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A cottage industry of lax extensions

Dirk Hofmann, Gavin J. Seal

Abstract. In this work, we describe an adjunction between the comma cat-
egory of Set-based monads under the V -powerset monad and the category of
associative lax extensions of Set-based monads to the category of V -relations.
In the process, we give a general construction of the Kleisli extension of a
monad to the category of V -relations.

1 Introduction

In [1], Barr introduced the concept of a lax extension of a monad by lifting
the ultrafilter monad β on Set to a lax monad β on the category Rel of
relations. The category of lax algebras for β were shown to form the category
Top of topological spaces and continuous maps. This concept was developed
in several directions, two of which provide the basis for the current work:
in [3] and [5], Clementino, Hofmann and Tholen allowed for lax extensions
to the category V -Rel of relations valued in a quantale V , and in [10], Seal
proposed an alternate construction of a lax extension, that, when applied
to the filter monad F, returned Top again as category of lax algebras. In
particular, contrarily to the one-to-one correspondence between monads and

Keywords: Monad, lax extension, quantale, enriched category.
Mathematics Subject Classification [2010]: 18C20, 18D20, 18D35.
Received: 1 July 2015, Accepted: 30 July 2015
ISSN Print: 2345-5853 Online: 2345-5861
© Shahid Beheshti University

113



114 Dirk Hofmann, Gavin J. Seal

categories of algebras, different monads — equipped with appropriate lax
extensions — can yield isomorphic categories of lax algebras.

The adjunction presented here as Theorem 5.7 sheds some light on this
situation by having a family of monads and their lax extensions correspond
to an essentially unique representative. A central ingredient of this adjunc-
tion is the discrete presheaf monad PV on Set (also called the V -powerset
monad) that extends the powerset monad P = P2 from the base 2 to a
general quantale V . Indeed, the Kleisli category of this monad is the cate-
gory V -Rel of V -relations — whose opposite category is used to laxly extend
Set-based monads via the basic adjunction

(−)◦ a V -Rel(−, 1) : V -Relop −→ Set

(see Subsections 2.5, 2.6, 3.1 and Example 3.6). The category of “neigh-
borhood monads”, that is, of monads that play the role of the filter monad
in our general context, is the comma category (PV ↓MndSet) of monads on
Set under PV . The category V -LaxExt of “convergence monads”, that is,
of monads that convey notions of convergence, similarly to the ultrafilter
monad mentioned above, has as its objects monads T on Set equipped with
an associative lax extension T̂ to V -Rel. The comma category (PV ↓MndSet)
then appears as a full reflective subcategory of V -LaxExt via the adjunction

F a G : (PV ↓MndSet) −→ V -LaxExt

of Theorem 5.7. The reflector F takes a pair (T, T̂) to the monad induced
by the adjunction

(−)] a (T, V )-URel(−, 1) : (T, V )-URelop −→ Set,

where (T, V )-URel is the category of unitary (T, V )-relations associated to
the associative lax extension T̂ of T to V -Rel (Proposition 3.5). The embed-
ding functor G sends a monad morphism PV −→ T to the pair (T, Ť), where
Ť is the Kleisli extension of T to V -Rel (Subsection 4.4); this lax extension
generalizes the construction described in [10] for the V = 2 case.

Let us make two remarks on the context of our article. First, in [7],
Lowen and Vroegrijk show that the category App of approach spaces and
non-expansive maps can be presented as lax algebras for a “prime functional
ideal” monad laxly extended to Rel = 2-Rel, contrasting the result of [3],
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where the ultrafilter monad with a lax extension to V -Rel was used to obtain
a lax-algebraic description of App (with V = P+ the extended non-negative
real half-line). These results, generalized in [2, Corollary IV.3.2.3], stem
from a different point of view as the one taken here, as they allow for a
“change-base-base”, namely passing from V = P+ to V = 2 by modifying the
underlying monad, whereas the current work fixes the quantale V . Second,
the study of lax extensions is rooted in topology and order theory, but
current trends show that it is in no way limited to these fields, as the cited
references show, but also [6] and [8].

In this article, we use the conventions and terminology of [2] to which
the reader is referred in case of doubt. In particular, we use the term
“order” for what is elsewhere known as “preorder” (that is, a reflexive and
transitive relation, not necessarily symmetric). Because our categories may
be variously enriched, we use the term “ordered category” and “monotone
functor” rather than their “2-” counterparts to designate the categories and
functors enriched in Ord, the category of ordered sets and monotone maps.

2 The V -powerset monad

In this section, we recall the basic definitions and notations used in this
paper, mainly pertaining to categories enriched in quantales.

2.1 Quantales

A quantale V = (V,⊗, k) (more precisely, a unital quantale) is a complete
lattice equipped with an associative binary operation ⊗, its tensor, that
preserves suprema in each variable:

a⊗
∨
i∈I

bi =
∨
i∈I

(a⊗ bi) and
∨
i∈I

ai ⊗ b =
∨
i∈I

(ai ⊗ b)

for all a, ai, b, bi ∈ V (i ∈ I), and has a neutral element k. A lax homomor-
phism of quantales f : (W,⊗, l) −→ (V,⊗, k) is a monotone map f : W −→ V
satisfying

f(a)⊗ f(b) ≤ f(a⊗ b) and k ≤ f(l)

for all a, b ∈ V . A map f : W −→ V is a homomorphism of quantales
if it is a sup-map and preserves the tensor and neutral elements (that is,
f(a)⊗ f(b) = f(a⊗ b) and k = f(l)).
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Given a ∈ V , the sup-map (−)⊗ a is left adjoint to an inf-map ((−)�
a) : V −→ V that is uniquely determined by

(v ⊗ a) ≤ b ⇐⇒ v ≤ (b� a)

for all v, b ∈ V ; hence, (b� a) =
∨{v ∈ V | v ⊗ a ≤ b}. Symmetrically, the

sup-map a ⊗ (−) is left adjoint to an inf-map (a � (−)) : V −→ V that is
uniquely determined by

(a⊗ v) ≤ b ⇐⇒ v ≤ (a� b).

In the case where the tensor of V is commutative, ((−)� a) and (a� (−))
coincide, and either of the two notations may be used.

Example 2.1.

(1) The two-element chain 2 = {0, 1} with ⊗ the binary infimum, and
k = > is a quantale. Here, (b � a) is the Boolean truth value of
the statement a ≤ b. For any other quantale V = (V,⊗, k), there is
a canonical homomorphism 2 −→ V that necessarily sends 0 to the
bottom element ⊥ of V , and 1 to k.

(2) The unit interval I = [0, 1] with its natural order, ⊗ given by multi-
plication, and neutral element k = 1 is a quantale. In this case,

(b� a) = b� a :=
∨
{v ∈ [0, 1] | v · a ≤ b},

so that b � a = b/a if b < a, and b � a = 1 otherwise. This
quantale is isomorphic to the extended non-negative reals quantale
P+ = ([0,∞]co,+, 0) via the monotone bijection f : [0, 1] −→ [0,∞]co

that sends 0 to ∞, and x ∈ (0, 1] to − log(x) (see for example [4];
here, [0,∞]co denotes the set of extended non-negative reals equipped
with the order opposite to the natural order). The embedding 2 −→ I
is a homorphism of quantales (that is, a sup-map that preserves the
tensor and neutral element).

2.2 V -relations

Given a quantale V = (V,⊗, k), a V -relation r : X −→7 Y from a set X to
a set Y is a Set-map r : X × Y −→ V . A V -relation r : X −→7 Y can be
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composed with a V -relation s : Y −→7 Z via

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z)

(for all x ∈ X, z ∈ Z) to yield a V -relation s · r : X −→7 Z. The identity
on a set X for this composition is the V -relation 1X : X −→7 X that sends
(x, y) to k if x = y and to ⊥ otherwise (where ⊥ is the least element of V ).
Sets and V -relations between them form the category

V -Rel.

Example 2.2.

(1) The category 2-Rel is isomorphic to the category Rel of sets with or-
dinary relations as morphisms.

(2) The category I-Rel is isomorphic to the category NRel = P+-Rel of
numerical relations.

2.3 Ordered V -relations

The hom-set V -Rel(X,Y ) inherits the pointwise order induced by V : given
r : X −→7 Y and r′ : X −→7 Y , we have

r ≤ r′ ⇐⇒ ∀(x, y) ∈ X × Y (r(x, y) ≤ r′(x, y)).

