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Celebrating Professor Themba A. Dube
(A TAD Celebration I)

Inderasan Naidoo

Commemorating Themba Dube on his 65th birthday

Abstract. This is the first in a series of survey papers featuring the math-
ematical contributions of Themba Dube to pointfree topology and ordered
algebraic structures. We cover Dube’s distinguished career and benefactions
to the discipline with the early beginnings in nearness frames. We envelope
the essential aspects of Dube’s work in structured frames. The paper radars
across the initial themes of nearness, metrization, and uniform structures that
Dube conceives and presents in his independent and joint published papers.
Pertinent subcategories of these structured frames are discussed. We also fea-
ture Dube’s imprints on certain categorical aspects of his work on βL, λL, υL
and ßL.

1 Introduction

It is a great honour and a privilege for me to narrate the academic story
of Themba Dube, to author this first survey article and to write about the
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mathematical work of my colleague, Professor Themba Dube.

My first encounter with Dube was with his pronounced voice in 1996.
He called me telephonically at the former University of Durban-Westville
(UDW) (now known as the University of KwaZulu-Natal post the merger
of some of the public Higher Education Institutions in South Africa) where
I was a member of staff of the Department of Mathematics and Applied
Mathematics studying towards a Master’s degree under the lead supervi-
sion and mentorship of Professor Dharmanand (Dharms) Baboolal and co-
supervision by Professor Ramesh Ori. I had applied for my first academic
position with tenure at the University of Zululand (UniZul). The nature
of Dube’s call was in his capacity as Chair of Department and in his typ-
ical demeanour, that I would soon come to know of being rather firm and
jovial, to enquire if I really wanted to join their department and faculty in
somewhat remote rural KwaZulu-Natal being a Dubanite, within the seg-
regated suburb of Chatsworth, hailing from one of the major urban cities
of South Africa at the time. I, of course, certainly obliged in confirmation.
He then propositioned me over up north to the KwaDlangezwa campus of
UniZul and arranged an interview with their Department and the university
Human Resources. There were also other candidates that were interviewed
for the position. I then had the nervous pleasure of first physically meet-
ing Dube at the scheduled interview for the lectureship at UniZul in the
summer of 1996. I was eventually appointed and spent the next five years
at UniZul intersecting with Dube every now and again whilst he occupied
many seats of management at the university. Our careers overlapped and
eventually converged to us being together at the University of South Africa
(UNISA) in April 2009. I was tenured at the University of the Witwater-
srand in Johannesburg and it was the second telephone call of a similar
nature that I received from Dube in 2009. This time around it was an invi-
tation to me to consider a position at UNISA and to join the Department of
Mathematical Sciences in Pretoria at the behest of the Head of Department,
Professor John Hartney, who was actioning on the decisions of the depart-
mental recruitment and shortlisting committee. Since the nexus of 1996 it
has been a treasured, memorable, exciting and an unforgettable journey in
the academic company alongside Themba Dube. I am indebted to Themba
for many things especially for the vibrant career in academia that he was
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instrumental in shaping for me unintentionally (and others like Martin Mu-
gochi, Oghenetega Ighedo and Mack Matlabyana) as well as for being our
pointfree talisman, academic big brother and mentor that we have had the
privilege and fortune to engage with and enjoy at home in South Africa. We
have forged and cultivated many ideas together that culminated in fruitful
joint publications [36, 42, 47, 49, 53, 56–60, 66, 81, 106], ignited a lively and
energetic working Topology Research Group at the university, been road,
rail and air travel companions in collaboration across Africa, America and
Europe, and by good fortune have been involved in many other research
activities together at local and international conferences, workshops and
writing retreats engaging with our Master’s and Doctoral students. As luck
would have it in 2015, the Vice-Chancellor, Professor Mandla Makhanya
paired us together for the period 2016 - 2017 to serve as Chair and Deputy
Chair of the highly challenging Tender Committee of the university. There
were also occasions in which the tag-team of Dube and Naidoo were re-
quested by the leadership of the college to deliberate and advocate on mat-
ters. It is therefore indeed befitting and a prestige for me to begin in this
survey paper to commemorate and revere the illustrious scholarly work and
mathematical dexterity of my dear friend, Professor Themba Dube. In this
article we provide a comprehensive treatment of Dube’s contributions in
structured frames as the beginning theme in the launch of the series cele-
brating Dube’s mathematical works.

We begin in the next Section §2 by providing a background and aca-
demic biography of Dube that captures his early formative years and his
academic career. This is an additional supplement to the delightful in-
terview that I engaged with Dube in [150](2023) in which he kindly shared
some of his memoirs. Dube’s scholarly work until his retirement spans three
decades over the period 1992 - 2022. Briefly highlighting Dube’s contribu-
tions does not do justice to his immense influence, participation and im-
pactful involvement in the discipline, especially his living legacy within the
African continent and the commonwealth of ordered algebraic structures. It
is therefore the intention of the author, with this first survey paper, to be-
gin celebrating the scholarship of Themba Dube with the platform created
by the international conference TACT2022 in honour of his 65th birthday.
The article narrates Dube’s early life as a mathematics virtuoso in Mead-
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owlands, Soweto up until his retirement in 2022. We begin with focussing
our attention on the various classical and localic thespians that are cast and
scripted to take the stage in Dube’s academic scholarship that is dramatised
and featured in his published works. We give prominence to the main aca-
demic contributions of Dube that unfolded at his very beginning with the
encounter with pointfree thinking and the theory of frames. We explain the
forthcoming sections below. We fulfil the credits at the end of this paper in
the References section by concluding with a comprehensive bibliography of
Dube’s research publications during this 30-year period.

