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Operads of higher transformations for
globular sets and for higher magmas

Camell Kachour

I dedicate this work to André Joyal.

Abstract. In this article we discuss examples of fractal ω-operads. Thus
we show that there is an ω-operadic approach to explain existence of the
globular set of globular sets1, the reflexive globular set of reflexive globular
sets, the ω-magma of ω-magmas, and also the reflexive ω-magma of reflexive
ω-magmas. Thus, even though the existence of the globular set of globular
sets is intuitively evident, many other higher structures which fractality are
less evident, could be described with the same technology, using fractal ω-
operads. We have in mind the non-trivial question of the existence of the
weak ω-category of the weak ω-categories in the globular setting, which is
described in [9] with the same technology up to a contractibility hypothesis.

Introduction

This article is the second in a series of three articles (see [8, 9]). Here we give
some relevant examples of ω-operads having the fractal property in the sense of
[8], exhibited by relevant higher structures where contractibility in the sense of
Batanin’s article [2] is not involved. The natural direction we propose allows us to
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1Globular sets are also called ω-graphs by the French School.
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consider four examples of higher structures: globular sets, reflexive globular sets,
ω-magmas, and reflexive ω-magmas.

We use two coglobular objects in the category T-Grp,c of pointed T-graphs
over constant globular sets to build these examples: the object C• and a subobject
G• of C•, both described in the last section of [8]. Thanks to the object G•,
we freely generate the coglobular object of ω-operads for globular sets and the
coglobular object of ω-operads for reflexive globular sets. Thanks to the object
C•, we freely generate the coglobular object of ω-operads for ω-magmas and the
coglobular object of ω-operads for reflexive ω-magmas. It is then easy to show
that the ω-operad B0

G of globular sets, the ω-operad B0
Gu

of reflexive globular sets,
the ω-operad B0

M of ω-magmas, the ω-operad B0
Mu

of reflexive ω-magmas, all have
the fractal property. Using the same technology related to the standard action
in T-CAT1 (see [8]), we deduce the existence of a globular set of globular sets, a
reflexive globular set of reflexive globular sets, a ω-magma of ω-magmas, and a
reflexive ω-magma of reflexive ω-magmas.

We suspect that the ω-operad B0
C of Batanin (see [2, 5, 13]), which algebras

are his definition of weak higher categories, has the fractal property. Thus the
weak ω-category of weak ω-categories should have a similar description as those of
this article, up to the contractibility of a specific ω-operad. This important fact of
higher category theory is described in [9].

1 Preamble

We are going to describe four examples of fractal ω-operads in the sense of [8]. Not
only is the ω-operad of globular sets actually fractal, but so are the ω-operad of
reflexive globular sets, the ω-operad of ω-magmas, and the ω-operad of reflexive
ω-magmas.

Remark 1.1. It is important to note that our technology also applies in low
dimensions. For example, as an exercise, the reader can check easily that graphs
form a graph, or reflexive graphs form a reflexive graph, by interpreting in the
language of this article. Indeed we can also show easily that the 1-operad of graphs,
and the 1-operad of reflexive graphs are also fractals. Also the 2-operad of 2-graphs
is fractal as well, where we consider a finite 3-truncated coglobular objects build
with the 2-operad of 2-graphs, the 2-operad of morphisms of 2-graphs, and the
2-operad of transformations of 2-graphs. However this 2-operad of 2-graphs can be
also used to show that graphs do form a 2-graphs. But in that case this construction
doesn’t show the fractality structure2 of such 2-operad of 2-graphs. Many such
low dimensions facts (such that the existence of the category of categories, the

2In the sense of [8].
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strict 2-category of strict 2-categories, the bicategory of bicategories3, etc.) can be
described easily to show more the pertinence of the technology developed in this
article.

Remark 1.2. In [17] Dimitri Tamarkin has shown that DG-categories form a DG-
category. We do not know if such proof is similar to the technology developed in
our article. If it is the case, such result might be still true for a higher version of
DG-categories4. But we do not want to give more details of such subject, because
we are not enough expert about DG-categories.

2 The coglobular object of graphical ω-operads

The category ω-Gr of globular sets has trivial higher transformations. First we are
going to describe these higher transformations as presheaves on appropriate small
categories Gn, and then see that they form a globular set that we call the globular
set of globular sets. It is the combinatorial description of these small categories
Gn which allows a straightforward proof of Proposition 2.2. This proposition ba-
sically says that these higher transformations are algebras for adapted 2-coloured
ω-operads.

Consider the classical globe category G0

0̄
s10 //
t10

// 1̄
s12 //
t21

// 2̄ //// n− 1
snn−1 //
tnn−1

// n̄

subject to the relations5 on cosources sn+1
n and cotargets tn+1

n . For each each n > 1
we are going to build other small categories Gn resulting in a coglobular object in
CAT

G0

δ10 //
κ1
0

// G1

δ12 //
κ2
1

// G2
//// Gn−1

δnn−1 //
κn
n−1

// Gn

where G0 is the globe category. The category Gn is called the n-globe category.

3For these everyday cases, we use adapted truncations of operads build in [9].
4If such higher version makes sense.
5which are describe in [8]
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The 1-globe category G1 is presented by

0̄
s10 //
t10

// 1̄
s21 //
t21

// 2̄ //// n− 1
snn−1 //
tnn−1

// n̄

0̄′

α0
0

OO

s′10 //
t′10

// 1̄′

α1
0

OO

s′21 //
t′21

// 2̄′

α2
0

OO

//// n− 1
′

αn−1
0

OO

s′nn−1 //
t′nn−1

// n̄′

αn
0

OO

subject to αn+1
0 ◦ s′n+1

n = sn+1
n ◦ αn0 , αn+1

0 ◦ t′n+1
n = tn+1

n ◦ αn0 .