Since the order on V is complete, so is the pointwise order on V -Rel(X,Y ),
and since the tensor in V distributes over suprema, V -relational composition
preserves suprema in each variable:

(∨
i∈I

si
)
· r =

∨
i∈I

(si · r) and t ·
(∨

i∈I
si
)

=
∨
i∈I

(t · si)

for V -relations r : X −→7 Y , si : Y −→7 Z (i ∈ I), and t : Z −→7 W . In partic-
ular, given a V -relation r : X −→7 Y , the sup-map (−) · r : V -Rel(Y,Z) −→
V -Rel(X,Z) is left adjoint to an inf-map (−)� r : V -Rel(X,Z) −→ V -Rel(Y, Z)
defined by

(s� r)(y, z) =
∧

x∈X
(r(x, y)� s(x, z)),
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for all V -relations s : X −→7 Z, and y ∈ Y , z ∈ Z. Diagrammatically, s� r
is the extension in V -Rel of s along r:

X
r //�

_s
��

Y

Z
~~

=
s� r

≥

Symmetrically, for a V -relation t : Z −→7 W , the sup-map t·(−) : V -Rel(Y,Z) −→
V -Rel(Y,W ) is left adjoint to an inf-map (t � (−)) : V -Rel(Y,W ) −→
V -Rel(Y, Z) given by

(t� s)(y, z) =
∧

w∈W
(s(y, w)� t(z, w)),

for all V -relations s : Y −→7 W , and y ∈ Y , z ∈ Z. Diagrammatically, t� s
is the lifting in V -Rel of s along t:

Y

_s
��

�t� s

  
W �oo

t
Z

≥

2.4 Opposite V -relations

For a V -relation r : X −→7 Y , the opposite V -relation is r◦ : Y −→7 X is
defined by

r◦(y, x) = r(x, y)

for all x ∈ X, y ∈ Y . Involution preserves the order on the hom-sets:

r ≤ s =⇒ r◦ ≤ s◦

(for all V -relations r, s : X −→7 Y ).

2.5 Maps as V -relations

There is a functor from Set to V -Rel that interprets the graph of a Set-map
f : X −→ Y as the V -relation f◦ : X −→7 Y given by

f◦(x, y) =

{
k if f(x) = y,

⊥ otherwise.
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To keep notations simple, we write f : X −→ Y instead of f◦ : X −→7 Y to
designate a V -relation induced by a map; in particular, we write f◦ instead
of (f◦)◦. There is therefore a functor (−)◦ : Set −→ V -Rel, and a functor
(−)◦ : Set −→ V -Relop obtained by sending a map f to f◦ = (f◦)◦.

Note that without any commutativity assumption on V , composition
of V -relations is not necessarily compatible with the involution (−)◦, but
whiskering by Set-maps is:

(h · s · f)◦ = f◦ · s◦ · h◦

for all V -relations s : Y −→ Z, and Set-maps f : X −→ Y , h : Z −→W .

2.6 The V -powerset monad

Any V -relation r : X −→7 Y yields a map rPV : V Y −→ V X that sends
s : Y −→ V to rPV (s) : X −→ V defined by

rPV (s)(x) =
∨

y∈Y
r(x, y)⊗ s(y)

for all x ∈ X. This correspondence describes a functor V -Relop −→ Set that
is right adjoint to (−)◦ : Set −→ V -Relop, and determines the V -powerset
monad PV = (PV , µ, η) on Set, where

PVX = V X , PV f(r)(y) =
∨

x∈f−1(y)
r(x),

µX(R)(x) =
∨

s∈V X
s(x)⊗R(s), ηX(x)(x′) = 1X(x, x′),

for all x, x′ ∈ X, y ∈ Y , and maps f : X −→ Y , r : X −→ V , R : V X −→ V .
The 2-monad P2 is easily seen to be isomorphic to the powerset monad P.

The monad associated to the left adjoint functor (−)◦ : Set −→ V -Rel is
of course isomorphic to PV , but our focus in the rest of this article will be
on the adjunction with V -Relop (see 3.6).

2.7 V -categories

When V = (V,⊗, k) is a quantale, a small V -category (X, a) is a set X with
a transitive and reflexive V -relation a, so that

a · a ≤ a and 1X ≤ a,
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or equivalently,

a(x, y)⊗ a(y, z) ≤ a(x, z) and k ≤ a(x, x),

for all x, y, z ∈ X. A V -functor f : (X, a) −→ (Y, b) of V -categories is a map
f : X −→ Y with

a · f◦ ≤ f◦ · b,
or, in pointwise notation,

a(x, y) ≤ b(f(x), f(y))

for all x, y, z ∈ X. We denote by

V -Cat

the category of small V -categories and their V -functors. The induced order
on a V -category (X, a) is defined by

x ≤ y ⇐⇒ k ≤ a(x, y)

(for all x, y ∈ X); with the hom-sets V -Cat(X,Y ) equipped with the induced
pointwise order:

f ≤ g ⇐⇒ ∀x ∈ X (f(x) ≤ g(x))

(for all V -functors f, g : X −→ Y ), V -Cat is an ordered category.

2.8 V -modules

Let V be a quantale, and (X, a), (Y.b) small V -categories. A V -relation
r : X −→7 Y is a V -module if

r · a ≤ r and b · r ≤ r.

Since the reverse inequalities always hold, these are in fact equalities:

r · a = r and b · r = r.

Modules compose as V -relations, and a : (X, a) −→7 (X, a) serves as an
identity morphism in the category

V -Mod
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whose objects are V -categories and morphisms are V -modules. This cate-
gory is ordered, with the order inherited from V -Rel; in fact, V -Mod is a
quantaloid, with suprema in its hom-sets formed as in V -Rel; similarly, ad-
joints to the composition maps (as described in 2.3). By sending a V -module
to its underlying V -relation, one obtains a lax functor

V -Mod −→ V -Rel

that preserves composition, but in general only preserves the identity laxly
since 1X ≤ a for any V -category structure a : X −→7 X.

2.9 Maps in V -Mod

For a V -functor f : (X, a) −→ (Y, b), one defines a V -module f∗ : (Y, b) −→7
(X, a) by

f∗ := f◦ · b,
that is, f∗(y, x) = b(y, f(x)) for all x ∈ X, y ∈ Y . This operation defines a
monotone functor

(−)∗ : V -Cat −→ V -Modop.

In particular, 1(X,a) = a = 1∗X .

3 The (T, V )-powerset monad

In this section, we recall how a quantale V and a monad T on Set can give
rise to a monad ≯ that incorporates both structures.

3.1 Associative lax extensions

A lax extension of a monad T = (T,m, e) on Set to V -Rel is a lax functor
T̂ : V -Rel −→ V -Rel that extends T laxly, and such that m◦ : T̂ −→ T̂ T̂ and
e◦ : 1V -Rel −→ T̂ are lax natural transformations. Equivalently, T̂ : V -Rel −→
V -Rel is given by functions

T̂X,Y : V -Rel(X,Y ) −→ V -Rel(TX, TY )

for all sets X,Y (with T̂X,Y simply written as T̂ ), such that
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1. r ≤ r′ =⇒ T̂ r ≤ T̂ r′,

2. (Tf)◦ ≤ T̂ (f◦),

3. T̂ (f◦ · r) = (Tf)◦ · T̂ r,

4. T̂ s · T̂ r ≤ T̂ (s · r),

5. T̂ T̂ r ·m◦X ≤ m◦Y · T̂ r,

6. r · e◦X ≤ e◦Y · T̂ r,

for all sets X,Y, Z, V -relations r, r′ : X −→7 Y , s : Y −→7 Z, and maps f :
Z −→ Y . The lax extension is associative, if the inequalities in conditions (4)
and (5) are equalities, that is, if T̂ preserves composition of V -relations and
m◦ : T̂ T̂ −→7 T̂ is a natural transformation.

Example 3.1.

(1) An associative lax extension Î of the identity monad I on Set to V -Rel
is given by the identity monad on V -Rel.

(2) An associative lax extension of the ultrafilter monad U on Set to V -Rel
is given by the lax functor Û : V -Rel −→ V -Rel defined by

Ûr(x , y) =
∧

A∈x ,B∈y

∨
x∈A,y∈B

r(x, y)

for all ultrafilters x ∈ UX and y ∈ UY .

Remark 3.2. The definition of a lax extension T̂ of T to V -Rel given above
is equivalent to the one given in [2, Section III.1]. In particular, T̂ is a lax
functor, and e◦ : 1V -Rel −→ T̂ and m◦ : T̂ −→ T̂ T̂ are lax natural transfor-
mations. The lax extension is called associative because the equalities in
(4) and (5) are equivalent to the Kleisli convolution being associative on
unitary relations (see Proposition 3.3 below).

3.2 (T, V )-relations

For a quantale V and an associative lax extension T̂ to V -Rel of a monad
T on Set, a (T, V )-relation r : X −⇀7 Y is a V -relation r : TX −→7 Y . The
Kleisli convolution s ◦ r : X −⇀7 Z of (T, V )-relations r : X −⇀7 Y and
s : Y −⇀7 Z is the (T, V )-relation defined by

s ◦ r := s · T̂ r ·m◦X .
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A (T, V )-relation r : X −→7 Y is unitary if

r ◦ 1]X = r and 1]Y ◦ r = r,

where 1]X := e◦X · T̂1X : TX −→7 X; these conditions are equivalent to

r · T̂1X = r and e◦Y · T̂ r ·m◦X = r.

With conditions 3.1(2) and (6), the (T, V )-relation r : X −→7 Y is unitary
precisely if

r · T̂1X ≤ r and e◦Y · T̂ r ·m◦X ≤ r.

One readily verifies that 1]X is a unitary (T, V )-relation. Furthermore,
Kleisli convolution is associative on unitary (T, V )-relations, as the following
result recalls (see [2, Proposition III.1.9.4]).

