r · x ⊆ I. This implies that
x · a ⊆ (I] and a · x ⊆ (I]. Since I is a hyperideal of R, we have (I] ⊆ I. So,
((I]] ⊆ (I]. Hence (I] is a hyperideal of R. If A is a hyperideal of R such
that I ⊆ A, then (I] ⊆ (A] ⊆ A. So, (I] ⊆ A. This completes the proof.

We now prove the following lemma which is the crucial lemma in the
establishment of our main theorems.

Lemma 4.4. Let (R,+, ·,≤) be an ordered semihyperring. Then, the fol-
lowing propositions are true:

(1) (Ra] is a left hyperideal of R for all a ∈ R.

(2) (aR] is a right hyperideal of R for all a ∈ R.

Proof. (1): Let x, y ∈ (Ra]. Then x ≤ u and y ≤ v for some u, v ∈ Ra.
Since u, v ∈ Ra, we have u ∈ r · a and v ∈ s · a where r, s ∈ R. Since R is
an ordered semihyperring, we obtain x+ y ≤ u+ y and u+ y ≤ u+ v. So,
x + y ≤ u + v ⊆ r · a + s · a = (r + s) · a. Hence, for any w ∈ x + y, there
exists w′ ∈ (r + s) · a such that w ≤ w′ ∈ Ra. Thus we have x+ y ⊆ (Ra].
So, the first condition of the definition of left hyperideal is verified.

Let x ∈ (Ra] and r ∈ R. Since x ∈ (Ra], it follows that x ≤ b for
some b ∈ Ra. Since b ∈ Ra, we have b ∈ r′ · a where r′ ∈ R. Since R is
an ordered semihyperring and x ≤ b, we obtain r · x ≤ r · b. So, we have
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r · x ≤ r · b ⊆ r · (r′ · a) = (r · r′) · a ⊆ Ra. Hence, for any c ∈ r · x, there
exists t ∈ Ra such that c ≤ t. This means that r · x ⊆ (Ra], and so the
second condition of the definition of left hyperideal is verified.

Now, suppose that x ∈ (Ra] and y ∈ R such that y ≤ x. Since x ∈ (Ra],
it follows that x ≤ s for some s ∈ Ra. Since y ≤ x and x ≤ s, we obtain
y ≤ s. Since y ∈ R, y ≤ s and s ∈ Ra, we have y ∈ (Ra]. Hence (Ra] is a
left hyperideal of R, as desired.

(2): This proof is straightforward.

Definition 4.5. An ordered semihyperring (R,+, ·,≤) is said to be left
simple if the following conditions hold:

(1) {0} and R are the only left hyperideals of R;

(2) R ·R 6= {0}.

In the same way, we can define a right simple ordered semihyperring.

Example 4.6. Let (R,⊕,�,≤) be the ordered semihyperring defined as in
Example 3.4. We can see that R is a left simple ordered semihyperring.

Theorem 4.7. Let (R,+, ·,≤) be an ordered semihyperring. Then, the
following assertions hold:

(1) R is left simple if and only if (Ra] = R for all a ∈ R \ {0}.

(2) R is right simple if and only if (aR] = R for all a ∈ R \ {0}.

Proof. (1): Assume that R is a left simple ordered semihyperring and 0 6=
a ∈ R. By (1) of Lemma 4.4, (Ra] is a left hyperideal of R. Since R is a
left simple ordered semihyperring, we have (Ra] = R.

Conversely, suppose that (Ra] = R for all 0 6= a ∈ R. Let A be a left
hyperideal of R and 0 6= a ∈ A. By assumption, (Ra] = R. If r ∈ R, then
r ∈ (Ra]. So, r ≤ w for some w ∈ Ra. Thus w ∈ x · a where x ∈ R. Since
A is a left hyperideal of R, we have r ≤ w ∈ x · a ⊆ A. So, r ∈ A. Thus
R ⊆ A and so A = R. Therefore, R is a left simple ordered semihyperring.

(2): This proof is straightforward.

In the following, we introduce the notion of simple ordered semihyper-
rings. Also, we characterize this type of ordered semihyperrings in terms of
hyperideals.
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Definition 4.8. An ordered semihyperring (R,+, ·,≤) is said to be simple
if the following conditions hold:

(1) {0} and R are the only hyperideals of R;

(2) R ·R 6= {0}.