The 2-globe category G2 is presented by

0̄
s10 //
t10

// 1̄
s12 //
t21

// 2̄ //// n− 1
snn−1 //
tnn−1

// n̄

0̄′

α0
0

OO

β0
0

OO

s′10 //
t′10

// 1̄′

ff

α1
0

OO

β1
0

OO

s′21 //
t′21

// 2̄′

αn−1
0

OO

βn−1
0

OO

//// n− 1
′

αn−1
0

OO

βn−1
0

OO

s′nn−1 //
t′nn−1

// n̄′

αn
0

OO

βn
0

OO

where in particular we have an arrow ξ1 : 1̄′ // 0̄ . Arrows sn+1
n , tn+1

n , αn0 , βn0 ,
and ξ1 satisfy the following relations

• αn+1
0 ◦ s′n+1

n = sn+1
n ◦ αn0 , αn+1

0 ◦ t′n+1
n = tn+1

n ◦ αn0 ,

• βn+1
0 ◦ s′n+1

n = sn+1
n ◦ βn0 , βn+1

0 ◦ t′n+1
n = tn+1

n ◦ βn0 ,

• ξ1 ◦ s′10 = α0
0 and ξ1 ◦ t′10 = β0

0 .

More generally the n-globe category Gn is given by the category

0̄
s10 //
t10

// 1̄
s12 //
t21

// 2̄ //// n− 1
snn−1 //
tnn−1

// n̄

0̄′

α0
0

OO

β0
0

OO

s′10 //
t′10

// 1̄′

__ __

α1
0

OO

β1
0

OO

s′21 //
t′21

// 2̄′

gg gg

α2
0

OO

β2
0

OO

//// n− 1
′

ii

αn−1
0

OO

βn−1
0

OO

s′nn−1 //
t′nn−1

// n̄′

αn
0

OO

βn
0

OO
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where in particular we have an arrow ξn−1 : n− 1
′ // 0̄ , and also for each

1 6 p 6 n− 2, we have arrows p̄′
αp //
βp

// 0̄ . The arrows sn+1
n , tn+1

n , αn0 , βn0 , αp, βp,

and ξn−1 satisfy the following relations

• αn+1
0 ◦ s′n+1

n = sn+1
n ◦ αn0 , αn+1

0 ◦ t′n+1
n = tn+1

n ◦ αn0 ,

• βn+1
0 ◦ s′n+1

n = sn+1
n ◦ βn0 , βn+1

0 ◦ t′n+1
n = tn+1

n ◦ βn0 .

• αp ◦ s′pp−1 = βp ◦ s′pp−1 = αp−1 and αp ◦ t′pp−1 = βp ◦ t′pp−1 = αp−1, and we put

α0 := α0
0 and β0 := β0

0 ,

• ξn−1 ◦ s′n−1
n−2 = αn−2 and ξn−1 ◦ t′n−1

n−2 = βn−2.

The cosources and cotargets functors G0

δ10 //
κ1
0

// G1 are such that δ1
0 sends G0 to

G0, and κ1
0 sends G0 to G′0. The cosources and cotargets functors G1

δ21 //
κ2
1

// G2

send G0 to G0, and G′0 to G′0. Also δ2
1 sends the symbols αn0 to the symbols αn0 ,

and κ2
1 sends the symbols αn0 to the symbols βn0 .

Now we consider the case n > 3. The cosource and cotarget functors

Gn−1

δnn−1 //
κn
n−1

// Gn

are constructed as follows. First we remove the cell ξn−1 and the cell βn−2

from Gn, and we obtain the category G−n−1. Clearly we have an isomorphism

of categories G−n−1 ' Gn−1 (which sends αn−2 to ξn−2), and also the embedding

G−n−1
� � δ
′n−1
n // Gn . The composition of this embedding with the last isomorphism

gives Gn−1

δnn−1 // Gn .

The cotarget functor κnn−1 is built similarly: First we remove the cell ξn−1

and the cell αn−2 from Gn, and we obtain the category G+
n−1. Clearly we have

an isomorphism of categories G+
n−1 ' Gn−1 (which sends βn−2 to ξn−2), and also

the embedding G+
n−1
� � κ
′n
n−1 // Gn . The composite of this embedding with the last
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isomorphism gives Gn−1

κn
n−1 // Gn . It is easy to see that these functors δnn−1 and

κnn−1 verify the cosource/cotarget conditions as for the globe category G0 above.
We denote the category of sets by Set and the category of large sets by SET .
When we apply the contravariant functor [−;Set](0) to the coglobular object

in CAT

Gop0
δ10 //
κ1
0

// Gop1
δ12 //
κ2
1

// Gop2
//// Gopn−1

δnn−1 //
κn
n−1

// Gopn

it is easy to see that we obtain the globular set of globular sets6

//// [Gopn ;Set](0)
σn
n−1 //
βn
n−1

// [Gopn−1;Set](0) //// [Gop1 ;Set](0)
σ1
0 //
β1
0

// [Gop0 ;Set](0)

Remark 2.1. If instead we apply to it the contravariant functor [−;Set] we obtain
the globular category of globular sets, which is useful in [9], for example to describe
the globular category of the strict ω-categories.