In Section §3 we give the necessary preliminaries that are required for a
self-contained exposition of the categories Frm, σ-Frm, NFrm, UFrm and
Near. We discuss the Stone-Čech compactfication βL, the regular Lindelöf
coreflection λL, and the Hewitt realcompactification υL, of a completely
regular frame L. We highlight the dual equivalence between spatial frames
and sober spaces and the adjoint relation between Top and Frm that was
initially given by Dowker and Papert in [127](1966). We focus on the con-
cept of a nucleus j : L - L on a frame L and the resulting frame Fix(j)
as well as the frame DL of all downsets of L. We also narrate on the strict
extension of a frame and its role in the construction of the Cauchy com-
pletion of a nearness frame. Section §4 hovers over the foundations and
findings in Dube’s doctoral thesis and covers NFrm, the category of near-
ness frames, Near the category of nearness spaces and its full subcategory
BNear of those nearness spaces that arise from B-spaces as introduced
by Dube in [6](1992). The extended or structured version of the open set
functor and the spectrum functor, O : BNear - NFrm and Σ : NFrm

- BNear are shown to induce an equivalence between spatial nearness
frames and sober B-spaces. We give a thorough account of the adjoint rela-
tion between BNear and NFrm that Dube ushers in [6]. A comprehensive
treatment of this adjunction and bringing it into the limelight is warranted
for the significant role that it plays in enhancing the discourse of nearness
frames. Moreover, this adjunction is the genesis of Dube’s work in nearness
frames and it is historically the second structured version of the adjoint re-
lation between Top and Frm that we succinctly present in Section §3. The
next part of Section §4 deals with Dube’s independent construction of the
completion of a nearness frame via generators and defining relations. We
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give due recognition to the 1992 Dube - construction of the completion of
a nearness frame via a precongruence in detail which has been silent and
perhaps overlooked and gone unnoticed in the literature on nearness frames
since its provisioning in 1992 by Dube in [6]. We bring this alternate con-
struction to the fore to share the limelight with the popular version of the
Banaschewski-Pultr-construction via a prenucleus that was published some
time later in [118](1996). The third part of §4 catapults Dube’s construc-
tion of the binary coproduct of nearness frames which Dube independently
realised to scenes of autonomous jubilation at the University of Cambridge
during his doctoral studies circa 1992. We taper Section §4 with a brief ex-
change on the various concepts, terminologies and subcategories of nearness
frames that Dube illuminates in [6] that were required in his publications
and which is needed in the remaining sections of this survey paper.

We then consider the period 1993 - 1997 post the award of Dube’s doctor-
ate from UDW. Section §5 embraces the notion of uniform complete regular-
ity appearing in [11](1996) and the binary relation �� on a frame that Dube
developed and termed completely regular for a nearness frame in [6]. Fea-
tured in Dube’s postdoctoral work, in Section §5, is the concept of uniform
normality and total boundedness of a nearness, the uniform coreflection of a
nearness frame, and strong nearness frames that Dube presented in 1994 at
the University of Cape Town (UCT) during the SoCAT94 symposium that
celebrated the 60th birthday of Professor Guillaume Brümmer [17](1999).
Apart from the contributions in nearness and uniform frames, Dube has also
made significant strides in MFrm, the category of metric frames during the
postdoctoral period in his career. We capture the notion of separability that
Dube introduces in his very first research publication [7](1994). The localic
version of the famous Urysohn’s Metrization Theorem (UMT) is established
independently by Dube in [7] that we highlight in Section §5. The marvel
behind this localic result is Dube’s injection of the notion of pointfree sep-
arability in Loc and the creativity of the concept in realising the UMT for
locales. Pursuant to his invention of separable locales in [7], Dube contin-
ued with concomitant results in MFrm in [10](1996) which we recount and
conclude with in Section §5. In Section §6 we orbit around Dube’s further
inputs into the categories NFrm and UFrm. We circumnavigate certain
properties introduced by Dube on the objects in these two categories and
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track how these properties relate to their completions. Section §7 focusses
on the notion of commutativity of functors that Dube investigates on the
reflectors and coreflectors that permeate his life’s work. The last section,
Section §8 is an invaluable inclusion of congratulatory homages to Dube
that aggregates Dube’s mathematical influence in South Africa and on the
African continent, the interview [150], his mathematical life, research con-
tributions and the TACT2022 International Conference celebration, all of
which this special issue of Categories and General Algebraic Structures with
Applications is dedicated.

2 A TAD Journey

We commence by providing a brief account of the early life of Themba Dube
and his trajectory in his academic career. The next two paragraphs is an
introductory summary of the preamble that emanated from the interview
in [150](2023). In the remaining part of this section we chronicle Dube’s
academic biography, some of which are briefly highlighted in the narratives
that are provided in [150].

Themba Andrew Dube was born on 20 June 1957. He is the only child
of Mrs Nolwandle Dube (a trained nurse) and Mr Masimini Dube. Andrew
was the Catholic name given to him as an included middle. Themba (mean-
ing Trust, Hope and Faith in the indigenous languages of South Africa) was
raised and schooled in Meadowlands in Soweto which is a well known sub-
urb within the City of Johannesburg in South Africa. Dube found himself
growing up in a township that is associated with immense talent and brave
heroes of human rights activism. Developing as a child in the SouthWestern
Township, the youthful Dube fell in love with mathematics at a very young
age. The affinity for the subject continued at secondary school level whilst
he attended the Meadowlands High School in Soweto. The township was
abuzz and would become familiar with Themba Dube as the mathematics
whizz-kid of Meadowlands. Dube also learned the tactical game of chess,
and its art of strategy and tussle, whilst at high school. Aside from the
academe, he is very proud of his athletic prowess in one of the 100 metres
sporting sprint events at Meadowlands High (he was the third fastest in that
event). Dube performed exceptionally well in his final year at high school
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and his matriculation results immediately summed up his academic talent.
He was interviewed by The World (a daily newspaper of Johannesburg “in-
tended for an audience of black middle-class elite” - which was eventually
banned by the apartheid government) on his secondary schooling accolades
and for his achievements in matric. The World had acquired Dube’s ma-
triculation results prior to it being released in the public domain and the
newspaper was particularly interested in an exposé of the beautiful mind of
the mathematical prodigy from Meadowlands in Soweto.

