Basic notions and properties of ordered semihyperrings

Document Type: Research Paper

Authors

Department of Mathematics, Yazd University, Yazd, Iran.

Abstract

In this paper, we introduce the concept of semihyperring $(R,+,\cdot)$ together with a suitable partial order $\le$. Moreover, we introduce and study hyperideals in ordered semihyperrings. Simple ordered semihyperrings are defined and its characterizations are obtained. Finally, we study some properties of quasi-simple and $B$-simple ordered semihyperrings.

Keywords


[1] N.G. Alimov, On ordered semigroups, Izvestiya Akad. Nauk SSSR. 14 (1950), 569-
576.
[2] R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math.
Sci. Cryptogr. 10(1) (2007), 41-54.
[3] A. Asokkumar, Class of semihyperrings from partitions of a set, Ratio Math. 25
(2013), 3-14.
[4] M. Bakhshi and R. A. Borzooei, Ordered polygroups, Ratio Math. 24 (2013), 31-40.
[5] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semihypergroups,
Ital. J. Pure Appl. Math. 33 (2014), 425-432.
[6] J. Chvalina, “Commutative hypergroups in the sence of Marty and ordered sets”
Proceedings of the Summer School in General Algebra and Ordered Sets, Olomouck,
1994, 19-30.
[7] J. Chvalina and J. Moucka, Hypergroups determined by orderings with regular endo-
morphism monoids, Ital. J. Pure Appl. Math. 16 (2004), 227-242.
[8] A.H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64
(1958), 305-316.
[9] P. Corsini, “Prolegomena of Hypergroup Theory”, Second edition, Aviani Editore,
Italy, 1993.
[10] P. Corsini and V. Leoreanu, “Applications of Hyperstructure Theory” Adv. Math.,
Kluwer Academic Publishers, Dordrecht, 2003.
[11] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math. 35(3)
(2004), 321-331.
[12] B. Davvaz, Rings derived from semihyperrings, Algebras Groups Geom. 20 (2003),
245-252.
[13] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays. Math.
Sci. Soc. 23(2) (2000), 53-58.
[14] B. Davvaz, “Polygroup Theory and Related Systems”, World scientific publishing
Co. Pte. Ltd., Hackensack, NJ, 2013.
[15] B. Davvaz and V. Leoreanu-Fotea, “Hyperring Theory and Applications”, Interna-
tional Academic Press, Palm Harbor, USA, 2007.
[16] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihy-
pergroups and ordered semigroups by using pseudoorder, European J. Combin. 44
(2015), 208-217.
[17] L. Fuchs, “Partially Ordered Algebraic Systems”, Pergamon Press, New York, 1963.
[18] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res.
Exposition 31(6) (2011), 989-996.
[19] L. Gillman and M. Jerison, “Rings of Continuous Functions”, Van Nostrand Com-
pany, Inc., Princeton, 1960.
[20] J.S. Golan, “Semirings and Their Applications”, Kluwer Academic Publishers, Dor-
drecht, 1999.
[21] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math.
Soc. 58 (1952), 624-625.
[22] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest
Sci. Bull. Ser. A Appl. Math. Phys. 73(2) (2011), 85-96.
[23] S. Hoskova, Representation of quasi-order hypergroups, Glob. J. Pure Appl. Math.
1 (2005), 173-176.
[24] S. Hoskova, Upper order hypergroups as a reflective subcategory of subquasiorder
hypergroups, Ital. J. Pure Appl. Math. 20 (2006), 215-222.
[25] X. Huang, Y. Yin and J. Zhan, Characterizations of semihyperrings by their (? γ ,? γ ∨
q δ )-fuzzy hyperideals, J. Appl. Math. 2013 (2013), 13 pages.
[26] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958), 79-84.
[27] N. Kehayopulu, Note on bi-ideals in ordered semigroups, Pure Math. Appl. 6 (1955),
333-344.
[28] N. Kehayopulu and M. Tsingelis, On subdirectly irreducible ordered semigroups,
Semigroup Forum 50 (1995), 161-177.
[29] N. Kehayopulu and M. Tsingelis, Pseudoorder in ordered semigroups, Semigroup
Forum 50 (1995), 389-392.
[30] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups
and ordered groups, J. Math. Sci. 112(4) (2002), 4353-4354.
[31] M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. Math. Sci. 6(2)
(1983), 307-312.
[32] S. Lajos, On regular duo rings, Proc. Japan Acad. 45 (1969), 157-158.
[33] F. Marty, Sur une generalisation de la notion de groupe, 8 iem Congress Math. Scan-
dinaves, Stockholm (1934), 45-49.
[34] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972), 165-179.
[35] H. J. L. Roux, A note on prime and semiprime bi-ideals, Kyungpook Math. J. 35
(1995), 243-247.
[36] T. Saito, Regular elements in an ordered semigroup, Pacific J. Math. 13 (1963),
263-295.
[37] S. Spartalis, A class of hyperrings, Rivista Mat. Pura Appl. 4 (1989), 56-64.
[38] O. Steinfeld, “Quasi-ideals in rings and semigroups”, Akademiai Kiado, Budapest,
1978.
[39] D. Stratigopoulos, Hyperanneaux, hypercorps, hypermodules, hyperspaces vectoriels
et leurs proprietes elementaires, C. R. Acad. Sci., Paris A (269) (1969), 489-492.
[40] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition
does not hold, Bull. Amer. Math. Soc. 40 (1934), 914-920.
[41] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont-
Ferrand II Math. 26 (1990), 21-29.
[42] T. Vougiouklis, “Hyperstructures and Their Representations”, Hadronic Press Inc.,
Florida, 1994.
[43] X.Z.Xu and J.Y.Ma, A note on minimal bi-ideals in ordered semigroups, Southeast
Asian Bull. Math. 27 (2003), 149-154.