An object of the category of presheaves [Gopn ;Set] is called an (n, ω)-graph7.
For instance, if n > 3, then the source functor σnn−1 is described as follows. Take

an (n, ω)-graph X : Gopn // Set with underlying (n− 1)-transformation

X(ξn−1) : X(0̄) // X(n− 1
′
) ,

and then

σnn−1(X)(ξn−2) : X(0̄) // X(n− 2
′
)

is the underlying (n− 2)-transformation of σnn−1(X) defined by:

σnn−1(X)(ξn−2) = X(s′nn−1) ◦X(ξn−1).

Similarly for the target functors βnn−1.

6For each n ∈ N, [Gop
n ; Set](0) means the set of objects of the presheaf category

[Gop
n ; Set].
7Do not confuse (n, ω)-graphs with the (∞, n)-graphs that we defined in [7]. They are

completely different objects. In [7], (∞, n)-graphs are a kind of globular set which plays
a central role in defining an algebraic approach of (∞, n)-categories.
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Now we are going to give an operadic approach to the globular set of globular
sets by using the technology of Section 2 of [8]. Let us denote by G• the coglobular
object in T-Grp,c

G0
δ10 //
κ1
0

// G1
δ12 //
κ2
1

// G2 //// Gn−1
δnn−1 //
κn
n−1

// Gn

built just by removing all cells “µnp” and “νnp ” from the object C• in T-Grp,c
(described in Section 4 of [8]):

C0
δ10 //
κ1
0

// C1
δ12 //
κ2
1

// C2 //// Cn−1
δnn−1 //
κn
n−1

// Cn

If we apply to it the free functor M : T-Grp,c // T-CATc (see Section 2

of [8]) we obtain a coglobular object8 in T-CATc

B0
G

δ10 //
κ1
0

// B1
G

δ12 //
κ2
1

// B2
G

//// Bn−1
G

δnn−1 //
κn
n−1

// BnG

which produces the globular object

//// BnG-Alg
σn
n−1 //
βn
n−1

// Bn−1
G -Alg //// B1

G-Alg
σ1
0 //
β1
0

// B0
G-Alg

in CAT . We then have the following easy proposition.

Proposition 2.2. The category B0
G-Alg is the category [Gop0 ;Set] of globular sets,

B1
G-Alg is the category [Gop1 ;Set] of (1, ω)-graphs, and for each integer n > 2,

BnG-Alg is the category [Gopn ;Set] of (n, ω)-graphs.

Let us denote this coglobular object in T-CATc by B•G. Its standard action is
given by the following diagram in T-CAT1:

Coend(B•G)
Coend(Alg(.)) // Coend(AopG )

Coend(Ob(.)) // End(A0,G)

It is the standard action of higher transformations specific to the basic globular set
structure. The monochromatic ω-operad Coend(B•G) of coendomorphisms plays a

8Here B0
G is the initial ω-operad.
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central role for globular sets, and we call it the white operad. It is straightforward
that B0

G has the fractal property because it is initial in the category T-CAT1 of
ω-operads and thus has a unique morphism

B0
G

!G // Coend(B•G)

of ω-operads. If we compose it with the standard action of the globular sets

Coend(B•G)
Coend(Alg(.)) // Coend(AopG )

Coend(Ob(.)) // End(A0,G)

we obtain a morphism of ω-operads

B0
G

G // End(A0,G)

which expresses an action of the ω-operad B0
G of globular sets on the globular object

B•G-Alg(0) in SET of (n, ω)-graphs (n ∈ N). This gives a globular set9 structure
on (n, ω)-graphs (n ∈ N).

3 The functor of contractible units

We denote the category of the reflexive globular sets by ω-Grr (see [16]). We have
the adjunction

ω-Grr
U //

Gr
R

>oo

and the generated monad of reflexive globular sets is denoted by (R, η, µ). Objects
of ω-Grr are usually written as (G, (1pn)06p<n)), where the operations (1pn)06p<n is
a chosen reflexive structure on the globular set G. Also we consider the monad T
on the globular sets whose algebras are strict ω-categories. In this paragraph we
will build the functor of the contractible units for pointed T-graphs (see [13]). It
plays the same role for the pointed T-graphs as the previous functor R plays for the
globular sets. First we must define pointed T-graphs with contractible units which
are, for the pointed T-graphs, what reflexive globular sets are for globular sets.
Throughout this paper we will work with pointed T-graphs and with T-categories
over constant globular sets (see [5]), and a subscript “c” on categories will mean
that we work with constant globular sets. For instance the category T-Grp,c of
pointed T-graphs is adorned with a “c” to indicate that objects of this category
are the pointed T-graphs over constant globular sets.

Now consider an object (C, d, c;u) of the category T-Grp,c. Here u denotes a
chosen point of (C, d, c); that is, the data of a morphism

9Some mathematicians might prefer to say large globular set or globular class.
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(G, ηG, idG)
(u,1G) // (C, d, c)

in T-Grc where G designates the underlying constant globular set of arities of
(C, d, c) (or in other words, designates the set of colours of (C, d, c)).

Remark 3.1. A p-cell of G is denoted by g(p) and this notation has the following
meaning. The symbol g indicates the “colour”, and the symbol p reminds us that
we must see g(p) as a p-cell of G because, while G is just a set, we are thinking of
it as a constant globular set.