Proposition 3.3. Let T̂ be a lax extension to V -Rel of a monad T =
(T,m, e) on Set. The following are equivalent:

1. T̂ is associative;

2. T̂ : V -Rel −→ V -Rel preserves composition and m◦ : T̂ −→ T̂ T̂ is
natural.

Hence, one can form the category

(T, V )-URel

whose objects are sets and morphisms are unitary (T, V )-relations (with

composition given by Kleisli convolution and identity on X by 1]X).

3.3 Ordered (T, V )-relations

Let V be a quantale and T̂ an associative lax extension to V -Rel of a monad
T on Set. The category (T, V )-URel of unitary (T, V )-relations forms an
ordered category when the hom-sets (T, V )-URel(X,Y ) ⊆ V -Rel(TX, Y ) are
equipped with the pointwise order inherited from V -Rel, since the Kleisli
convolution preserves this order on the left and right (see 3.1(1)).
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The infimum
∧
i∈I ϕi in (T, V )-Rel(X,Y ) of a family of unitary (T, V )-

relations (ϕi : X −⇀7 Y )i∈I is again unitary:

(∧
i∈I ϕi

)
· T̂1X ≤

∧
i∈I(ϕi · T̂1X) =

∧
i∈I ϕi and

e◦Y · T̂
(∧

i∈I ϕi
)
·m◦X ≤

∧
i∈I(e

◦
Y · T̂ϕi ·m◦X) =

∧
i∈I ϕi.

Hence, the ordered category (T, V )-URel has complete hom-sets. Moreover,
for a unitary (T, V )-relation ϕ : X −⇀7 Y , the map (−)◦ϕ : (T, V )-URel(Y,Z) −→
(T, V )-URel(X,Z) has a right adjoint (−) � ϕ : (T, V )-URel(X,Z) −→
(T, V )-URel(Y,Z) given by

(ψ � ϕ) = (ψ � (T̂ϕ ·m◦X)).

Indeed, for all (T, V )-relations γ : Y −⇀7 Z and ψ : X −⇀7 Z,

γ ◦ ϕ ≤ ψ ⇐⇒ γ · T̂ϕ ·m◦X ≤ ψ ⇐⇒ γ ≤ (ψ � (T̂ϕ ·m◦X)).

If ψ is moreover unitary, then by associativity of the Kleisli convolution,

(1]Z ◦ (ψ � ϕ)) ◦ ϕ ≤ 1]Z ◦ ψ = ψ and

((ψ � ϕ) ◦ 1]Y ) ◦ ϕ ≤ (ψ � ϕ) ◦ ϕ ≤ ψ;

therefore, 1]Z ◦ (ψ � ϕ) ≤ (ψ � ϕ) and (ψ � ϕ) ◦ 1]Y ≤ (ψ � ϕ), that is,
ψ � ϕ is unitary. Hence, ψ � ϕ is the extension in (T, V )-URel of ψ along
ϕ:

X
ϕ ��

_ψ
_

Z

Y
o

>
ψ�ϕ

≥

Hence, as it is left adjoint, the map (−)◦ϕ : (T, V )-URel(Y,Z) −→ (T, V )-URel(X,Z)
preserves suprema.

3.4 Maps as (T, V )-relations

Let V be a quantale and T̂ an associative lax extension to V -Rel of a monad T
on Set. A map f : X −→ Y gives rise to a unitary (T, V )-relation f ] : Y −⇀7 X
via

f ] := e◦X · T̂ (f◦).
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This definition is consistent with the notation used for the identity of the
Kleisli convolution, and one also has f ]◦g] = (g ·f)] for all maps f : X −→ Y
and g : Y −→ Z in Set. This defines a functor

(−)] : Set −→ (T, V )-URelop

that maps objects identically. For a unitary (T, V )-relation ϕ : X −⇀7 Y ,
one moreover has

f ] ◦ ϕ = f◦ · ϕ
for all maps f : Z −→ Y . Indeed,

f ] ◦ ϕ = e◦X · T̂ (f◦ · ϕ) ·m◦X = e◦X · (Tf)◦ · T̂ϕ ·m◦X
= f◦ · e◦Y · T̂1Y · T̂ϕ ·m◦X = f◦ · (1]X ◦ ϕ) = f◦ · ϕ.

3.5 An adjunction between (T, V )-URelop and Set

We now proceed to show that the functor (−)] : Set −→ (T, V )-URelop is left
adjoint to the contravariant hom-functor

(T, V )-URel(−, 1) : (T, V )-URelop −→ Set,

where 1 = {?} denotes a singleton. We identify elements x ∈ X with maps
x : 1 −→ X, and to a unitary (T, V )-relation ψ : X −⇀7 Y we associate the
map ψ[ : Y −→ (T, V )-URel(X, 1) defined by

ψ[(y) := y] ◦ ψ = y◦ · ψ = ψ(−, y)

for all y ∈ Y (the third equality follows by definition of composition in
V -Rel); here, ψ(−, y)(x , ?) := ψ(x , y).

Lemma 3.4. Let V be a quantale, T̂ an associative lax extension to V -Rel
of a monad T on Set, and ϕ : X −⇀7 Y a (T, V )-relation. Then ϕ is unitary
if and only if y◦ · ϕ is unitary for all y ∈ Y .

Proof. If ϕ is unitary, then y◦ · ϕ = y] ◦ ϕ is unitary as well. To verify the
other implication, suppose that y◦ ·ϕ is unitary for all y ∈ Y . Then one has

y◦ · (ϕ ◦ 1]X) = (y◦ · ϕ) ◦ 1]X = y◦ · ϕ
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and

y◦ ·(1]Y ◦ϕ) = y◦ ·e◦Y ·T̂ϕ·m◦X = e◦1 ·(Ty)◦ ·T̂ϕ·m◦X = e◦1 ·T̂ (y◦ ·ϕ)·m◦X = y◦ ·ϕ
for all y ∈ Y . Since for any V -relation r : Z −→7 Y , one has y◦ · r(z, ?) =

r(z, y), one can conclude that ϕ ◦ 1]X = ϕ and 1]Y ◦ ϕ = ϕ.

Proposition 3.5. Let V be a quantale and T̂ an associative lax extension
to V -Rel of a monad T on Set.

1. For a set X, the product 1X =
∏
x∈X 1x in (T, V )-URel (with 1x = 1

for all x ∈ X) exists, and can be chosen as 1X = X with projections
πx = x] : X −⇀7 1 (x ∈ X).

2. The contravariant hom-functor

(T, V )-URel(−, 1) : (T, V )-URelop −→ Set

has (−)] : Set −→ (T, V )-URelop as left adjoint. The unit and counit
of the associated adjunction are given by the Yoneda maps

yX = (1]X)[ : X −→ (T, V )-URel(X, 1), x 7−→ x]

and the evaluation V -relations

εX : X −⇀7 (T, V )-URel(X, 1), εX(x , ψ) = ψ(x , ?)

respectively.

Proof.

1. For a family (φx : Y −⇀7 1)x∈X of unitary (T, V )-relations, one can
define a (T, V )-relation φ : Y −⇀7 X by setting φ(y , x) = φx(y , ?) for
all y ∈ TY . Since x◦ · φ = φx is unitary for all x ∈ X, then so is φ by
Lemma 3.4. Unicity of the connecting morphism φ : Y −⇀7 X follows
from its definition.

2. Since 1X =
∏
x∈X 1x exists in (T, V )-URel for all sets X, the repre-

sentable functor H = (T, V )-URelop(1,−) : (T, V )-URelop −→ Set has a
left adjoint F = 1(−) that sends a set X to its product 1X = X, and a
map f : X −→ Y to the unitary (T, V )-relation f ] : Y −⇀7 X. Similarly,
it follows that y is the unit of the adjunction and ε its counit.
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3.6 The (T, V )-powerset monad

Let V be a quantale, T̂ an associative lax extension to V -Rel of a monad T
on Set. The adjunction described in Proposition 3.5 induces a monad

≯ = (Π,m,y)

on Set, the (T, V )-powerset monad (or, more generically, the discrete presheaf
monad) associated to T̂, where

ΠX = (T, V )-URel(X, 1), Πf(ψ) = ψ ◦ f ],
mX(Ψ) = Ψ ◦ εX , yX(x) = x],

for all x ∈ X, f : X −→ Y , and unitary (T, V )-relations ψ : X −⇀7 1,
Ψ : ΠX −⇀7 1. Let us emphasize that ≯ depends both on a choice of a
quantale V , as well as that of an associative lax extension T̂:

≯ = ≯(T, T̂) = ≯(T, V, T̂).

Example 3.6. Consider a quantale V , and the identity monad T = I =
(1Set, 1, 1) on Set extended to the identity monad Î = (1V -Rel, 1, 1) on V -Rel.
Unitary (T, V )-relations are simply V -relations, so, denoting by PV = (PV , µ, η)
the (I, V )-powerset monad associated to Î, we compute

PVX = V -Rel(X, 1), PV f(r) = r · f◦,
µX(R) = R · evX , ηX(x) = x◦,

for all x ∈ X, f : X −→ Y , and V -relations r : X −→7 1, R : PVX −→7
1 (where evX : X −→7 V -Rel(X, 1) is given by evX(x, r) = r(x, ?)). By
further identifying V -relations X −→7 1 with maps X −→ V , we obtain the
V -powerset monad of 2.6. However, from now on we will only use the
description given here, as it allows for more concise arguments1.

