$\omega$-Operads of coendomorphisms and fractal $\omega$-operads for higher structures

Document Type: Research Paper

Author

Department of Mathematics, Macquarie University, Sydney, Australia.

Abstract

     In this article we introduce the notion of \textit{Fractal $\omega$-operad} emerging from  a natural $\omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $\omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $\omega$-operad acts on the globular object associated to these higher transformations. To construct the natural $\omega$-operad we introduce some general technology and give meaning to saying an $\omega$-operad possesses the \textit{fractal property}. If an $\omega$-operad $B^{0}_{P}$ has this property then one can define a globular object of all higher $B^{0}_{P}$-transformations and show that the globular object has a $B^{0}_{P}$-algebra structure.

Keywords


[1] D. Ara, Sur les 1-groupoıdes de Grothendieck et une variante 1-categorique,
http://arxiv.org/pdf/math/0607820v2 (2010).
[2] M. Batanin, Monoidal globular categories as a natural environment for the theory
of weak-n-categories, Adv. Math. 136 (1998), 39–103.
[3] M. Batanin and R. Street, The universal property of the multitude of trees, J. Pure
Appl. Algebra 154 (2000), 3–13.
[4] M. Batanin, The Eckmann-Hilton argument and higher operads, Adv. Math. 217
(2008), 334–385.
[5] C. Berger, A cellular nerve for higher categories, Adv. Math. 169 (2002), 118–175.
[6] F. Borceux, “Handbook of Categorical Algebra, Vol. 2”, Cambridge University
Press, 1994.
[7] A. Burroni, T-cat´egories (cat´egories dans un triple), Cah. Topol. G´eom. Diff´er.
Cat´eg. 12 (1971), 215–321.
[8] D.Ch. Cisinski, Batanin higher groupoids and homotopy types, Contemp. Math. 143
(2007), 171–186.
[9] A. Grothendieck, “Pursuing Stacks”, Typed manuscript, 1983.
[10] A. Joyal, Disks, duality and categories, (1997), Preprint.
[11] C. Kachour, Toward the operadical definition of the weak omega category of the
weak omega categories, Part 3: The Red Operad, Australian Category Seminar,
Macquarie University (2010).
[12] C. Kachour, D´efinition alg´ebrique des cellules non-strictes, Cah. Topol. G´eom.
Diff´er. Cat´eg. 1 (2008), pages 1–68.
[13] C. Kachour, Operadic definition of the non-strict cells, Cah. Topol. G´eom. Diff´er.
Cat´eg. 4 (2011), 1–48.
[14] C. Kachour, Operads of higher transformations for globular sets and for higher
magmas, Categ. General Alg. Structures Appl. 3(1) (2015), ????.
[15] C. Kachour, Steps toward the weak category of the weak categories in the globular
setting, To appear in Categ. General Alg. Structures Appl. 3(2) (2015).
[16] C. Kachour, “Aspects of Globular Higher Category Theory”, Ph.D. Thesis, Macquarie
University, 2013.
[17] G.M. Kelly and A.J. Power, Adjunctions whose counits are coequalizers and presentations
of finitary enriched monads, J. Pure Appl. Algebra 89 (1993), 163–179.
[18] S. Lack, On the monadicity of finitary monads, J. Pure Appl. Algebra 140 (1999),
65–73.
[19] T. Leinster, “Higher Operads, Higher Categories”, London Math. Soc. Lect. Note
Series, Cambridge University Press 298 (2004).
[20] G. Maltsiniotis, Grothendieck 1-groupoids, and still another definition of 1-
categories, Available online : http://arxiv.org/pdf/1009.2331v1.pdf (2010).
[21] J. Penon, Approche polygraphique des 1-cat´egories non-strictes, Cah. Topol. G´eom.
Diff´er. Cat´eg. 1(1999) 31–80.
[22] R. Street, The petit topos of Globular sets, J. Pure Appl. Algebra 154 (2000), 299–
315.
[23] M. Weber, Operads within monoidal pseudo algebras, Appl. Categ. Structures 13
(2005), 389–420.
[24] M. Weber, Yoneda structures from 2-toposes, Appl. Categ. Structures 15 (2007),
259–323.