In order to define pointed T-graphs with contractible units we are going first to
define an intermediate structure on T-graphs. Consider a T-graph (C, d, c) and, for
each n ∈ N, we denote the set of n-cells of the T-graph (C, d, c) by C(n). Consider
also the reflexive globular set (T(G), (1pn)06p<n)) such that the operations 1pn are
freely generated by the monad T. We say that the T-graph (C, d, c) is equipped
with a reflexive structure if its underlying globular set C is equipped with a reflexive
structure in the usual sense and d is a morphism of reflexive globular sets. Note
that G is also equipped with a trivial reflexivity structure (G, (1pn)06p<n)) such that
the operations 1pn are defined by 1pn(g(p)) = g(n), forcing c to be a morphism of
reflexive globular sets as well. We denote reflexive T-graphs, where the operations
1pn are those of C, by (C, d, c; (1pn)06p<n). A morphism between two reflexive T-
graphs is just a morphism of T-graphs which preserves reflexivity, and the category
of reflexive T-graphs over constant globular sets is denoted by T-Grrc.

A pointed T-graph (C, d, c; p) over a constant globular set G has contractible

units if it is equipped with a monomorphism R(G)
v // C such that u factorise

as
R(G)

!!
G

η(G)
==

u
// C

and such that the induced T-graph T(G) R(G)
doo c // G is reflexive. That

is, the restriction of d to R(G) is a morphism of reflexive globular sets. We denote
pointed T-graphs with contractible units by (C, d, c; p, v, (1pn)06p<n). A morphism

(C, d, c; p, v, (1pn)06p<n)
(f,h) // (C ′, d′, c′; p′, v′, (1pn)06p<n)

of pointed T-graphs with contractible units is given by a morphism of pointed
T-graphs (see [13])

(C, d, c; p)
(f,h) // (C ′, d′, c′; p′)
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such that fv = v′R(h), and (R(G), d, c)
(f,h) // (R(G′), d′, c′) is a morphism

of reflexive T-graphs. Thus morphisms between two T-graphs equipped with con-
tractible units preserve this structure of contractibility on the units. The category
of pointed T-graphs with contractible units is denoted by UT-Grp,c. It is easy to see
that UT-Grp,c is locally presentable, because it is based on the locally presentable
category T-Grp,c, and equipped with a structure of contractibility on the units,
whose operations 1pm on the units and their axioms, show easily that UT-Grp,c is
also projectively sketchable10.

Also we can easily prove that the forgetful functor

UT-Grp,c
U ′ // T-Grp,c

is a right adjoint by using basic techniques coming from logic as in [5]. Thus we
can apply Proposition 5.5.6 of [3] which shows the monad TU induced by this
adjunction has rank. Also U ′ is monadic by the Beck theorem on monadicity. We
write R′ for the left adjoint of U ′:

UT-Grp,c
U ′ //

T-Grp,c
R′
>oo .

Furthermore, we have the general fact (which can be found in [10, 11]).

Proposition 3.2 (G.M. Kelly). Let K be a locally finitely presentable category,
and Mndf (K) the category of finitary monads on K and strict morphisms of mon-
ads. Then Mndf (K) is itself locally finitely presentable. If T and S are object of
Mndf (K), then the coproduct T

∐
S is algebraic, which means that KT ×

K
KS is

equal to KT
∐
S and the diagonal of the pullback square

KT ×
K
KS p1 //

p2

��

KS

U

��
KT

V
// K

is the forgetful functor KT
∐
S −→ K. Furthermore the projections KT ×

K
KS −→

KT and KT ×
K
KS −→ KS are monadic.

10Good references for sketch theory are [1, 3, 12, 14].
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Remark 3.3. According to Steve Lack, this result can be easily generalised to
monads having ranks in the context of locally presentable category.

With the functor V defined in Section 2 of [8], we have the following diagram :

UT-Grp,c ×
T-Grp,c

T-CATc
p1 //

p2

��

T-CATc

V

��
UT-Grp,c

U ′
// T-Grp,c

Applying the above proposition, we see that

UT-CATc := UT-Grp,c ×
T-Grp,c

T-CATc

is a locally presentable category11, and also that the forgetful functor

UT-CATc
O // T-Grp,c

is monadic. Denote by F the left adjoint to O.

In Sections 4 and 6, we apply this functor F to the coglobular objects G• and
C• of T-Grp,c, to obtain respectively, the coglobular object of higher operads for
reflexive globular sets, and the coglobular object of higher operads for reflexive
ω-magmas.

4 The coglobular objects of the reflexive graphical ω-operads

By taking the globe category G0 (see Section 2) as basis, we build the reflexive
globe category G0,r as follow. For each n ∈ N we add into G0 the formal morphism

n+ 1
1n
n+1 // n̄ such that 1nn+1◦sn+1

n = 1nn+1◦tn+1
n = 1n̄. For each 0 6 p < n

we denote 1pn := 1pp+1 ◦ 1p+1
p+2 ◦ ... ◦ 1n−1

n .

For each each n > 1 we are going to build similar categories Gn,r in order to
obtain a coglobular object

11UT-CATc is the category of coloured ω-operads with chosen contractible units where
in particular morphisms of this category preserve contractibility of the units.
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G0,r

δ10 //
κ1
0

// G1,r

i01

�� δ12 //
κ2
1

// G2,r

i12

�� //// Gn−1,r

δnn−1 //
κn
n−1

// Gn,r

in−1
n

~~

in CAT , equipped with coreflexivity functors inn+1. Each category Gn,r is called
the reflexive n-globe category. It is built as were the categories Gn (n > 1) where
now we just replace G0 and G′0 by G0,r and G′0,r.