3.7 The Kleisli category of PV
The Kleisli category of the V -powerset monad PV has sets as objects, and
maps f : Y −→ V -Rel(X, 1) as morphisms from Y to Z. Kleisli composition

1In view of this example, P(T,V ) is a more logical notation for the (T, V )-powerset
monad ≯; nevertheless, we favor the latter, simpler, notation whenever T is not the
identity monad.
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f ◦ g : Z −→ V -Rel(X, 1) of g : Z −→ V -Rel(Y, 1) and f : Y −→ V -Rel(X, 1) is

f ◦ g(z) = µX · PV f · g(z) = g(z) · f◦ · evX .

The comparison functor K : SetPV −→ V -Relop sends a map f : Y −→
V -Rel(X, 1) to the V -relation f◦ · evX : X −→7 Y , and has an inverse (−)[ :
V -Relop −→ SetPV that sends a V -relation r : X −→7 Y to its mate r[ : Y −→
V -Rel(X, 1) (see 3.5). Indeed, one verifies that (−)[ is a functor:

r[ ◦ s[ = (s · r)[,

and that it is an inverse to K:

(r[)◦ · evX = r and (f◦ · evX)[ = f,

for all V -relations r : X −→7 Y , s : Y −→7 Z and maps f : Y −→ V -Rel(X, 1).
When hom-sets of SetPV are equipped with the pointwise order:

f ≤ g ⇐⇒ ∀x ∈ X (f(x) ≤ g(x))

(for f, g : Y −→ (V, 1)-Rel), the isomorphism V -Relop ∼= SetPV is an order-
isomorphism.

4 The enriched Kleisli extension

In this section, we show that the monad ≯, constructed in the previous
section via a quantale V and an associative lax extension T̂ to V -Rel of a
monad T, also comes with an associative lax extension ≯̌ to V -Rel. Such a
lax extension stems from a general construction that depends in particular
on the existence of a monad morphism from PV into the underlying monad.

4.1 The Eilenberg–Moore category of PV
The V -powerset monad PV = (PV , µ, η) is induced from the adjunction
(−)◦ a (V -Rel(−, 1)) : V -Relop −→ Set. By [9] and since V -Relop ∼= V op-Rel,
the Eilenberg–Moore category of PV is isomorphic to the category of left
V op-actions in the category Sup of complete lattices and sup-maps; that
is, SetPV is the category of right V -actions in Sup. We now describe this
correspondence in our setting.
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A right V -action (−) ∗ (−) : X ×V −→ X defines a PV -algebra structure
a : PVX −→ X via

a(φ) :=
∨

x∈X
x ∗ φ(x, ?)

for all φ ∈ PVX.

For v ∈ V , we define the V -relation ηX(x) ⊗ v : X −→7 1 by (ηX(x) ⊗
v)(y) := ηX(x)(y, ?)⊗ v (that is, ηX(x)⊗ v sends (x, ?) to v, and all other
pairs (y, ?) to ⊥). A PV -algebra (X, a) yields a right V -action on X in Sup
via

x ∗ v := a(ηX(x)⊗ v),

(for all x ∈ X and v ∈ V ), so that (−) ∗ (−) : X × V −→ X is a map that
preserves suprema in each variable and satisfies

x ∗ (v ⊗ u) = (x ∗ v) ∗ u and x ∗ k = x

for all u, v ∈ V , x ∈ X. In particular, for φ ∈ PVX and v ∈ V , the action
induced on the free PV -algebra (PVX,µX) is given by φ∗v = µX(dPVX(φ)⊗
v) = (ηPVX(φ)⊗ v) · evX , and one observes

φ ∗ v = φ⊗ v.

From now on, we denote the category SetPV of right V -actions in Sup
by

SupV

as it is isomorphic to the functor category of V into Sup (with V = (V,⊗, k)
considered as a one-object category).

4.2 From PV to T

Certain monads T on Set equipped with a monad morphism τ : PV −→ T will
allow for a particular lax extension to V -Rel. With is in mind, we mention
the following equivalences.

Proposition 4.1. For a monad T = (T,m, e) on Set, there is a one-to-one
correspondence between:

(i) monad morphisms τ : PV −→ T;
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(ii) extensions E of the left adjoint FT : Set −→ SetT along the functor
(−)◦ : Set −→ V -Relop:

V -Relop E // SetT

Set

(−)◦
OO

FT

::

(iii) liftings L of the right adjoint GT : SetT −→ Set along the forgetful
functor SupV −→ Set:

SetT
L //

GT ##

SupV

��
Set

iv. V -actions in Sup on TX such that Tf : TX −→ TY and mX :
TTX −→ TX are equivariant sup-maps for all maps f : X −→ Y
and sets X.

Proof. The equivalence between (i) and (ii) is a particular instance of the
one-to-one correspondence between monad morphisms and functors between
Kleisli categories of the respective monads. The equivalence between (i)
and (iii) follows from the explicit description of GT on SetT-morphisms f :
X −→ TY as GTf = mY · Tf . (iv) is just a restatement of (iii) in which the
objects and morphisms of the Eilenberg–Moore category of PV are described
explicitly.

4.3 V -power-enriched monads

As mentioned in [9] and [11], there is a monotone functor

SupV −→ V -Cat

that sends a right V -action (X, a) to the V -category (X, (aa)◦ · evX) =
(X,K(aa)) (that is, K : SetPV −→ V -Relop denotes the left adjoint of (−)[,
see 3.7), where aa : X −→ PVX is the right adjoint retract of a:

1PVX ≤ aa · a and a · aa = 1X ,
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and induces the V -relation K(aa) : X −→7 X:

K(aa)(x, y) =
∨
{φ(x, ?) | φ ∈ V -Rel(X, 1) : a(φ) = y}

for all x, y ∈ X. Writing a(φ) =
∨
x∈X x ∗ φ(x, ?) (see 4.1), for v ∈ V , one

observes

x ∗ v ≤ y ⇐⇒ v ≤ K(aa)(x, y).

Setting v = K(aa)(x, y), one has x ∗ K(aa)(x, y) ≤ y, so that with k ≤
K(aa)(x, x), one obtains

∨
x∈X

x ∗K(aa)(x, y) = y

for all x, y ∈ X. Moreover, a free PV -algebra (PVX,µX) has an underlying
V -category with internal hom K(µaX) : PVX −→7 PVX given by

K(µaX)(r, s) =
∨{R(r, ?) | R ∈ V -Rel(PVX, 1) :

t(−, ?)⊗R(t, ?) ≤ s(−, ?) for all t ∈ PVX}
=
∧{(r(x, ?)� s(x, ?)) | x ∈ X} = (s� r)

for all r, s ∈ V -Rel(X, 1) (see 2.3).
By Proposition 4.1, a morphism τ : PV −→ T of monads on Set equips

the underlying set TX of a free T-algebra with the internal hom

(y � x ) := K(mX · τTX)a(x , y)

for all x ∈ TX, y ∈ TY . The sets TX are therefore V -categories, and are
equipped with an order (see 2.7) that is inherited pointwise by the hom-sets
Set(X,TY ):

f ≤ g ⇐⇒ ∀x ∈ X (f(x) ≤ g(x))

for all f, g : X −→ TY .
A V -power-enriched monad is a pair (T, τ) with T a monad on Set and

τ : PV −→ T a monad morphism such that

f ≤ g =⇒ Lf ≤ Lg,

for all f, g : X −→ TY , where L = m · T (−) : SetT −→ SupV is the lifting of
GT described in Proposition 4.1. If (T, τ) is V -power-enriched, then, with
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the mentioned order, SetT becomes an ordered category, and the functors E :
V -Rel −→ SetT and L : SetT −→ SupV of Proposition 4.1 become monotone.

We denote by MndSet the category of monads on Set with their mor-
phisms. A morphism of V -power-enriched monads α : (S, σ) −→ (T, τ) is a
morphism in the comma category (PV ↓MndSet), that is, the diagram

PV
σ

��

τ

��
S α // T

must commute in MndSet.

4.4 Kleisli extensions of V -power-enriched monads

Let (T, τ) be a V -power-enriched monad. By composing the functors (−)[ :
V -Relop −→ SetPV , E = Setτ : SetPV −→ SetT and L : SetT −→ SupV of 3.7
and Proposition 4.1, one obtains a functor

(−)τ : V -Relop (−)[ // SetPV
Setτ // SetT

L // SupV

that sends a set X to TX, and a V -relation r : X −→7 Y to the map
rτ : TY −→ TX, with

rτ := mX · T (τX · r[).
The Kleisli extension Ť of T to V -Rel (with respect to τ) is defined by the
functions Ť = ŤX,Y : V -Rel(X,Y ) −→ V -Rel(TX, TY ) (indexed by sets X
and Y ), with

Ť r(x , y) = (rτ (y)� x )

for all V -relations r : X −→7 Y , and x ∈ TX, y ∈ TY .

4.5 Kleisli extensions are lax extensions

To prove that Ť is indeed a lax extension of the Set-functor T to V -Rel,
it is convenient to express the former as a composite of lax functors. In
view of this, we remark that Ť r (for a relation r : X −→7 Y ) can be written
equivalently as

Ť r = (rτ )∗ : TX −→7 TY or (Ť r)[ = (mX · τTX)a · rτ
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(where the functor (−)∗ : V -Cat −→ V -Modop is defined in 2.9, and (mX ·
τTX)a is right adjoint to mX ·τTX , see 4.3). The Kleisli extension is therefore
an ordered functor

Ť : V -Relop (−)τ // SupV // V -Cat
(−)∗ // V -Modop.