Theorem 4.9. If R is a left (respectively right) simple ordered semihyper-
ring, then R is a simple ordered semihyperring.

Proof. Assume that R is a left simple ordered semihyperring. Then {0} and
R are the only left hyperideals of R. If A is a hyperideal of R, then A is
a left hyperideal of R. So, we have A = {0} or A = R. Therefore, R is
a simple ordered semihyperring. Similarly, if R is a right simple ordered
semihyperring, then R is a simple ordered semihyperring.

A subsemihyperring T of R is called simple if T · T 6= {0} and for every
non-zero hyperideal I of T , we have I = T . In fact, a subsemihyperring T
of R is called simple if the ordered semihyperring (T,+, ·,≤) is simple.

Lemma 4.10. Let (R,+, ·,≤) be an ordered semihyperring. Then, the fol-
lowing statements hold:

(1) If I is a left hyperideal of R and T is a left simple subsemihyperring
of R such that T ∩ I 6= {0}, then we have T ⊆ I.

(2) If R is left and right simple, then it is regular.

Proof. (1): Suppose that 0 6= x ∈ I∩T . Since T is left simple and 0 6= x ∈ T ,
so by Theorem 4.7, we have (Tx] = T . Therefore, we have T = (Tx] ⊆
(TI] ⊆ (RI] ⊆ (I] = I.

(2): Let a ∈ R. By Theorem 4.7, we have a ∈ R = (aR] = (Ra]. So,
a ∈ R = (aR] = (a · (R · a]] ⊆ (a · R · a]. Thus R is a regular ordered
semihyperring.

Lajos in [32] studied the notion of left (respectively right) duo rings. In
the following, we define left (respectively. right) duo ordered semihyper-
rings.
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Definition 4.11. An ordered semihyperring (R,+, ·,≤) is said to be left
(respectively right) duo if every left (respectively right) hyperideal of R is
a hyperideal of R. An ordered semihyperring R is duo if it is both left and
right duo.

Obviously, every left (respectively right) simple ordered semihyperring
R is a left (respectively right) duo ordered semihyperring, but the converse
is not true in general.

Example 4.12. Let R = {0, a, b, c} be a set with two hyperoperations ⊕
and � as follows:

⊕ 0 a b c

0 0 a b c
a a a a b
b b a {0, b} {0, b, c}
c c a {0, b, c} {0, c}

� 0 a b c

0 0 0 0 0
a 0 a {0, b} 0
b 0 0 0 0
c 0 {0, c} 0 0

Then, (R,⊕,�) is a semihyperring [25]. We have (R,⊕,�,≤) is an ordered
semihyperring where the order relation ≤ is defined by:

≤ := {(0, 0), (a, a), (b, b), (c, c), (0, a), (0, b), (0, c), (b, a), (c, a)}.

The covering relation and the figure of R are given by:

≺ = {(0, b), (0, c), (b, a), (c, a)}.

b
0

b c
�
�
�@

@
@

bb

ba
�
�
�

@
@
@

{0}, {0, b}, {0, c}, {0, b, c} and R are left hyperideals of R. It is easy to
see that R is a left duo ordered semihyperring, but it is not a left simple
ordered semihyperring.
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An ordered semiring is a semiring R equipped with a partial order ≤ such
that the operations are monotonic and 0 is the least element of R. In [18],
Gan and Jiang studied some properties of ideals in ordered semirings. Note
that every ordered semiring with zero is an ordered semihyperring. In [26],
Iseki introduced the notion of quasi-ideal for a semiring without zero. By a
quasi-ideal of a semiring R we mean an additive subsemigroup Q of R such
that RQ ∩ QR ⊆ Q. A comprehensive review of the theory of quasi-ideals
appears in [38]. Our aim in the following is to introduce and study the
notion of a quasi-hyperideal of ordered semihyperrings.

Definition 4.13. A non-empty subset Q of an ordered semihyperring
(R,+, ·,≤) is called a quasi-hyperideal of R if the following conditions hold:

(1) Q+Q ⊆ Q;

(2) (Q ·R) ∩ (R ·Q) ⊆ Q;

(3) When x ∈ Q and y ∈ R such that y ≤ x, imply that y ∈ Q.