For each n > 1, the cosource and the cotarget functors

Gn−1,r

δnn−1 //
κn
n−1

// Gn,r

are defined as were those for the

Gn−1

δnn−1 //
κn
n−1

// Gn

of Section 2, where in addition δ1
0 sends, for all p > 0, the reflexivity morphism

1pp+1 to the reflexivity morphism 1pp+1, and κ0
1 sends the reflexivity morphism 1pp+1

to the reflexivity morphism 1′pp+1. Also, if n > 2, δnn+1 and κnn+1 send, for all p > 0,
the reflexivity morphism 1pp+1 to the reflexivity morphism 1pp+1, and the reflexivity

morphism 1′pp+1 to the reflexivity morphism 1′pp+1. These functors δnn−1 and κnn−1

do indeed satisfy the cosource and cotarget conditions.
For each n > 1, the coreflexivity functor

Gn,r
in−1
n // Gn−1,r

is built as follows: the coreflexivity functor ι01 sends, for all q > 0, the object q̄ to
q̄, the object q̄′ to q̄, the cosource morphisms sq+1

q and s′q+1
q to sq+1

q , the cotarget
morphisms tq+1

q and t′q+1
q to tq+1

q , and the functor morphisms αq0 to 1q̄. Also the
coreflexivity functor i12 sends, for all q > 0, the object q̄ to q̄, the object q̄′ to q̄′, the
cosource morphism sq+1

q to the cosource morphism sq+1
q , the cosource morphism

s′q+1
q to the cosource morphism s′q+1

q , the cotarget morphism tq+1
q to the cotarget

morphism tq+1
q , the cotarget morphism t′q+1

q to the cotarget morphism t′q+1
q , the

functor morphisms αq0 to the functor morphisms αq0, the functor morphisms βq0 to
the functor morphisms βq0 , and the natural transformation morphism ξ1 to α0

0 ◦1′01 .
Also, for each n > 3, the coreflexivity functor in−1

n sends, for all q > 0, the
object q̄ to q̄, the object q̄′ to q̄′, the cosource morphism sq+1

q to the cosource
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morphism sq+1
q , the cosource morphism s′q+1

q to the cosource morphism s′q+1
q , the

cotarget morphism tq+1
q to the cotarget morphism tq+1

q , the cotarget morphism
t′q+1
q to the cotarget morphism t′q+1

q , the functor morphisms αq0 to the functor
morphisms αq0, the functor morphisms βq0 to the functor morphisms βq0 . Also, if
0 6 p 6 n − 3, it sends the p-transformation αp to the p-transformation αp, the
p-transformation βp to the p-transformation βp

12, the (n−2)-transformation αn−2

and βn−2 to the (n−2)-transformation ξn−2, and finally the (n−1)-transformation
ξn−1 to ξn−2 ◦ 1′n−2

n−1 .
With this construction it is not difficult to show that functors in−1

n (n > 1)
satisfy the coreflexivity identities

in−1
n ◦ δnn−1 = 1Gr

n−1
= in−1

n ◦ κnn−1 .

When we apply the contravariant functor [−;Set](0) to the coglobular object in
CAT

Gop0,r
δ10 //
κ1
0

// Gop1,r

i01

__

i

__ δ12 //
κ2
1

// Gop2,r

i12

__
//// Gopn−1,r

δnn−1 //
κn
n−1

// Gopn,r

in−1
n

~~

we obtain the reflexive globular set of reflexive globular sets:

//// [Gopn,r;Set](0)
σn
n−1 //
βn
n−1

// [Gopn−1,r;Set](0)

ιn−1
n

}}
//// [Gop1,r;Set](0)

σ1
0 //
β1
0

// [Gop0,r;Set](0)

ι01

~~

An object of the category of presheaves [Gopn ;Set] is called a reflexive (n, ω)-graph.
For instance, if n > 3, the reflexivity functor ιn−1

n can be described as follows.

If X : Gopn−1
// Set is an (n− 1, ω)-graph and

X(ξn−2) : X(0̄) // X(n− 2
′
)

is its underlying (n− 2)-transformation, then

ιn−1
n (X)(ξn−1) : X(0̄) // X(n− 1

′
)

12By convention we put α0 = α0
0 and β0 = β0

0 . In fact this convention is natural
because from our point of view of n-transformations, 1-transformations are the usual
natural transformations, and a 0-transformation should be seen as the underlying function
F0 acting on the 0-cells of a functor F .
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is the (n− 1)-transformation defined by ιn−1
n (X)(ξn−1) = X(1′n−2

n−1 ) ◦X(ξn−2).
Now we are going to give an operadic approach of the reflexive globular set

of reflexive globular sets by using the technology of Section 2 of [8]. Consider
the coglobular object G• in T-Grp,c as in 2. If we apply the free functor F :

T-Grp,c // UT-CATc (see Section 3) to it we obtain a coglobular object in

T-CATc:

B0
Gu

δ10 //
κ1
0

// B1
Gu

δ12 //
κ2
1

// B2
Gu

//// Bn−1
Gu

δnn−1 //
κn
n−1

// BnGu

It is important to notice that the ω-operad B0
Gu

is initial in UT-CAT1. Also this
coglobular object B•Gu

produces the following globular object in CAT

//// BnGu
− Alg

σn
n−1 //
βn
n−1

// Bn−1
Gu
− Alg //// B1

Gu
− Alg

σ1
0 //
β1
0

// B0
Gu
− Alg

and we have:

Proposition 4.1. The category B0
Gu

-Alg is the category [Gop0,r;Set] of reflexive

globular sets, B1
Gu

-Alg is the category [Gop1,r;Set] of reflexive (1, ω)-graphs, and for
each integer n > 2, BnGu

-Alg is the category [Gopn,r;Set] of reflexive (n, ω)-graphs.