There is moreover a lax functor V -Modop −→ V -Relop that assigns to a
module its underlying relation: composition of V -modules is composition
of V -relations, identity V -modules are transitive and reflexive V -relations,
and 1X ≤ a for any V -category (X, a). Hence, the Kleisli extension Ť op can
be decomposed as the top line of the commutative diagram

V -Relop (−)[// SetPV
Setτ // SetT

L //

GT
  

SupV //

��

V -Cat
(−)∗//

}}

V -Modop // V -Relop

Set

(−)◦

bb

FPV

OO
FT

>>

T // Set
(1)

in which all arrows except V -Modop −→ V -Relop are functors, and the latter
is a lax functor that fails only to preserve identities.

Proposition 4.2. Given a V -power-enriched monad (T, τ), the Kleisli ex-
tension Ť of T to V -Rel yields a lax extension Ť = (Ť ,m, e) of T = (T,m, e)
to V -Rel. Moreover, Ť preserves composition of V -relations.

Proof. The fact that Ť : Rel −→ Rel is monotone and preserves composi-
tion of V -relations follows from its decomposition as lax functors preserving
composition in the first line of diagram (1). The lax extension condition
(Tf)◦ ≤ Ť (f)◦ can be deduced from the diagram

V -Relop (−)τ // V -Cat

��

(−)∗ // V -Modop // V -Relop

1V -Relop

��
Set

(−)◦
OO

T // Set
(−)◦ //

≤

V -Relop

in which the first line is Ť op. The condition Ť (h◦ · r) = (Th)◦ · T̂ r for all
V -relations r : X −→7 Y and maps h : Z −→ Y comes from

Ť (h◦ · r)(x , z) = ((rτ · (h◦)τ (z))� x )

= ((rτ · Th(z))� x ) = (Th)◦ · Ť r(x , z)
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for all x ∈ TX, z ∈ TZ. To verify oplaxness of e : 1V -Rel −→ Ť , consider
a V -relation r : X −→7 Y , and x ∈ X, y ∈ Y . Since τX : PVX −→ TX is a
PV -algebra morphism, one has

eX(x) ∗ r(x, y) = τX(ηX(x)⊗ r(x, y))

≤ τX(
∨
x∈X ηX(x)⊗ r(x, y)) = τX · r[(y) = rτ · eY (y),

so that r(x, y) ≤ ((rτ · eY (y))� eX(x)) = T̂ r(eX(x), eY (y)), as required.
Via the isomorphism V -Relop ∼= SetPV , naturality of m◦ : Ť −→ Ť Ť is

equivalent to (m◦X)[ ◦ (Ť Ť r)[ = (Ť r)[ ◦ (m◦Y )[. As (m◦X)[ = dTX ·mX by
commutativity of the left-most triangle in diagram (1), naturality of m◦ is
equivalent to

PVmX · (mTX · τTTX)a · (Ť r)τ = (mX · τTX)a · rτ ·mY .

Since
PVmX · (mTX · τTTX)a ≤ (mX · τTX)a ·mX ,

oplaxness follows from

mX · (Ť r)τ = mX ·mTX · T (τTX · (mX · τTX)a · rτ )
= mX · T (mX · τTX · (mX · τTX)a · rτ )

= mX · T (mX · T (τX · r[)) = rτ ·mY .

4.6 Discrete presheaf monads of V -power-enriched monads

Let (T, τ) be a V -power-enriched monad. The monotone maps

nbhd = nbhdX,Y : V -Rel(TX, Y ) −→ Set(Y, TX)

r 7−→ (mX · τTX) · r[,
conv = convY,X : Set(Y, TX) −→ V -Rel(TX, Y )

f 7−→ ((mX · τTX)a · f)◦ · evTX ,

form an adjunction nbhd a conv for all sets X,Y , such that moreover
nbhd · conv = 1Set(Y,TX). With respect to the Kleisli extension of T, one
observes that

((mX · τTX)a)◦ · evTX = Ť1X ,

so conv(f) =, and conv(f) is a unitary (T, V )-relation.
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Lemma 4.3. Let (T, τ) be a V -power-enriched monad equipped with its
Kleisli extension Ť to V -Rel. If r : TX −→7 Y is a unitary (T, V )-relation,
then

conv ·nbhd(r) = r.

Proof. Since r is unitary,

r[ ≤ (mX · τTX)a · (mX · τTX) · r[
= µTX · PV ((mX · τTX)a ·mX) · ηTX · τTX · r[
≤ µTX · PV ((mX · τTX)a ·mX) · (mX · τTX)a · τTX · r[
= µTX · PV ((mX · τTX)a) · (e◦Y · Ť r ·m◦X)[

= (e◦Y · Ť r ·m◦X · Ť1X)[ = r[.

This implies r[ = (mX · τTX)a · (mX · τTX) · r[, and thus conv ·nbhd(r) = r,
as claimed.

Theorem 4.4. Let (T, τ) be a V -power-enriched monad. The Kleisli ex-
tension Ť to V -Rel of T is associative, and the maps nbhd and conv yield
mutually inverse monotone functors

nbhd : (T, V )-URelop −→ SetT and conv : SetT −→ (T, V )-URelop

that commute with the left adjoint functors (−)] : Set −→ (T, V )-URelop and
FT : Set −→ SetT.

Proof. By Lemma 4.3 and the preceding discussion, the maps nbhd and
conv yield order-isomorphisms between the set of all unitary V -relations
r : TX −→7 Y and Set(Y, TX) for all sets X,Y . To see that these determine
functors, we first need to verify the identities

nbhd(s ◦ r) = nbhd(r) ◦ nbhd(s), conv(f) ◦ conv(g) = conv(g ◦ f)

nbhd(1]X) = eX , conv(eX) = 1]X

for all unitary V -relations r, s : TX −→7 Y , and maps f, g : Y −→ TX.
The fact that nbhd preserves composition can be verified by using that τ
is a monad morphism, and that m is the multiplication of T. Preserva-
tion of composition by conv then follows because nbhd and conv are mu-
tual inverses. Preservation of units is immediately verified by using that
conv(f) = f◦ · Ť1TX . Since Kleisli composition is associative, so is Kleisli
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convolution of unitary (T, V )-relations, and therefore the Kleisli extension
Ť is an associative lax extension by Proposition 3.3. Hence, one can indeed
form the category (T, V )-URel.

Commutativity of nbhd with (−)] and FT, follows from the fact that for
any map f : X −→ Y ,

mX · τTX · (f ])[ = mX · τTX · (e◦Y · Ť (f◦))[

= mX · τTX · µY · PV ((Ť (f◦))[) · (e◦X)[

= mX · τTX · (Ť (f◦))[ · eX
= mX · τTX · (mY · τTY )a · (f◦)τ · eX
= τY · (f◦)[ = eY · f,

by the definitions and the fact that (g◦)[ = ηY · g for any map g : X −→ Y
(here, we continue to use the notation PV = (PV , µ, η)). Commutativity
of conv with (−)] and FT is then immediate because conv is inverse to
nbhd.

Corollary 4.5. Let (T, τ) be a V -power-enriched monad equipped with its
Kleisli extension Ť. The discrete presheaf monad associate to Ť is order-
isomorphic to T:

≯(T, Ť) ∼= T.

Proof. By Theorem 4.4, the isomorphism (T, V )-Relop ∼= SetT commutes
with the left adjoint functors from Set, so the induced monads are isomor-
phic, with corresponding orders on the sets ΠX and TX.

4.7 Discrete presheaf monads are V -power-enriched

For an associative lax extension T̂ to V -Rel of a monad T on Set, there is a
functor

(−)] : V -Rel −→ (T, V )-URel

that sends a V -relation r : X −→7 Y to the unitary (T, V )-relation

r] := e◦Y · T̂ r : X −⇀7 Y.

Proposition 4.6. Consider the discrete presheaf monad ≯ on Set associated
to an associative lax extension T̂ to V -Rel of a monad T on Set. There is
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a functor V -Relop −→ Set≯ and an isomorphism Q : Set≯ −→ (T, V )-URelop

that make the following diagram commute

V -Relop

||

(−)]

&&
Set≯

Q // (T, V )-URelop

under Set. In particular, there is a monad morphism π : PV −→ ≯ whose
component at a set X sends ϕ ∈ V -Rel(X, 1) to the unitary (T, V )-relation
e◦1 · T̂ϕ : X −⇀7 1.

Proof. Since the monad Π comes from the adjunction of (T, V )-URelop over
Set, the functor Q : Set≯ −→ (T, V )-URelop is the fully faithful comparison
functor from the Kleisli category. This functor is bijective on objects because
the left adjoint (−)] : Set −→ (T, V )-URelop is so. Hence, QX = X for each
set X, and Q sends a morphism f : X −→ ΠY in Set≯ to the unitary (T, V )-
relation f ] ◦ εY : Y −⇀7 X. The inverse of Q sends a unitary (T, V )-relation
ϕ : Y −⇀7 X to ϕ[ : X −→ ΠY (see 3.5).