Dube acknowledges Mrs Kona, his mathematics teacher during his early
high schooling, up to grade 10, for her influence and dedication. The great-
est mathematical influence during his high schooling is attributed to his
teacher, Mr Lesole Gadinabokao, who had a Master’s degree in Mathemat-
ics. Mr Gadinabokao continued with his studies and eclipsed secondary
school teaching and transcended into tertiary academia to become Profes-
sor of Physics at the then University of the Bophuthatswana (now known as
the University of the North-West, abbreviated NWU). Dube pursued higher
degree studies in three major subjects at undergraduate level, namely, Math-
ematics, Applied Mathematics and Statistics and obtained a BSc from the
University of Fort Hare. He further went on to obtain a BSc(Hons) (cum-
laude) and an MSc (cum-laude) from his alma mater in the Eastern Cape
province of South Africa. During the period 1980 - 1982 he lectured at the
University of Fort Hare and thereafter continued as Senior Lecturer until
the end of December 1985.

His next stint in tertiary tuition and research was at the Department
of Mathematics and Applied Mathematics at the University of Venda (Uni-
Ven) (1986 - 1988). He thereafter joined the faculty in the Department
of Mathematical Sciences at the main KwaDlangezwa campus of the Uni-
versity of Zululand as Senior Lecturer. Whilst at UniZul he registered for
doctoral studies at the University of Durban-Westville in KwaZulu Natal.
He was supervised, in lead, by Professor Dharmanand Baboolal (who intro-
duced him to the art of pointfree thinking) and co-supervised by Professor
Ramesh Ori. During his doctoral studies he was hosted during the Lent
Term in 1992 by the prominent Dr Peter Johnston in the Department of
Mathematics and Mathematical Statistics of the University of Cambridge in
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the United Kingdom. His thesis [6] entitled Structures in Frames presented
a general foundation for the study of the concept of nearness in pointfree
topology and his doctorate was awarded by UDW in December 1992. At
UniZul he was promoted to Associate Professor in 1995 and Full Professor
in 1996. A career in management at UniZul then succeeded him where he
served as Vice-Rector (Deputy Vice-Chancellor) for Academic Affairs and
Research (1997 - 2003). He also acted as Vice Chancellor during his tenure
at UniZul. Dube thereafter joined the Department of Mathematical Sci-
ences at the University of South Africa in 2003 as Full Professor tenured
with a focus primarily on his research and the training of master’s and doc-
toral students.

He served as Vice-President of the South African Mathematical Society
(SAMS) (2008 - 2009) and Associate Editor of Quaestiones Mathematicae
(QM), the journal of the SAMS, during the period 2010 - 2015. Dube was
the Editor-in-Chief of QM for the period 2016 - 2022 and was the first per-
son of colour to be such in the history of the SAMS. He is also an editorial
board member of the journal Categories and General Algebraic Structures
with Applications (CGASA) and an Associate Editor for the journal Afrika
Mathematika.

Numerous research accolades have been awarded to Dube. Early in his
studies, in 1982, he was awarded the University of Fort Hare Council Re-
search Award for a Master’s dissertation. In 2010 he received the second
highest internal UNISA prize that of the Principal’s Prize for Research Ex-
cellence. In 2013, Dube was awarded the most prestigious prize of the SAMS
that for Research Distinction. The Chancellor’s Prize for Excellence in Re-
search is the most prestigious prize for research at UNISA. Dube received
the latter in 2013 and repeated the fête in 2017. Also in 2013, Dube was in-
augurated as a member of the Academy of Science of South Africa (ASSAf).

Dube has widely published over a 100 research articles in peer-reviewed
journals spanning pointfree topology, rings of continuous functions and or-
dered algebraic structures. He continues to be active in research post his
formal retirement. He has supervised to graduation seven doctoral students:
Martin Mandirevesa Mugochi (graduated in 2010), Mack Zackaria Mat-
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labyana (graduated in 2012), Oghenetega Ighedo (graduated in 2014), Jissy
Nsonde-Nsayi (graduated in 2016), Mohammad Zarghani (Hakim Sabzevari
University, Iran, co-supervised with Dr A.A. Estaji and Dr A.K. Feizabadi,
graduated in 2017), Batsile Tlharesakgosi (co-supervised with Dr O. Ighedo)
and Dorca Nyamusi Stephen both graduated in 2021. He has also supervised
to completion seven masters students: Mr Fanyana Ncongwane (graduated
in 2016); Mr Batsile Tlharesakgosi co-supervised with Dr O. Ighedo, grad-
uated in 2017; Mr Shegu Mayila and Ms Elizabeth Mrema (both students
at the University of Dar es Salaam, Tanzania, co-supervised with Dr K.
Mpimbo) that graduated in 2018. Ms Lindiwe Maria Sithole, Ms Annette
Flavie Ngo Babem and Mr Siphamandla Blose graduated with their MSc in
2019.

Dube truly epitomises the meaning in his indigenous namesake - Themba.
From my own many experiences with Dube, his trust and belief in you is
solid and grounded, he has given hope to many a graduate master’s and
doctoral student and colleague. He certainly is a loyal and steadfast parent
to his only daughter Linda. He is a loyal friend and colleague and is categor-
ically likewise to the pointfree topology fraternity. Professor Dube formally
retired at the end of December 2022 as a Research Professor at UNISA, as a
B-3 National Research Foundation (NRF) rated researcher, an astute pure
mathematician of the African diaspora of distinguished note, a dreamer, an
avid chess-player and an engaged community scholar with profound interest
in reggae music. He continues to supervise Master’s and Doctoral students
in the Department of Mathematical Sciences at UNISA that is supported
and kindly extenuated by the university.