We denote this coglobular object in T-CATc by B•Gu
. According to the results

of Section 2 of [8], we obtain the diagram

Coend(B•Gu
)
Coend(Alg(.)) // Coend(AopGu

)
Coend(Ob(.)) // Coend(Aop0,Gu

)

in T-CAT1 that we call the standard action of the reflexive globular sets. It is a
specific standard action. The monochromatic ω-operad Coend(B•Gu

) of coendo-
morphisms plays a central role for reflexive globular sets, and we call it the blue
operad. Also we have the following result:

Proposition 4.2. B0
Gu

has the fractal property.

Proof. The units of the ω-operad Coend(B•Gu
) are given by the identity morphisms

BnGu

1Bn
Gu // BnGu

. We are going to exhibit a morphism of ω-operads

Bn+1
Gu

[1Bn
Gu

;1Bn
Gu

]nn+1
// BnGu
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which is the contractibility of the unit 1Bn
Gu

with itself.

First consider the morphism of Gn+1
cnn+1 // BnGu

of T-Grc, which sends

um to um, vm to vm, αm0 to αm0 , βm0 to βm0 , αp to αp, βp to βp, αn to ξn, βn to
ξn, and ξn+1 to γ([un;un]nn+1; 1ξn). This map cnn+1 equips BnGu

with an operation
system of the type Gn+1. Now BnGu

has contractible units, so by the universality
of the map ηn+1, we obtain a unique morphism [1Bn

Gu
; 1Bn

Gu
]nn+1 of ω-operads.

Bn+1
Gu

[1Bn
Gu

;1Bn
Gu

]nn+1
// BnGu

Gn+1

ηn+1

OO

cnn+1

44

This (n+ 1)-cell [1Bn
Gu

; 1Bn
Gu

]nn+1 has as arity the degenerate tree 1nn+1(1(n)). Now
we just need to prove that the following diagram commutes serially, which will
show that the source and target of [1Bn

Gu
; 1Bn

Gu
]nn+1 are the unit 1Bn

Gu
:

Bn+1
Gu

[1Bn
Gu

;1Bn
Gu

]nn+1

**
BnGu

δn+1
n

OO
κn+1
n

OO

1Bn
Gu

// BnGu

But we have the following diagram which, on the left side commutes serially, and
on the right side commutes:

BnGu

δn+1
n //
κn+1
n

// Bn+1
Gu

[1Bn
Gu

;1Bn
Gu

]nn+1
// BnGu

Gn

ηn

OO

δn+1
n //
κn+1
n

// Gn+1

ηn+1

OO

cnn+1

55

The morphism cnn+1 is a morphism of T-Grp,c, as are the morphisms δn+1
n and

κn+1
n on the bottom of this diagram. Their combinatorial descriptions show easily

that we have the equalities cnn+1 ◦ δn+1
n = cnn+1 ◦ κn+1

n = ηn. So we have the
equalities [1Bn

Gu
; 1Bn

Gu
]nn+1 ◦ δn+1

n = [1Bn
Gu

; 1Bn
Gu

]nn+1 ◦ κn+1
n = 1Bn

Gu
. This shows

that the ω-operad Coend(B•Gu
) has contractible units, and thus we have a unique

morphism

B0
Gu

!Gu // Coend(B•Gu
)

of ω-operads which expresses the fractality of B0
Gu

.
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If we compose the morphism !Gu
with the standard action of the reflexive

globular sets

Coend(B•Gu
)
Coend(Alg(.)) // Coend(AopGu

)
Coend(Ob(.))// Coend(A0,Gu)op

we obtain a morphism of ω-operads

B0
Gu

Gu // End(A0,Gu
)

which expresses an action of the ω-operad B0
Gu

of reflexive globular sets on the
globular object B•Gu

-Alg(0) in SET of the reflexive (n, ω)-graphs (n ∈ N). This
gives a reflexive globular set structure on reflexive (n, ω)-graphs (n ∈ N).

5 The coglobular objects of magmatic ω-operads

Consider now the case P = M (magmatic). That is, we deal with the category
T-CATc of ω-operads. We apply the free functor

T-Grp,c
M // T-CATc

to the coglobular object C• in T-Grp,c of the higher transformations (see Section
3 of [8]) and we obtain a coglobular object B•M of ω-operads in T-CATc

B0
M

δ10 //
κ1
0

// B1
M

δ12 //
κ2
1

// B2
M

//// Bn−1
M

δnn−1 //
κn
n−1

// BnM

If we write BT-CAT1 for the category of ω-operads equipped with a chosen compo-
sition system in Batanin’s sense, whose morphisms are those which preserve these
composition systems, then it is important to note that the ω-operad B0

M is initial
in BT-CAT1.

Also, this coglobular object B•M produces the following globular object in CAT

//// BnM -Alg
σn
n−1 //
βn
n−1

// Bn−1
M -Alg //// B1

M -Alg
σ1
0 //
β1
0

// B0
M -Alg

In particular, B0
M is the ω-operad for ω-magmas, and, for all n > 0, algebras for

BnM are what we call (n, ω)-magmas.
The standard action associated to B•M is given by the following diagram in

T-CAT1:
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Coend(B•M )
Coend(Alg(.)) // Coend(AopM )

Coend(Ob(.)) // End(A0,M )

We call this the standard action of ω-magmas, which is a specific standard action
of higher transformations. The monochromatic ω-operad Coend(B•M ) of coendo-
morphisms plays a central role for ω-magmas. We call it the yellow operad. Also
we have the following result:

Proposition 5.1. B0
M has the fractal property.