A quasi-hyperideal Q of R is said to be minimal if it contains no non-zero
proper quasi-hyperideal of R. Every left and right hyperideal of an ordered
semihyperring R is a quasi-hyperideal of R. The converse is not true, in
general, that is, a quasi-hyperideal may not be a left or a right hyperideal
of R.

Example 4.14. Let R = {0, a, b} be a set with two hyperoperations ⊕ and
� as follows:

⊕ 0 a b

0 0 a b
a a a {a, b}
b b {a, b} b

� 0 a b

0 0 0 0
a 0 {0, a} {0, a}
b 0 {0, b} {0, b}

Then, (R,⊕,�) is a semihyperring [3]. We have (R,⊕,�,≤) is an ordered
semihyperring where the order relation ≤ is defined by:

≤:= {(0, 0), (a, a), (b, b), (0, a), (0, b), (a, b)}.

The covering relation and the figure of R are given by:

≺= {(0, a), (a, b)}.
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Now, it is easy to see that Q = {0, a} is a quasi-hyperideal of R, but it is
not a left hyperideal of R.

In the following, we define quasi-simple ordered semihyperrings and in-
vestigate some of their related properties.

Definition 4.15. An ordered semihyperring (R,+, ·,≤) is said to be quasi-
simple if R has no non-zero proper quasi-hyperideal.

Theorem 4.16. Let Q be a quasi-hyperideal of an ordered semihyperring
R. If Q is a quasi-simple ordered semihyperring, then Q is a minimal quasi-
hyperideal of R.

Proof. Let Q be a quasi-hyperideal of R. Then, Q ·Q ⊆ R ·Q and Q ·Q ⊆ Q ·
R. Since Q is a quasi-hyperideal of R, it follows that Q·Q ⊆ R·Q∩Q·R ⊆ Q.
Hence Q is a subhyperring of R. Let Q′ be a non-zero quasi-hyperideal of
R such that Q′ ⊆ Q. Then (Q · Q′) ∩ (Q′ · Q) ⊆ (R · Q′) ∩ (Q′ · R) ⊆ Q′.
Hence Q′ is a non-zero quasi-hyperideal of Q. Since Q is a quasi-simple
ordered semihyperring, it follows that Q′ = Q. Therefore, Q is a minimal
quasi-hyperideal of R.

Theorem 4.17. Let (R,+, ·,≤) be an ordered semihyperring. Then R is a
quasi-simple ordered semihyperring if and only if (Ra] ∩ (aR] = R for all
a ∈ R \ {0}.

Proof. Assume that R is a quasi-simple ordered semihyperring. By (1) of
Lemma 4.4, (Ra] is a left hyperideal of R. Similarly, (aR] is a right hyper-
ideal of R. It can be easily verified that (Ra] ∩ (aR] is a quasi-hyperideal
of R. Also, (Ra] ⊆ (R] = R and (aR] ⊆ (R] = R imply (Ra] ∩ (aR] ⊆ R.
Since R is quasi-simple, we obtain R = (Ra] ∩ (aR].
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Conversely, suppose that (Ra] ∩ (aR] = R for all a ∈ R \ {0}. Let
Q be a non-zero quasi-hyperideal of R. For any 0 6= q ∈ Q, we have
R = (Rq] ∩ (qR] ⊆ (RQ] ∩ (QR] ⊆ Q So, R ⊆ Q. Thus R = Q. Therefore,
R is a quasi-simple ordered semihyperring.

Good and Hughes [21] introduced the notion of bi-ideals of a semigroup
as early as 1952. Later, bi-ideals of ordered semigroups were studied by
many authors, for example, see [27, 30, 43]. By a bi-ideal we mean a sub-
semigroup A of a semigroup (S, ·) such that A · S · A ⊆ A. A subset A of
a ring (R,+, ·) is called a bi-ideal [35] of R if: (1) A is a subring of R; (2)
A ·R ·A ⊆ A. In the following, we introduce the notion of bi-hyperideals of
ordered semihyperrings and provide some related results.

Definition 4.18. Let (R,+, ·,≤) be an ordered semihyperring. A non-
empty subset A of R is called a bi-hyperideal of R if it satisfies:

(1) A+A ⊆ A and A ·A ⊆ A;

(2) A ·R ·A ⊆ A;

(3) When x ∈ A and y ∈ R such that y ≤ x, imply that y ∈ A.