3 Preliminaries

In this section we provide the pertinent basic background required for the
purpose of this article and for it to be a self-contained exposition of Dube’s
mathematical works. We begin with a brief discussion on frames, σ-frames,
locales and the entities required in the sequel. Thereafter we look at struc-
tures on frames, particularly nearness and uniformity. For a detailed back-
ground into frames, locales and structures on frames we recommend the
text by Picado and Pultr [154](2012). For aspects concerning the countable
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analogue of frames (σ-frames) the papers by Banaschewski [110](1993), and
Banaschewski and Gilmour [113](1996) are suggested readings. For the cat-
egorical abstractions that are alluded to, we refer the reader to the text by
Borceux [125](1990).

3.1 Frames We recall that a frame is a bounded lattice (L,≤) with
bottom element 0L and top element 1L, in which every subset S of L has
a join (supremum)

∨
S (that is to say that L is complete) such that the

distributive law

x ∧
∨
S =

∨

s∈S
(x ∧ s) (†)

holds for each x ∈ L and any S ⊆ L. For frames L and M , a frame
homomorphism is a map h : L ! M which preserves finite meets and all
joins. The resulting category of frames and their homomorphisms will be
denoted by Frm. For a topological space X, the collection of open sets of
X is denoted by OX which forms a frame (the order provided by ⊆). A
frame L is said to be spatial if there is some topological space X for which
L ≃ OX. Loc is the opposite category of Frm.

3.1.1 The adjunction between Top and Frm

A topological space X is represented in the category Frm by its frame of
open sets OX. For any continuous function h : X - Y in Top we have
the frame homomorphism Oh : OY - OX given by Oh(U) = h−1(U)
for U ∈ OY . This correspondence of objects and morphisms between topo-
logical spaces and frames results in the contravariant (open set) functor O :
Top - Frm. On the flip side, the passage from frames to topological
spaces is routed via the spectrum of a frame. Associated with any frame
L, we have its spectrum ΣL whose elements are the frame homomorphisms
ξ : L - 2 of L into the two-element frame 2 = {0, 1}. If for each x ∈ L,
we let

Σx = {ξ : L - 2 : ξ(x) = 1},

we then have (see, for instance, in Pultr and Sichler [158](2014))

Σ0L = ∅,Σ1L = ΣL,Σx∧y = Σx ∩ Σy and Σ∨
xi =

⋃
Σxi ,
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so that {Σx : x ∈ L} is a topology (called the spectral topology) on ΣL. For
any frame homomorphism f : L - M we have the continuous function
Σf : ΣM - ΣL given by Σf(ξ) = ξ ◦ f for each ξ ∈ ΣM . The resulting
correspondence is the contravariant (spectrum) functor given by Σ : Frm

- Top. The actions of O and Σ on objects and morphisms are depicted
below:

O : Top - Frm Σ : Frm - Top

Objects X - OX L - ΣL

X OX h−1(U) L ΣL ξ ◦ f

Morphisms - -

Y

h

?
OY

Oh

6

U

6

M

f

?
ΣM

Σf

6

ξ

6

The functors O and Σ are adjoint on the right with natural transforma-
tions η and ε defined as follows. ε : 1Top

- ΣO where for any topological
space X, εX : X - ΣOX is a continuous map taking any x ∈ X to
x̃ = εX(x) : OX - 2 where x̃(U) = 1 iff x ∈ U . On the other hand,
η : 1Frm - OΣ where for any frame L, ηL : L - OΣL is a frame homo-
morphism defined by ηL(x) = Σx. The naturality of η and ε are expressed
in the commutative squares below.

L
ηL- OΣL Σx X

εX- ΣOX x̃

M

f

?

ηM
- OΣM

OΣf

?
(Σf)−1(Σx) = Σf(x)

?
Y

h

?

εY
- ΣOY

ΣOh

?
x̃ ◦Oh = h̃(x)

?

The adjointness of O and Σ is given by the following commutative tri-
angles.

OX ΣL
εΣL- ΣOΣL

OΣOX

ηOX

?

OεX
- OX

id
O
X

-

ΣL

ΣηL

?

id
Σ
L

-
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L is a spatial frame provided that ηL is an isomorphism. The topological
space X is sober if εX is a homeomorphism. Furthermore, Σ and O induce
a dual equivalence between spatial frames and sober spaces with Σ being
full and faithful. The adjoint relation between Top and Frm is originally
given in the Appendix of the paper by Dowker and Papert [127](1966) and
is required in Section §4.2.

3.1.2 The right adjoint of a frame homomorphism

Each frame homomorphism h : L - M has a right (Galois) adjoint, which
is a ∧-semilattice homomorphism h∗ :M - L that is explicitly given by
the formula h∗(y) =

∨{x ∈ L : h(x) ≤ y}. We call h a dense frame homo-
morphism if h(x) = 0M implies that x = 0L (equivalently, h∗(0M ) = 0L) and
h is codense if it maps only the top to the top. Any dense homomorphism
between regular frames is monic, and any codense homomorphism between
regular frames is one-one. Regular frames are described in the next section
§3.1.3. An onto frame homomorphism will be called a quotient map. We
also recall that h is a quotient map iff hh∗ = idM iff h∗ is one-to-one, and
dually, h is one-to-one iff h∗h = idL iff h∗ is onto.

3.1.3 Separation properties

We will use the notation⊆<ω to denote a finite subset and⊆ω for a countable
subset. A subset B ⊆ L is called a base (or join-base) for the frame L if for
each x ∈ L, we have that x =

∨{t ∈ T : t ≤ x} for some T ⊆ B. Each
element x in a frame L has a pseudocomplement denoted by x∗ which is the
largest element in L which misses x. The pseudocomplement, its properties
and machinery play a major rôle in pointfree topology. It features in many
definitions that are required and given in the remarks below.