Proof. In 7 we built a composition system for Coend(B•M ). Therefore, just using
the universality of B0

M in BT-CAT1 we get the result.

If we compose the morphism !M

B0
M

!M // Coend(B•M )

with the standard action associated to B•M , we obtain a morphism of ω-operads

B0
M

Id // End(A0,M )

which expresses an action of the ω-operad B0
M of ω-magmas on the globular object

B•M -Alg(0) in SET of (n, ω)-magmas (n ∈ N), and thus gives an ω-magma structure
on (n, ω)-magmas (n ∈ N).

6 The coglobular object of reflexive magmatic ω-operads

Consider the case P = Mu (magmatic with contractible units). That is, we deal
with the category UT-CATc of ω-operads with chosen contractible units (see Sec-
tion 3). We apply the free functor (see Section 3)

T-Grp,c
F // UT-CATc

to the coglobular object C• of higher transformations in T-Grp,c and we obtain a
coglobular object B•Mu

of ω-operads in T-CATc

B0
Mu

δ10 //
κ1
0

// B1
Mu

δ12 //
κ2
1

// B2
Mu

//// Bn−1
Mu

δnn−1 //
κn
n−1

// BnMu

If we write UBT-CAT1 for the category of ω-operads equipped with a composi-
tion system in Batanin’s sense and which have chosen contractible units, where the
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morphisms are those which preserve these composition systems and contractibil-
ity of the units, then it is important to note that the ω-operad B0

Mu
is initial in

UBT-CAT1.
Also this coglobular object B•Mu

produces the following globular object in CAT

// // BnMu
-Alg

σn
n−1 //
βn
n−1

// Bn−1
Mu

-Alg //// B1
Mu

-Alg
σ1
0 //
β1
0

// B0
Mu

-Alg

In particular B0
Mu

is the ω-operad for reflexive ω-magmas (see [7]). The standard
action associated to B•Mu

is given by the following diagram in T-CAT1:

Coend(B•Mu
)
Coend(Alg(.)) // Coend(AopMu

)
Coend(Ob(.)) // End(A0,Mu

)

It is a specific standard action of higher transformations. The monochromatic
ω-operad Coend(B•Mu

) of coendomorphisms plays a central role for reflexive ω-
magmas. We call it the green operad. Also we have the following result:

Proposition 6.1. B0
Mu

has the fractal property.

Proof. In 7 we built a composition system for Coend(B•Mu
), and contractibility of

its units is proved as in Section 4. Thus we just use the universality of B0
Mu

in
UBT-CAT1 to conclude.

If we compose the morphism !Mu

B0
Mu

!Mu // Coend(B•Mu
)

with the standard action associated to B•Mu
, we obtain a morphism of ω-operads

B0
Mu

Cu // End(A0,Mu
)

which expresses an action of the ω-operad B0
Mu

of reflexive ω-magmas on the glob-
ular object B•Mu

-Alg(0) in SET of reflexive (n, ω)-magmas (n ∈ N), and thus gives
a reflexive ω-magma structure on reflexive (n, ω)-magmas (n ∈ N).

Remark 6.2. In [9] we use the same combinatorics for the Cn but with different
monads of arities: In fact we will use monads Tn (for all n ≥ 2) on Glob2 of the strict
n-transformations instead, where Glob2 is the product of the category of globular
sets with itself in CAT . If we denote (1, 1) the terminal object in Glob2, then all
free strict higher transformations Tn(1, 1) will play the role of arities domain for
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these Cn13. It give us a similar coglobular object C• for the higher transformations
which fits completely the control of coherences cells for its generated higher operads
for the strict and the weak higher transformations. We could have proposed this
different coglobular object for building this article, but the author believe that
higher structures involved here are more simple and also more easily described by
using the simpler coglobular object C• with arities domain T(1) + T(1), that we
use all along this article.

We suspect that the ω-operad B0
C of Batanin which algebras are his definition

of weak ω-categories is fractal (see [6] and [9]). We also suspect that the ω-operad
B0
Su

14 which algebras are the strict ω-categories is fractal as well (see [9]): Supris-
ingly, we see in [9] that these two questions of fractality, for the strict case and for
the weak case, share in fact the same level of difficulty.

7 Composition systems

In this section we describe a composition system in Batanin’s sense for the yellow
operad Coend(B•M ) described in Section 5, and for the green operad Coend(B•Mu

)
described in Section 6. B•P , or B• for short, denotes the coglobular object B•M
(see Section 5) or the coglobular object B•Mu

(see Section 6) in T-CATc. Also, we
denote by Bn t

Bp
Bn the 3-coloured ω-operad in T-CATc which is obtained by the

pushout of

Bp

δnp
��

κn
p // Bn

Bn

in T-CATc, where δpn = δnn−1...δ
p
p+1 and κpn = κnn−1...κ

p
p+1. For integers 0 6 p < n

we are going to define a morphism

Cn
µn
p // Bn t

Bp
Bn

13Instead of the other useful arities domain T(1) + T(1) of this article. These arities
domain Tn(1, 1) follow the spirit of constructions of weak higher transformations as in [4],
where coherences must be controlled by strict higher transformations.