The functor V -Relop −→ Set≯ is the composite of (−)] with the inverse
of Q. Explicitly, a V -relation r : X −→7 Y is sent to the Kleisli morphism
(e◦Y · T̂ r)[ : Y −→ ΠY . The last statement follows from the one-to-one
correspondence between monad morphisms and functors between Kleisli
categories.

Theorem 4.7. Let T̂ be an associative lax extension to V -Rel of a monad
T on Set. The monad morphism π : PV −→ ≯ makes ≯ into a V -power-
enriched monad, and the pointwise order induced on the hom-sets makes
Q : Set≯ −→ (T, V )-URelop into an order-isomorphism

Set≯ ∼= (T, V )-URelop

(see Proposition 4.6).

Proof. Consider the natural transformation π : PV −→ ≯ of Proposition 4.6,
and for ϕ,ψ ∈ ΠX, define χ{ϕ,ψ} : TX −→7 1 to be the characteristic function
of {φ, ψ} (so that χ{ϕ,ψ}(x , ?) takes value k ∈ V if x ∈ {ϕ,ψ} and ⊥
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otherwise). Using that χ{ϕ,ψ} · εX = ϕ ∨ ψ (in the pointwise order of
ΠX = (T, V )-URel(X, 1)), we compute

mX · πTX(χ{ϕ,ψ}) = e◦1 · T̂ (ϕ ∨ ψ) ·m◦X ,

so in particular ϕ ∨ ψ ≤ mX · πTX(χ{ϕ,ψ}). Hence, ϕ ≤ ψ if and only if
mX · πTX(χ{ϕ,ψ}) = ψ. Since the order ≺ induced on ΠX by τ is given by

ϕ ≺ ψ ⇐⇒ mX · πTX(χ{ϕ,ψ}) = ψ,

the relation ≺ describes the pointwise order of ΠX. The condition for ≯
being V -power-enriched is equivalent to the requirement that Set≯ form an
ordered category with respect to the order induced by π; but this follows
immediately from the fact that V -Rel is ordered.

Remark 4.8. The previous Theorem shows that the order induced by π :
PV −→ Π on ΠX = (T, V )-URel(X, 1) is the pointwise order of V -relations.
With respect to this order, ΠX is then a complete lattice (whose infimum
operation can easily be checked to be the infimum in V -Rel). Moreover, the
right V -action on ΠX is given by

ϕ ∗ v = mX · πTX(ηΠX(ϕ)⊗ v) = e◦1 · T̂ (ϕ⊗ v) ·m◦X .

for all ϕ ∈ ΠX and v ∈ V . The internal hom can then be obtained by
noticing that for ψ ∈ ΠX,

ϕ ∗ v ≤ ψ ⇐⇒ e◦1 · T̂ (ϕ⊗ v) ·m◦X ≤ ψ ⇐⇒ ϕ⊗ v ≤ ψ;

hence, proceeding as in 4.3, we obtain

K((mX · πTX)a)(ϕ,ψ) = ψ � ϕ

for all ϕ,ψ ∈ V -Rel(TX, 1). In other words, the internal hom of the V -
category (T, V )-URel(X, 1) is obtained by restriction of the internal hom
of V -Rel(TX, 1); this also justifies a posteriori the notation used for the
internal hom of TX defined in 4.3.
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4.8 The Yoneda embedding

In our context, the Yoneda lemma takes on the following form.

Lemma 4.9. Let ≯ be the discrete presheaf monad of an associative lax
extension T̂ of T to V -Rel. Then

(ψ � x]) = ψ(x, ?)

for all ψ ∈ ΠX and x ∈ X.

Proof. Remark 4.8 with 4.3 yields

(ψ � ϕ) =
∧
{ϕ(y, ?)� ψ(y, ?) | y ∈ X}

for all ψ ∈ ΠX. Setting ϕ = x] (for x ∈ X), and observing that k ≤
x◦ · T̂1X(x, ?) = x](x, ?) we obtain

(ψ � x]) ≤ (x](x, ?)� ψ(x, ?)) ≤ (k � ψ(x, ?)) = ψ(x, ?).

Moreover, ψ is unitary, so T̂1X(y, x)⊗ ψ(x, ?) ≤ ψ(y, ?) for all y ∈ X, that
is,

ψ(x, ?) ≤ (T̂1X(y, x)� ψ(y, ?)),

for all y ∈ X, and therefore ψ(x, ?) ≤ (ψ � x]).

The Yoneda embedding then follows.

Proposition 4.10. Let ≯ be the discrete presheaf monad of an associative
lax extension T̂ of T to V -Rel. Then

T̂ r(x , y) = Π̌r(x ], y])

for all V -relations r : X −→7 Y , and x ∈ TX, y ∈ TY .

Proof. A direct computation shows that rπ(ψ) = ψ · T̂ r for all ψ ∈ ΠX. We
can then use Lemma 4.9 to write

Π̌r(x ], y]) = (rπ(y])� x ]) = rπ(y])(x , ?) = y] · T̂ r(x , ?) = T̂ r(x , y)

for all x ∈ TX, y ∈ TY .
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5 Categories of lax extensions

In this section, we define a category V -LaxExt whose objects are monads
on Set equipped with an associative lax extension to V -Rel. The comma
category (PV ↓MndSet) of monads on Set under the V -powerset monad PV
is then shown to be a full reflective subcategory of V -LaxExt, as mentioned
in the Introduction.

5.1 The category of associative lax extensions

Given a quantale V , an object of the category2

V -LaxExt

is a pair (T, T̂) consisting of a monad T on Set and of an associative lax
extension T̂ of T to V -Rel. A morphism α : (S, Ŝ) −→ (T, T̂) is a monad
morphism α : S −→ T such that (m · Tα)◦ · T̂1 : T̂ −→7 T̂ Ŝ is a natural
transformation in V -Rel.

Remark 5.1. Since m◦ : T̂ −→7 T̂ T̂ is a natural transformation, the identity
1T : (T, T̂) −→ (T, T̂) is a morphism of V -LaxExt. Moreover, morphisms
of V -LaxExt compose. Indeed, consider monad morphisms α : S −→ T and
β : R −→ S such that (m·Tα)◦ ·T̂1 : T̂ −→7 T̂ Ŝ and (n·Sβ)◦ ·Ŝ1 : Ŝ −→7 ŜR̂ are
natural transformations in V -Rel. Then α·β : R −→ T is a monad morphism,
and for a V -relation r : X −→7 Y , one obtains that (m ·T (α ·β))◦ · T̂1 : T̂ −→7
T̂ R̂ is a natural transformation by using the hypotheses on α and β, together
with the fact that m◦X · T̂1X = T̂ T̂1X ·m◦X · T̂1X = T̂1TX ·m◦X · T̂1X and

2Strictly speaking, V -LaxExt is a metacategory, but we ignore such size issues here for
questions of readability.
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that Ŝ and T̂ are associative lax extensions:

( mY · T (αY · βY ))◦ · T̂1Y · T̂ r
= (TβY )◦ · T̂ Ŝr · (mX · TαX)◦ · T̂1X
= (TdSRY )◦ · (TSβY )◦ · (TnY )◦ · T̂ Ŝr · (mX · TαX)◦ · T̂1X
= (TdSRY )◦ · T̂ ((SβY )◦ · n◦Y · Ŝr) · (mX · TαX)◦ · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · (SβX)◦ · n◦X · Ŝ1X) · (mX · TαX)◦ · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · (SβX)◦ · n◦X) · (mX · TαX)◦ · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · (SβX)◦ · n◦X) · T̂ (α◦X) ·m◦X · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · (SβX)◦ · n◦X · α◦X) ·m◦X · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · α◦RX · (TβX)◦ · (TαX)◦ ·m◦X) ·m◦X · T̂1X
= (TdSRY )◦ · T̂ (ŜR̂r · α◦RX · (TβX)◦ · (TαX)◦ ·m◦X · T̂1X) ·m◦X · T̂1X
= (TdSRY )◦ · T̂ ŜR̂r · T̂ (α◦RX) · T̂ T̂ ((α · βX)◦) · (TmX)◦ ·m◦X · T̂1X
= (TdSRY )◦ · T̂ ŜR̂r · T̂ (α◦RX) ·m◦RX · T̂ ((α · βX)◦) ·m◦X · T̂1X
= T̂ R̂r · (mX · T (αX · βX))◦ · T̂1X .

5.2 The Kleisli extension as universal object

We now proceed to describe an adjunction

F a G : (PV ↓MndSet) −→ V -LaxExt

that presents the comma category of monads under PV as a full reflective
subcategory of the category of associative lax extensions to V -Rel (Theo-
rem 5.7). In particular, the discrete presheaf monad of an associative lax
extension to V -Rel appears as its free V -cocompletion (Proposition 5.4).