Remark 3.1. Let x, y, c, d and p be elements of a frame L.

(1) We write x ≺ y (and say, x is rather below y) to mean that there is
s ∈ L such that x ∧ s = 0 and s ∨ y = 1 (equivalently, x∗ ∨ y = 1).
L is a regular frame if each element of L is the join of the elements
rather below it. RegFrm is the subcategory of regular frames and
frame homomorphisms.
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(2) We also have the completely below relation ≺≺ where x ≺≺ y means
that there is a scale {cα : α ∈ Q∩ [0, 1]} in L with c0 = x, c1 = y and
cα ≺ cβ whenever α < β. L is called a completely regular frame if for
each x ∈ L, x =

∨{y ∈ L : y ≺≺ x}. CRegFrm is the subcategory
of completely regular frames.

(3) L is a normal frame if whenever x ∨ y = 1 there is s, t ∈ L such that
s ≺ x, t ≺ y and s ∧ t = 0.

(4) c is called a compact (respectively, Lindelöf ) element if whenever c ≤∨
X forX ⊆ L we have that c ≤ ∨Y for some Y ⊆<ω X (respectively,

Y ⊆ω X). The collection of compact elements of a frame L is denoted
by kL and the Lindelöf ones is given by σL. The frame L is a compact
frame if 1L ∈ kL and it is a Lindelöf frame if 1L ∈ σL.

(5) x is a complemented element if x∨x∗ = 1. The set of all complemented
elements of the frame L is denoted by cL. L is a zero-dimensional
frame if cL is a base for L.

(6) If x = x∗∗, then x is called a regular element of L. The collection of
all regular elements of L is a Boolean frame denoted by ßL which is
regular. Meets in ßL are calculated as in L whilst for any S ⊆ ßL, the
join of S in ßL is given by

⊔
S = (

∨
S)∗∗. ßL is called the Booleaniza-

tion of L. The map ßL : L - ßL given by ßL(x) = x∗∗ is a dense
onto frame homomorphism. ßFrm is the category of Boolean frames.
Various aspects of ßFrm may be found in Banaschewski [112](1996).

(7) p is called a point of L if p ̸= 1 and whenever x∧ y ≤ p we have either
x ≤ p or y ≤ p. The points of a frame are the prime or meet-irreducible
elements. Pt(L) is the collection of all points of L.

(8) x is a small element if x is continuously below or well below the top,
that is x ≪ 1L. The continuously below relation ≪ on L is defined
by c ≪ d iff S ⊆ L and d ≤ ∨S implies c ≤ ∨T for some T ⊆<ω S.
We will denote the collection of small elements of L by L≪. L is a
continuous frame if for each x ∈ L, x =

∨{y ∈ L : y ≪ x}.
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3.1.4 The frames Fix(j) and DL

The concept of a nucleus on a frame L is defined by Simmons in [161](1977)
and again (for an idiom1, which a frame is) in [162, Definition 1.2.](1989)
as a map j : L - L that is inflationary (x ≤ j(x)), monotone (x ≤ y ⇒
j(x) ≤ j(y)) and idempotent (j2(x) = j(j(x)) = j(x)) (so that j is a closure
operator) on L which preserves finitary meet (j(x ∧ y) = j(x) ∧ j(y)) for
each x, y ∈ L. For a quotient f : L - M between frames L and M
defining j : L - L by j(x) = (f∗ ◦ f)(x) for each x ∈ L we obtain a
1-1 correspondence between the quotients and nuclei of the frame L. For a
nucleus j on a frame L we define Fix(j) = {x ∈ L : j(x) = x}.

Lemma 3.2. Fix(j) is a frame and j : L - Fix(j) where x - j(x) for
each x ∈ L is a frame homomorphism whose right adjoint is the inclusion
Fix(j) - L.

For any S ⊆ Fix(j),
∨

Fix(j)

S = j(
∨
L

S) whilst finite meets are the same as

those in L. Banaschewski [112](1988) introduced the idea of a prenucleus
on a frame. A map k0 : L - L on a frame L is called a prenucleus
if k0 is inflationary and monotone such that for each x, y ∈ L we have
k0(x) ∧ y ≤ k0(x ∧ y). Then Fix(k0) = {x ∈ L : k0(x) = x} is a closure
system with associated closure operator given by k : L - L where k(x) =∧{y ∈ Fix(k0) : x ≤ y}.

Lemma 3.3 (Lemma 1 [112]). The closure operator k is a nucleus such
that the frame homomorphism k : L - L is universal among frames
h : L - M for which h(x) = h(k0(x)) for all x ∈ L.

Simmons [162] also defines a prenucleus on a frame as an inflationary,
monotone map that preserves finite meets. Banaschewski’s notion is much
more general and we will retain the definition of a prenucleus as given by
Banaschewski [112] in the remaining parts of the paper.

For any partially ordered set L, U ⊆ L is called a downset if x ∈ U
implies that #x = {y ∈ L : y ≤ x} ⊆ U . We denote the set of all downsets

1An idiom is a complete lattice L which is both modular (i.e. for each x, y, z ∈ L we
have (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z))) and upper continuous (i.e. for each a ∈ L we
have the distributive law a ∧∨

X =
∨{a ∧ x : x ∈ X}).
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of L by DL . If L is a bounded meet semi-lattice then DL is a frame
partially ordered by set inclusion with U ∧ V = U ∩ V and

∨
i∈I

Ui =
⋃
i∈I

Ui

for any {Ui}i∈I ⊆ DL. The top element is 1DL =#1L = L and the bottom
is 0DL =# 0L = {0}. If L is a frame then the join map

∨
: DL - L is

a frame homomorphism with right adjoint given by # : L - DL where
x - # x for each x ∈ L. If U ∈ DL, then U =

∨{# x : x ∈ U}.
Consequently, B = {# x : x ∈ L} is a base for the frame DL. For each
x, y ∈ L we have that #x∩ #y =# (x ∧ y) so that B is a base for DL which
is closed under finite meets.