14In [6] and [9], we show that the ω-operad of the strict ω-categories can be presented
in a completely similar way as the Batanin’s operad B0

C : It is the initial object in the
category of the ω-operads which are strictly contractible and equipped with a composition
system. This also explain the similar notation for this operad with those of Batanin.
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in T-Grp,c which, depending on the universality property required, gives us a unique
morphism

Bn
µn
p // Bn t

Bp
Bn

in T-CATc, that we still call µnp because there is no risk of confusion. The universal

map Cn
ηn // Bn gives us such morphism µnp . The key point in defining these

morphisms µnp is first to describe the different compositions ◦np for the strict higher
transformations. If 0 < p < n, we know that for two strict n-transformations σ
and τ , we have

(σ ◦np τ)(a) := σ(a) ◦n−1
p−1 τ(a)

whose operadic interpretation is given by the cell γ(µn−1
p−1 ;σ ∗n−1

p−1 τ). Then the
morphism

Cn
µn
p // Bn t

Bp
Bn

in T-Grp,c sends the principal cell τ of Cn to the (n− 1)-cell γ(µn−1
p−1 ;σ ∗n−1

p−1 τ) of
Bn t

Bp
Bn, sends for each i ∈ N the i-cell Fi of Cn to the i-cell Fi of Bn t

Bp
Bn, and

sends the i-cell Gi of Cn to the i-cell Hi of Bn t
Bp
Bn. This morphism of T-Grp,c

is boundary preserving in an evident sense.

For p = 0 it is a bit more complex. We are in the situation of the pushout
diagram

B0

δ0n

��

κ0
n // Bn

i1

��
Bn

i2
// Bn t

B0
Bn .

First we describe the composition ◦n0 for the strict case in order to find the cells
that we need in our ω-operad. Consider the following diagram in ω-Cat, the strict
ω-category of strict ω-categories:

C
F
&&

G

88�� τ D
H
''

K

88�� τ E
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Here C, D and E are 0-cells (that is, strict ω-categories), F , G, H and K are 1-cells
(that is, strict ω-functors) and τ and σ are n-cells (that is, strict n-transformations).
This picture describes τ and σ with 2-cells, but the reader must see them as n-cells.
Also, τ and σ are such that: sn0 (σ) = C, tn0 (σ) = sn0 (τ) = D, and tn0 (τ) = E . If

a ∈ C(0), then F 0
τ(a) // G0 is an (n − 1)-cell of D and it induces the following

commutative square of (n− 1)-cells in E :

H0(F 0(a))

σ(F 0)

��

Hn−1(τ(a)) // H0(G0(a))

σ(G0)

��
K0(F 0(a))

Kn−1(τ(a))

// K0(G0(a))

This gives

(σ ◦n0 τ)(a) = σ(G0(a)) ◦n−1
0 Hn−1(τ(a))

= Kn−1(τ(a)) ◦n−1
0 σ(F0(a))

which gives the two principal (n− 1)-cells of Bn t
B0
Bn that we need:

γn−1(µn−1
0 ; γ(σ;G0) ∗n−1

0 γ(Hn−1; τ))
and

γn−1(µn−1
0 ; γ(Kn−1; τ) ∗n−1

0 γ(σ;F 0)).

Then we have two choices of

Cn
µn
o // Bn t

Bp
Bn

which send the principal cell τ of Cn to γn−1(µn−1
0 ; γ(σ;G0) ∗n−1

0 γ(Hn−1; τ)) or
to γn−1(µn−1

0 ; γ(Kn−1; τ) ∗n−1
0 γ(σ;F 0)), and for both cases which send, for each

i ∈ N, the i-cell F i of Cn to the i-cell γ(Fi;Hi) of Bn t
B0
Bn, and the i-cell Gi of

Cn to the i-cell γ(Gi;Ki) of Bn t
B0
Bn. These morphisms of T-Grp,c are boundary

preserving in an evident sense.

Thanks to the universal property of ηn, we obtain the following unique15 mor-
phisms of ω-operads µnp and µn0 (the dotted arrows).

15We say unique for µn
0 because we choose one presentation of µn

0 among the two
choices as above which are possible for µn

0 . However it is important to note that under
the hypothesis of contractibility of [9], these two choices will connect with a coherence
cell or will equalise, depending on the contractibility involved.
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Bn
µn
p // Bn t

Bp
Bn

Cn

ηn

OO

µn
p

66
Bn

µn
0 // Bn t

B0
Bn

Cn

ηn

OO

µn
0

66

With the identity morphisms of operads Bn
1Bn // Bn

C0 c // Coend(B•)

µnp
� // µnp

un
� // 1Bn

Thus, anticipating Sections 5 and 6, we have the following conclusion:

Proposition 7.1. The ω-operads of coendomorphisms Coend(B•M ) and Coend(B•Mu
),

both have a composition system.
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Catég. 4 (2011), 1–48.

[6] C. Kachour, “Aspects of Globular Higher Category Theory”, Ph.D. Thesis, Mac-
quarie University, 2013.



Operads of higher transformations for globular sets and higher magmas111

[7] C. Kachour, Algebraic definition of weak (∞, n)-categories, To appear in Theory
Appl. Categ. (2015).

[8] C. Kachour, ω-Operads of coendomorphisms and fractal ω-operads for higher struc-
tures, Categ. General Alg. Structures Appl. 3(1) (2015), 65–88.

[9] C. Kachour, Steps toward the weak ω-category of the weak ω-categories in the glob-
ular setting, To appear in Categ. General Alg. Structures Appl. 4(1) (2015).

[10] G.M. Kelly, A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on, Bull. Aust. Math. Soc. 22 (1980),
1–83.

[11] S. Lack, On the monadicity of finitary monads, J. Pure Appl. Algebra 140 (1999),
65–73.

[12] L. Coppey and Ch. Lair, Leçons de théorie des esquisses, Université Paris VII,
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