Lemma 5.2. A morphism α : (S, Ŝ) −→ (T, T̂) in V -LaxExt induces a func-
tor A : (S, V )-URel −→ (T, V )-URel that makes the following diagram com-
mute:

(S, V )-URelop Aop
// (T, V )-URelop

Set
(−)]

dd

(−)]

::

Proof. For a (S, V )-relation r : SX −→7 Y , we define the following (T, V )-
relation:

Ar := e◦Y · T̂ r · (mX · TαX)◦ · T̂1X : TX −→7 Y.
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To verify that A preserves Kleisli convolution, consider (S, V )-relations r :
X −⇀7 Y and s : Y −⇀7 Z. We first observe that by naturality of (m·Tα)◦ ·T̂1,

T̂1SX · (TαX)◦ ·m◦X · T̂1X = T̂1SX · (TαX)◦ ·m◦X · T̂1X · T̂1X
= T̂ Ŝ1X · (TαX)◦ ·m◦X · T̂1X
= (TαX)◦ ·m◦X · T̂1X

and recall that that m◦X · T̂1X = T̂1TX ·m◦X · T̂1X . These remarks allow us
to establish the following chain of equalities:

As ◦Ar
= e◦Z · T̂ s · (mY · TαY )◦ · T̂ (e◦Y · T̂ r · (mX · TαX)◦ · T̂1X) ·m◦X
= e◦Z · T̂ s · (mY · TαY )◦ · (TeY )◦ · T̂ T̂ r · (TTαX)◦ · (TmX)◦ · T̂ T̂1X ·m◦X
= e◦Z · T̂ s · (mY · TαY )◦ · (TeY )◦ · T̂ T̂ r · (TTαX)◦ · (mTX)◦ ·m◦X · T̂1X
= e◦Z · T̂ s · (mY · TαY )◦ · (TeY )◦ ·m◦Y · T̂ r · (TαX)◦ ·m◦X · T̂1X
= e◦Z · T̂ s · (mY · TαY )◦ · T̂ r · (TαX)◦ ·m◦X · T̂1X
= e◦Z · T̂ (s · Ŝr) · (mSX · TαSX)◦ · T̂1SX · (TαX)◦ ·m◦X · T̂1X
= e◦Z · T̂ (s · Ŝr) · (TαSX)◦ ·m◦SX · (TαX)◦ ·m◦X · T̂1X
= e◦Z · T̂ (s · Ŝr) · (TαSX)◦ · (TTαX)◦ · (TmX)◦ ·m◦X · T̂1X
= e◦Z · T̂ (s · Ŝr) · (TnX)◦ · (TαX)◦ · T̂1TX ·m◦X · T̂1X
= e◦Z · T̂ (s ◦ r) · T̂ (α◦X) ·m◦X · T̂1X
= e◦Z · T̂ (s ◦ r) · (TαX)◦ ·m◦X · T̂1X = A(s ◦ r).

Using that T̂ (e◦Y ) ·m◦Y = T̂1Y , one then computes for a map f : Y −→ X,

A(d◦Y · Ŝ(f◦)) = e◦Y · T̂ (d◦Y ) · T̂ (α◦Y ) ·m◦Y · T̂ (f◦) = eY · T̂ (f◦),

so that the stated diagram commutes and in particularA(1]X) = 1]X . Finally,
since A preserves Kleisli convolution, one has for a unitary (S, V )-relation
r that

Ar ◦ 1]X = Ar ◦A(1]X) = A(r ◦ 1]X) = Ar

and similarly 1]X ◦Ar = Ar, so A is well-defined.

Proposition 5.3. Morphisms α : (S, Ŝ) −→ (T, T̂) in V -LaxExt functorially
determine morphisms Π(α) : Π(S, Ŝ) −→ Π(T, T̂) in (PV ↓MndSet) via the
components

Π(α)X(r) = e◦1 · T̂ r · (mX · TαX)◦ · T̂1X ∈ (T, V )-URel(X, 1)
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for all r ∈ (S, V )-URel(X, 1). That is, there is a functor

F = Π : V -LaxExt −→ (PV ↓MndSet).

Proof. With the isomorphism (T, V )-URelop ∼= SetΠ (Proposition 4.6), the
statement follows from Lemma 5.2 together with the classical one-to-one
functorial correspondence between monad morphisms and morphisms of
Kleisli categories that commute with the respective left adjoint functors.

Proposition 5.4. Let T̂ be an associative lax extension of T to V -Rel, and
Π its associated discrete presheaf monad. Then the natural transformation
Y : T −→ Π, defined componentwise by

YX : TX −→ ΠX , x 7−→ x ] = x ◦ · T̂1X ,

yields a morphism Y = Y(T,T̂) : (T, T̂) −→ (≯, ≯̌) in V -LaxExt.

Proof. The left adjoint functor (−)] : Set −→ (T, V )-URelop extends to a
functor

(−)] : SetT −→ (T, V )-URelop

sending r : X −→ TY to r] := r◦ · T̂1Y : Y −⇀7 X, so the diagram

SetT
(−)] // (T, V )-URelop

Set

FT

bb

(−)]

88

commutes. Hence, (−)] : SetT −→ (T, V )-URelop induces a monad morphism
Y : T −→ Π whose component YX is the composite

TX
yTX // (T, V )-URel(TX, 1)

(−)◦1]TX // (T, V )-URel(X, 1),

that is, YX(x ) = x ◦ · e◦TX · T̂1TX · T̂ T̂1X ·m◦X = x ◦ · T̂1X .

We are left to verify that (m ·ΠY)◦ · Π̌1 : Π̌ −→7 Π̌T̂ is natural in V -Rel.
For this, we denote by π : PV −→ Π the PV -structure of Π, and remark that
for x ∈ ΠX, Y ∈ ΠTY and a V -relation r : X −→7 Y ,

(mY ·ΠYY )◦ · Π̌1Y · Π̌r(x ,Y ) = Π̌r(x ,mY ·ΠYY (Y ))
= ((rπ ·mY ·ΠYY (Y ))� x )
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and

Π̌T̂ r ·(mX ·ΠYX)◦ · Π̌1X(x ,Y )

=
∨

Z∈ΠTX(mX ·ΠYX(Z)� x )⊗ ((T̂ r)π(Y )� Z).

By setting Z = (T̂ r)π(Y ) in mX · ΠYX(Z), we have k ≤ ((T̂ r)π(Y ) � Z)
and compute for a unitary (T, V )-relation Ψ ∈ TY −⇀7 1,

mX ·ΠYX · (T̂ r)π(Ψ) = mX ·ΠYX ·mTX ·Π(πTX · (T̂ r)[)(Ψ)

= mX ·ΠYX ·mTX ·Π(e◦TX · T̂ T̂ r)[(Ψ)

= mX ·ΠYX(Ψ ◦ (((e◦TX · T̂ T̂ r)[)] ◦ εTY ))

= mX ·ΠYX(Ψ · T̂ T̂ r)
= Ψ ·m◦X · T̂ r = rπ ·mY ·ΠYY (Ψ)

by using twice that Y]
Y ◦εY = Y◦Y ·εY = T̂1Y ; thus, (mY ·ΠYY )◦·Π̌1Y ·Π̌r ≤

Π̌T̂ r · (mX ·ΠYX)◦ · Π̌1X . To show the other inequality, it suffices to show
that Y◦ : Π̌ −→ T̂ is a lax natural transformation in V -Rel; indeed, in this
case, we would have

Π̌T̂ r · (mX ·ΠYX)◦ · Π̌1X = Π̌T̂ r · Π̌(Y◦X) ·m◦X · Π̌1X
≤ Π̌(Y◦Y ) · Π̌Π̌r ·m◦X · Π̌1X
= (mY ·ΠYY )◦ · Π̌1Y · Π̌r.

But lax naturality of Y◦, or equivalently, the inequality

T̂ r(x , y) ≤ (rπ(YY (y))� YX(x ))

(for all V -relations r : X −→7 Y , and x ∈ TX, y ∈ TY ), follows from
Proposition 4.10.

Lemma 5.5. A morphism of V -power-enriched monads α : (S, σ) −→ (T, τ)
satisfies

Šr · α◦X ≤ α◦Y · Ť r
for all V -relations r : X −→7 Y .

Proof. We first remark that

rτ · αY = αX · rσ
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The pointwise version of the stated condition reads as

Šr(x , y) ≤ Ť r(αX(x ), αY (y)),

that is,
(rσ(y)� x ) ≤ (αX · rσ(y)� αX(x )).

This condition follows from the fact that αX : SX −→ TX is a morphisms
of the PV -algebras (SX, nX · σSX) and (TX,mX · τTX), and this in turn
follows from α : S −→ T being a morphism in (PV ↓MndSet).

Proposition 5.6. Morphisms α : (S, σ) −→ (T, τ) in (PV ↓MndSet) func-
torially determine morphisms α : (S, Š) −→ (T, Ť) in V -LaxExt (where the
V -power-enriched monads S and T are equipped with their respective Kleisli
extensions). More precisely, there is a functor

G : (PV ↓MndSet) −→ V -LaxExt

that commutes with the respective forgetful functors to MndSet.

Proof. We only need to verify that a monad morphism α : S −→ T such that
τ = α ·σ yields a natural transformation (m ·Tα)◦ · Ť1 : Ť −→ Ť Š in V -Rel.
Here, we use the notations T = (T,m, e), S = (S, n, d), and PV = (PV , µ, η).