3.1.5 Covers of a frame

A cover of the frame L is any subset whose join is the top element. The
collection of all covers of L is denoted by CovL. Compact (resp. Lindelöf)
frames are those frames in which each cover has a finite (resp. countable)
subcover. A quasi-cover of L is any subset B ⊆ L whose join is dense in L,
that is

∨
B ∈ dL = {x ∈ L : x∗ = 0}. The collection of all quasi-covers of

L will be denoted by Covq L. Madden and Vermeer in [143](1986) define a
frame L to be weakly Lindelöf if for each A ∈ CovL there is B ⊆ω A such
that B ∈ Covq L . We next provide a calculus for covers on a frame L.

Let A,B ∈ CovL and x ∈ L. We say that A refines B (or A is a
refinement of B) and write A ≤ B if for each a ∈ A there is b ∈ B such
that a ≤ b. The meet of the two covers A and B is the cover defined
as A ∧ B = {a ∧ b : a ∈ A and b ∈ B}. The star of x with respect to
the cover A is the set Ax =

∨{a ∈ A : a ∧ x ̸= 0}. We also have the
covers AB = {Ab : b ∈ B} and A∗ = AA. We say that A star refines
B if A∗ ≤ B and we also write this as A ≤∗ B. We will write A ≤<ω B
(respectively, A ≤ω B) to mean that A is finite (respectively, countable)
and refines B. The cover A is a normal cover if there is sequence of covers
{An}n∈N such that A = A1 and An+1 ≤∗ An for each n ∈ N. We will
denote the collection of all normal covers of a frame L by Covn L. A subset
S ⊆ L is locallly finite if there is T ∈ CovL such that for each s ∈ S,
Ts = {t ∈ T : t∧s ̸= 0} ⊆<ω T . L is a paracompact frame if each cover of L
has a locally finite refinement. ParFrm is the subcategory of paracompact
frames and frame homomorphisms that we will encounter throughout the
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paper.

3.2 σ-Frames If we have the requirement that (L,≤) is a countably
complete bounded lattice and satisfies the distributive law (†) (given in
§3.1.) for only countable subsets S, then L is called a σ-frame. σ-Frame ho-
momorphisms are bounded lattice homomorphisms that preserves all count-
able joins. We then have the corresponding category σFrm of σ-frames and
their homomorphisms. The concepts of regularity, complete regularity and
normality that are described above in §3.1.2. also carry over to σ-frames
with the appropriate modifications incorporating countable joins. Regular
σ-frames are always normal. In general, elements of σ-frames do not pos-
sess pseudocomplements. For any frame L the set of all its cozero elements,
namely,

CozL = {a ∈ L : a = h(R − {0}) for someh : OR - L in Frm}

is a σ-frame called the cozero part of L. CozL features prominently in
Dube’s work. Banaschewski and Gilmour in [113, Proposition 1] provide
the following descriptions of cozero elements that are frequently used:

a ∈ CozL iff a =
∨
xnwherexn ≺≺ a, for alln = 1, 2, . . .

iff a =
∨
anwhere an ≺≺ an+1, for alln = 1, 2, . . .

CozL is the largest regular sub-σ-frame of L (as a σ-frame) (see for in-
stance, [113, Corollary 2]). For completely regular frames L, CozL generates
L as a frame (it is a base for L). Frame homomorphisms preserve cozero
elements. For any frame homomorphism h : L - M , the restriction
Cozh = h|CozL is a σ-frame homomorphism. For any σ-frame L, an ideal J
is a σ-ideal in case J is closed under countable joins. The collection of all σ-
ideals of the σ-frame L, denoted HL, is a frame and is called the free frame
over L or the frame envelope of L by Banaschewski in [110](1993). For any
a ∈ L, the principal ideals (principal down sets) # a = {x ∈ L : x ≤ a} are
σ-ideals of L. This realises a σ-frame homomorphism # : L - HL which is
an embedding that is the universal σ-frame homomorphism to frames. That
is, given any σ-frame homomorphism h : L - M from L to a frame M
there is a unique frame homomorphism h̄ : HL - M such that h̄◦ #= h
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i.e. the following diagram commutes

HL

L

#

6

h
- M

h̄

-

h̄ : HL - M is explicitly given by h̄(J) =
∨{h(x) : x ∈ J} in

Banaschewski [110, Proposition 1]. Given any σ-frame homomorphism
h : L - M , Hh : HL - HM defines a frame homomorphism where
Hh(J) = ⟨h(J)⟩ is the σ-ideal generated by h(J).

H and Coz are covariant functors:
H : σFrm - Frm Coz : Frm - σFrm

Objects L - HL L - CozL

L HL J L CozL a

Morphisms - -

M

h

?
HM

Hh

?
⟨h(J)⟩

?
M

h

?
CozM

Cozh

?
h|CozL(a)

?

H is left adjoint to Coz with unit ηL : L - CozHL defined by ηL(x) =
# x and counit εL : HCozL - L given by the join map εL(J) =

∨
J i.e

η and ε are natural (the following diagrams commute)

L
ηL- CozHL HCozL

εL - L

M

f

?

ηM
- CozHM

CozHf

?
HCozM

HCoz g

?

εM
- M

g

?

and (the adjointness) εHL ◦HηL = idHL and Coz εM ◦ ηCozM = idCozM .
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Reynolds in [159] first showed that the functor H is left adjoint to the
functor Coz. In effect, H and Coz induce an equivalence between the cate-
gories of regular σ-frames and regular Lindelöf frames. The regular Lindelöf
frame HCozL in the above description plays a formidable role in many of
Dube’s results pertaining to Lindelöfications. It is precisely the frame λL
that has a nuanced meaning in Section §3.3.2.