Definition 4.19. Let (R,+, ·,≤) be an ordered semihyperring. A non-zero
bi-hyperideal A of R is called a minimal bi-hyperideal of R if A does not
properly contain any non-zero bi-hyperideal.

The remainder of this paper focusses on B-simple ordered semihyper-
rings.

Definition 4.20. An ordered semihyperring (R,+, ·,≤) is said to be B-
simple if the following conditions hold:

(1) R has no non-zero proper bi-hyperideals;

(2) R ·R 6= {0}.

Theorem 4.21. Let A be a bi-hyperideal of an ordered semihyperring
(R,+, ·,≤). Then, (uAv] is a bi-hyperideal of R for every u, v ∈ R. In
particular, (uRv] is a bi-hyperideal of R for every u, v ∈ R.
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Proof. Suppose that x, y ∈ (uAv] and r ∈ R. Then x ≤ s and y ≤ t for
some s, t ∈ uAv. So, there exist p, q ∈ A such that s ∈ upv and t ∈ uqv.
Since R is an ordered semihyperring and A is a bi-hyperideal of R, we have
x ·y ≤ s · t ⊆ (upv) · (uqv) = u(p(v ·u)q)v ⊆ uAv. So, for any k ∈ x ·y, there
exists l ∈ uAv such that k ≤ l. This means that x · y ⊆ (uAv]. Similarly,
x + y ≤ s + t ⊆ upv + uqv = u(p + q)v ⊆ uAv. Thus x + y ⊆ (uAv].
So, the first condition of the definition of bi-hyperideal is verified. Also,
x ·r ·y ≤ s ·r · t ⊆ (upv) ·r · (uqv) = u((pv) ·r · (uq))v = u(p · (vru) ·q)v. Since
A is a bi-hyperideal of R, we get p · (vru) · q ⊆ A ·R ·A ⊆ A. Hence, for any
a ∈ x ·r ·y, there exists b ∈ uAv such that a ≤ b. Thus x ·r ·y ⊆ (uAv]. This
means that (uAv] · R · (uAv] ⊆ (uAv], and so the second condition of the
definition of bi-hyperideal is verified. Now, suppose that x ∈ (uAv], y ∈ R
and y ≤ x. Then, x ≤ w for some w ∈ uAv. Since ≤ is transitive, it follows
that y ≤ w for some w ∈ uAv. This implies that y ∈ (uAv]. Therefore,
(uAv] is a bi-hyperideal of R. Since R is a bi-hyperideal of itself, (uRv] is
a bi-hyperideal of R.

Corollary 4.22. Let (R,+, ·,≤) be an ordered semihyperring. Then, the
following conditions are equivalent:

(1) R is B-simple.

(2) (uRu] = R for all u ∈ R \ {0}.

(3) R is a left and right simple ordered semihyperring.

Proof. (1) ⇒ (2): Assume that (1) holds. By Theorem 4.21, (uRu] is a
bi-hyperideal of R for all u ∈ R \ {0}. Since R is B-simple, we obtain
(uRu] = R for all u ∈ R \ {0}.

(2) ⇒ (3): It is easy to see that (uRu] ⊆ (Ru] ⊆ (R] = R and (uRu] ⊆
(uR] ⊆ (R] = R. By assumption, we get (Ru] = R and (uR] = R for all
u ∈ R \ {0}. By Theorem 4.7, R is left and right simple.

(3)⇒ (1): Assume that (3) holds. Let A be a non-zero bi-hyperideal of
R. By assumption, we have (aR] = R and (R] = R for all a ∈ A\{0}. Since
A is a bi-hyperideal of R, we obtain R = (aR] = (a(Ra]] ⊆ ((a](Ra]] =
(aRa] ⊆ (ARA] ⊆ (A] ⊆ A. Thus we have R = A. This completes the
proof.
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Corollary 4.23. Let (R,+, ·,≤) be an ordered semihyperring. If I is a
minimal bi-hyperideal of R and J a bi-hyperideal of R, then I = (uJv] for
every u, v ∈ I.

Proof. By Theorem 4.21, (uJv] is a bi-hyperideal of R. Since I is a minimal
bi-hyperideal of R and (uJv] ⊆ (IJI] ⊆ (IRI] ⊆ (I] ⊆ I, we obtain (uJv] =
I.
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