First, we remark that for x ∈ TX, Y ∈ TSY and a V -relation r : X −→7
Y ,

(mY · TαY )◦ · Ť1Y · Ť r(x ,Y ) = Ť r(x ,mY · TαY (Y ))
= ((rτ ·mY · TαY (Y ))� x )

and

Ť Šr · (mX · TαX)◦ · Ť1X(x ,Y )

=
∨

Z∈TSX(mX · TαX(Z)� x )⊗ ((Šr)τ (Y )� Z).

Since

mX · TαX · (Šr)τ = mX · TαX ·mSX · T (αSX · σSX · (Šr)[)
= mX · T (mX · TαX · αSX · σSX · (nX · σSX)a · rσ)
= mX · T (αX · nX · σSX · (nX · σSX)a · rσ)
= mX · T (αX · rσ)
= mX · T (rτ · αY ) = rτ ·mY · TαY ,
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we have (mY · TαY )◦ · Ť1Y · Ť r ≤ Ť Šr · (mX · TαX)◦ · Ť1X . Moreover,
by Lemma 5.5, we also have the other inequality, and the sought naturality
follows:

Ť Šr · (mX · TαX)◦ · Ť1X = Ť Šr · Ť (α◦X) ·m◦X · Ť1X
≤ Ť (α◦Y ) · Ť Ť r ·m◦X · Ť1X
= (mY · TαY )◦ · Ť1Y · Ť r.

Theorem 5.7. The functor G : (PV ↓MndSet) −→ V -LaxExt (see Proposi-
tion 5.6) is a full and faithful embedding, and has the functor F : V -LaxExt −→
(PV ↓MndSet) as left adjoint.

Proof. To prove the statement, we show that F is left adjoint to G and
that the counit of this adjunction is an isomorphism. Hence, consider a
PV -structures monad (T, τ) (with its Kleisli extension T̂ to V -Rel). By
Proposition 4.6, Theorem 4.4 and the one-to-one correspondence between
monad morphisms and functors between Kleisli categories, all the triangles
but the lower-right one in the diagram

Set

(−)◦
��

FΠ

��

FT

��

V -Relop

(−)]
��

Q−1(−)]
ww

Setτ (−)[

''
SetΠ

Q // (T, V )-URelop nbhd // SetT

commute. For the last triangle, a computation similar to the last displayed
equation in the proof of Theorem 4.4 shows that for any V -relation r : X −→7
Y ,

nbhd(r]) = mY · τTY · (e◦Y · Ť r)[ = τX · r[ = Setτ (r[).

One deduces that the following diagram commutes

PV
π

��

τ

��
Π

κ // T,
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where κ is the monad morphism induced by the composition of nbhd and
Q. Since these two functors are isomorphisms, the component κ = κ(T,τ) :
FG(T, τ) −→ (T, τ) is itself an isomorphism in (PV ↓MndSet). In fact, one
computes κ = m · τT .

We are left to verify that our candidates for the unit and counit of
the adjunction, Y : 1 −→ GF and κ : FG −→ 1 respectively, satisfy the
triangular identities. For y ∈ TX, we use that (TX,mX · τTX) is a PV -
algebra and that

∨
y∈TX y ∗ (x � y) = x (see 4.3) to write

κX · YX(x ) = mX · τTX(x ◦ · Ť1X)

=
∨

y∈TX y ∗ (x ◦ · Ť1X(y , ?)) =
∨

y∈TX y ∗ (x � y) = x

for all x ∈ TX, that is, Gκ · YG = 1. For the other identity, we note that
for all r ∈ (T, V )-URel(X, 1),

κX ·Π(Y)X(r)

= mX · τTX(y◦1 · Π̌r · (mX ·ΠYX)◦ · Π̌1X)

=
∨
φ∈ΠX φ ∗ (y◦1 · Π̌r · (mX ·ΠYX)◦ · Π̌1X(φ, ?))

=
∨
φ∈ΠX,Φ∈ΠTX φ ∗ (Π̌1X(φ,mX ·ΠYX(Φ))⊗ Π̌r(Φ,y1(?)))

=
∨
φ∈ΠX,Φ∈ΠTX(φ ∗ (mX ·ΠYX(Φ)� φ)) ∗ (rπ(y1(?))� Φ)

=
∨

Φ∈ΠTX(mX ·ΠYX(Φ)) ∗ (πTX(r)� Φ)

=
∨

Φ∈ΠTX(Φ ·m◦X · T̂1X) ∗ ((e◦1 · T̂ r)� Φ).

Since Φ = πTX(r) = e◦1 · T̂ r is a possible value for Φ running through ΠTX,
we obtain

r = e◦1 · T̂ r ·m◦X · T̂1X ≤ κX ·Π(Y)X(r).

Moreover, mX · ΠYX = (−) · m◦X · T̂1X : ΠTX −→ ΠX is a PV -algebra
morphism, and therefore also a V -functor of the underling V -categories, so

((e◦1·T̂ r)� Φ) ≤ ((e◦1·T̂ r·m◦X ·T̂1X)� (Φ·m◦X ·T̂1X)) = (r � (Φ·m◦X ·T̂1X));

hence, (Φ ·m◦X · T̂1X) ∗ ((e◦1 · T̂ r)� Φ) ≤ r for all Φ ∈ ΠTX, and

κX ·Π(Y)X(r) ≤ r

holds. This shows κF · FY = 1.
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6 Lax algebras

This section is a small incursion into the realm of lax algebras. Our main
Theorem 5.7 above sheds light on categories of lax extensions, but lax exten-
sions were originally motivated by the definition of lax algebras. Here, we
show that monad morphisms between power-enriched monads induce iso-
morphisms between their categories of lax algebras. This proves that, once
the defining power-enriched monad T and the order on SetT have been de-
termined, the information pertaining to the quantale V via the enrichment
τ : PV −→ T plays little role on the level of lax algebras themselves.

6.1 Categories of monoids

Let T̂ be an associative lax extension of T = (T,m, e) to V -Rel. A (T, V )-
category (generically, a lax algebra) on a setX is a monoid in (T, V )-URel(X,X).
In other words, a lax algebra (X, a) is a set X with a (T, V )-relation
a : X −⇀7 X satisfying

1]X ≤ a and a ◦ a ≤ a,

or equivalently, e◦X ≤ a and a · T̂ a · m◦X ≤ a. These conditions imply in
particular that a is unitary and idempotent:

1]X ◦ a = a = a ◦ 1]X and a ◦ a = a

(see [2, Section III.1.8] for details). A (T, V )-functor between (T, V ) cate-
gories (X, a) and (Y, b) is a map f : X −→ Y such that

a ◦ f ] ≤ f ] ◦ b,

or equivalently, a ≤ f◦ · b · Tf . The category of (T, V )-categories with
(T, V )-functors as morphisms is denoted by

(T, V )-Cat.

By Theorem 4.7, a monoid in (T, V )-URel(X,X) is a monoid in Set≯(X,X).
More generally, given a 2-enriched monad T = (T,m, e), a T-monoid (or a
Kleisli monoid) is a set X with a map ν : X −→ TX such that

eX ≤ ν and ν ◦ ν ≤ ν.
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A morphism between T-monoids (X, ν) and (Y, ξ) is a map f : X −→ Y
satisfying

f\ ◦ ν ≤ ξ ◦ f\,
where f\ = eY · f ; equivalently, this expression can be written Tf · ν ≤ ξ · f .
The category of T-monoids and their morphisms is denoted by

T-Mon.

In the general case where T is a monad on Set (not necessarily 2-enriched)
equipped with an an associative lax extension T̂ to V -Rel, the discrete
presheaf monad≯ is always V -power-enriched—and in particular 2-enriched.
Via the order-isomorphism of Theorem 4.7, it is easily verified that the mor-
phisms of monoids correspond, so there is an isomorphism

(T, V )-Cat ∼= ≯-Mon.

6.2 The Kleisli extension and monoids

It is shown in Theorem 4.4 that if T is a V -power-enriched monad, then
there is an order-isomorphism

SetT ∼= (T, V )-URelop

when T comes with its Kleisli extension Ť to V -Rel. By the V -enrichment,
there is a monad morphism τ : PV −→ T, and the order on the hom-sets
of SetT is induced by the order on the sets TX, that is, by the semilattice
structure. In other words, the 2-enrichment τ · ι : P −→ T yields the same
ordered category SetT as the V -enrichment τ : PV −→ T (here, ι is the monad
morphism ι : P −→ PV given by the canonical quantale homomorphism
2 −→ V described in Example 2.12.1).

Proposition 6.1. Let T a monad on Set, and κ : PW −→ PV , τ : PV −→ T
monad morphisms such that (T, τ) is V -power-enriched. Then (T, τ · κ) is
W -enriched, and there is an isomorphism

(T, V )-Cat ∼= (T,W )-Cat,

where (T, τ) and (T, τ ·κ) are equipped with their respective Kleisli extensions
ŤV to V -Rel, and ŤW to W -Rel.
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Proof. By Theorem 4.4, there are order-isomorphisms

(T,W )-URelop ∼= SetT ∼= (T, V )-URelop.

Hence, monoids in the corresponding hom-sets are in bijective correspon-
dence, and so are morphisms between these, that is,

(T, V )-Cat ∼= T-Mon ∼= (T,W )-Cat,

which proves the claim.
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Gavin J. Seal, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne,

Switzerland

Email: gavin.seal@fastmail.fm