3.3 The trinity of coreflections Dube’s fascination with particu-
larly the trio βL, λL and υL, is articulated in many of his papers. These
coreflections are intimately related to the cozero part CozL of the com-
pletely regular frame L that is considered. We give the necessary details
concerning these coreflections animated by Dube in his mathematical works.
The bedrocks of these coreflections are certain distinguished subsets of a
frame, namely the ideals. Recall that in any frame L, an ideal is any
nonempty subset I ⊆ L such that

∨
F ∈ I for any F ⊆<ω I, and a ∈ I

whenever a ≤ b and b ∈ I. IdL denotes the lattice of (nonempty) ideals of
L where for a collection of ideals {Jα}α∈Λ, the supremum in IdL is given
by

∨
α∈Λ

Jα = {∨T : T ⊆<ω
⋃
α∈Λ

Jα}. IdL ordered by inclusion is then a

compact frame.

3.3.1 The Stone-Čech compactification

Recall that a compactification of a frame L is a pair (M,h) were h :M - L
is a dense onto homomorphism and M is a compact regular frame. We ei-
ther loosely refer to the frame M or the map h as the compactification
of L. A frame which has compactifications is called compactifiable. Com-
pletely regular frames are such types of frames that are compactifiable. The
pointfree (localic) analogue of the Stone-Čech compactification of Tychonoff
spaces was first contrived by Banaschewski and Mulvey in [115](1980). An
ideal J ∈ IdL is completely regular (or creg for brevity) if for each a ∈ J ,
a ≺≺ b for some b ∈ J . We denote Id≺≺ L = {J ∈ IdL : J is creg}.
Then Id≺≺ L is a completely regular subframe of IdL that is also compact,
and is the compact completely regular coreflection of the completely reg-
ular frame L. Id≺≺ L is referred to as the Stone-Čech compactification of
L and is commonly denoted by βL. The coreflection map is given by join
βL : βL - L (J ;

∨
J) with right adjoint given by (βL)∗ : L - βL
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where (βL)∗(a) = {c ∈ CozL : c ≺≺ a} for each a ∈ L. Instead of this
original construction, βL may also be characterised using the regular ideals
of the σ-frame CozL as given by Banaschewski and Gilmour [113](1996).

3.3.2 The regular Lindelöf coreflection

In [143](1986), Madden and Vermeer, working in the category Loc, gave a
localic construction of λL, the regular Lindelöf reflection for any completely
regular locale L. In the category Frm, the regular Lindelöf coreflection
λL of a completely regular frame L is given by the frame of σ-ideals of
CozL. The σ-ideals are the ones that are closed under countable join. The
coreflection map, λL : λL - L, is the dense onto frame homomorphism
given by join. The right adjoint of λL is (λL)∗ : L - λL given by
(λL)∗(a) = {c ∈ CozL : c ≤ a} for each a ∈ L. This turns out to be precisely
the principal ideal in CozL generated by a, that is, (λL)∗(a) = #CozL a, for
each a ∈ CozL.

3.3.3 The realcompact coreflection

Reynolds in [159](1979) first introduced a notion of realcompactness for
frames. Marcus carried out a detailed study into realcompact frames in
his Master’s thesis [144](1993) and presented the salient aspects of realcom-
pactifications of frames in [145](1995). We recall, from Marcus [145](1995),
that an ideal J of a frame L is σ-proper if

∨
T ̸= 1 for any T ⊆ω J . J is

completely proper if
∨
J ̸= 1. A frame L is called realcompact if any σ-proper

maximal ideal in CozL is completely proper. The realcompact completely
regular frames are shown to form a coreflective subcategory of completely
regular frames by Banaschewski and Gilmour in [114](2001). The realcom-
pact coreflection (or Hewitt realcompactification) is the frame denoted by
υL which is constructed from Pt(λL), the points of the regular Lindelöf
coreflection λL, via the map ℓ : λL - λL defined on λL by

ℓ(P ) = λ∗

(∨
P

)
∧
∧{

Q ∈ Pt(λL) : P ≤ Q

}
.

ℓ is a nucleus on λL so that, by Lemma 3.2, υL = Fix(ℓ) is a frame.
υL is realcompact and the resulting dense onto frame homomorphism υL :
υL - L given by join is then the coreflection map. The right adjoint of
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the latter coreflection is given by (υL)∗ : L - υL, where (υL)∗(a) = {c ∈
CozL : c ≤ a} for each a ∈ L.

We remark that for any completely regular frame L,

Pt(λL) = Pt(υL)

and for any a ∈ L,

(λL)∗(a) = (υL)∗(a) = {c ∈ CozL : c ≤ a}.

We will also focus our attention on a fourth coreflection, namely the
paracompact coreflection πL, that we discuss in Section §7, Remark 7.4. πL
forms the umbrella that constitutes the tetrad of indispensable coreflections
that feature in Dube’s work.

3.4 Structured frames For a frame L, let x, y ∈ L and NL ⊆ CovL.
We will say that x is NL-below (or uniformly below) y and write x �NL y
(or for brevity x � y) if there is A ∈ NL such that Ax ≤ y. NL is called
an admissible system of covers if for each a ∈ L, a =

∨{b ∈ L : b �NL a}.
NL is called a nearness on L provided that NL is an admissible system
of covers that is a filter with respect to refinement ≤ on covers. The
pair (L,NL) is then called a nearness frame (or N -frame as Dube calls
it in [6]) and the members of NL are called uniform covers. In any N -
frame (L,NL) we have that x � y iff {x∗, y} ∈ NL. A frame homomor-
phism h : (L,NL) - (M,NM) between nearness frames is a uniform
frame homomorphism if h preserves uniform covers. It is well-known that
a frame L has a nearness iff L ∈ RegFrm. CovL is a nearness on L
(where �CovL =≺) called the fine nearness. A nearness NL is called
fine if NL = CovL. A nearness base or an N-base on a frame L is any
ν ⊆ CovL such that ν is an admissible system of covers and if A,B ∈ ν
then C ≤ A ∧ B for some C ∈ ν. If ν is a N -base on a frame L then
NνL = {A ∈ CovL : B ≤ A for someB ∈ ν} is the nearness on L gener-
ated by ν.

For a nearness frame (L,NL) and A ∈ NL we have the associated cov-
ers Ǎ = {x ∈ L : x �NL a for some a ∈ A} and A∗. NL is called a strong
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nearness if it is the case that Ǎ ∈ NL whenever A ∈ NL. NL is almost
uniform if NL is strong and if for each x, z ∈ L with x�NL z there is y ∈ L
such that x �NL y �NL z (that is, �NL interpolates). NL is uniform or a
uniformity if each uniform cover has a uniform star refinement. Further-
more, a preuniformity on a frame L is a filter UL in CovL such that for
each A ∈ UL there is B ∈ UL such that B ≤∗ A. A uniformity is then
just a preuniformity that is an admissible filter of covers. We thus have the
resulting category NFrm of nearness frames and subcategories FNFrm of
fine nearness frames, StrNFrm of strong nearness frames, AuNFrm of
almost uniform nearness frames, and UFrm of uniform frames. It is also
well-known that a frame L is uniformizable provide that it is completely reg-
ular with Countable Dependent Choice (CDC). The fine nearness CovL is a
uniformity provided that L is a paracompact frame. If L ∈ CRegFrm then
the collection of all uniformities on L is a uniformity UFL called the fine uni-
formity on L which consists of all the normal covers of L (UFL = Covn L).

Hong in [136](1995) introduces the concept of a strict extension of a
frame. Given a frame L, let X be the set of all filters (dual ideals) in L and
℘(X) be the frame of the power set lattice of X. Furthermore, let

sXL = {(x,Σ) ∈ L× ℘(X) : for any F ∈ Σ, x ∈ F}

and let s : sXL −! L be the restriction of the first projection to sXL so that
s((x,Σ)) = x. Then s is a frame homomorphism being merely the identity
on the first projection. Moreover, sXL is a subframe of the product frame
L× ℘(X) and s is an open, dense and onto frame homomorphism which is
called the simple extension of L with respect to X. Now let s∗ : L ! sXL
be the right adjoint of s which is explicitly given by

s∗(x) =
∨

{(y,Σ) ∈ sXL : s((y,Σ)) = y ≤ x} = (x,Σx),

where Σx = {F ∈ X : x ∈ F}. Then s∗(L) = {s∗(x) : x ∈ L} is closed
under finite meets (since the right adjoint preserves finite meets). We now
let tXL be the subframe of sXL generated by s∗(L). Then

tXL =

{∨
{(x,Σx) : x ∈ A} : A ⊆ L

}
.
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Now let t = s |tXL, the restriction of s to tXL. Then t : tXL −! L is a
dense and onto frame homomorphism (since t(s∗(x)) = x) and is called the
strict extension of L with respect to X.

Recall that a filter F in a frame L is completely prime iff ∀ S ⊆ L,∨
S ∈ F implies S ∩ F ̸= ∅. Furthermore, F converges iff F ∩ A ̸= ∅

∀ A ∈ CovL (see Hong [136, Definition 1.1]). Given a nearness frame
(L,NL), a filter F in L is a Cauchy filter iff ∀ A ∈ NL, A ∩ F ̸= ∅. F is
called a regular Cauchy filter if F is a Cauchy filter and for any x ∈ F , there
is y ∈ F such that y�x. The nearness frame (L,NL) is said to be complete
if every dense surjection h : (M,NM) −! (L,NL) is an isomorphism and
it is Cauchy complete provided that every regular Cauchy filter G in L is a
completely prime filter iff G is convergent in the sense of Hong [136]. The
completion of a nearness frame and its construction is discussed in Section
§4.3. In [137](1995), Hong and Kim construct the Cauchy completion of a
nearness frame via a strict extension. They consider the set X of regular
Cauchy filters in L and the strict extension tXL of L associated with X (as
described above). We denote tXL by cL and t : cL −! L by cL or c. A
nearness NcL on cL is introduced generated by {c∗(A) : A ∈ NL} where
c∗ : L −! cL is the right adjoint of c i.e. c∗(x) = (x,Σx) for each x ∈ L.
They then go on to show that c : (cL,NcL) −! (L,NL) is a dense surjection
between nearness frames and that the nearness frame (cL,NcL) is Cauchy
complete. (cL,NcL) is called the Cauchy completion of the nearness frame
(L,NL). We will require the strict extension of an N -frame and its Cauchy
completion in Section §6.

4 Dube’s Doctoral Studies

The theory of frames (locales) is an abstraction of topological spaces in
which the primitive notion of the open sets is the chief protagonist. The
frame of open subsets OX of a topological space is the archetype and the
point of reference in viewing topology without points through a lattice the-
oretic lens. A concept or property P is conservative provided that P is
possesed by a topological space X iff the frame of its open subsets OX also
has the said property P . The typical example of regularity is a conserva-
tive property (X is a regular topological space iff OX is a regular frame).
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Dube’s doctoral study focusses on the concept of nearness introduced by
Herrlich [133](1974). The comprehensive study is through the looking glass
of frames and with concepts, discoveries and findings that are possibly con-
servative. Our exposition of Dube’s mathematical contributions is certainly
not exhaustive. We will not mention all the classical topological concepts
(and references) that Dube presents in (conservative) pointfree form. We
focus on highlighting certain of Dube’s contributions including the (con-
servative) pointfree definitions that he conceives and the formidable results
that are realised. The proofs of the latter are omitted since they are directly
accessible from his published works given in the bibliography.

4.1 Nearness frames and Nearness Spaces The structure of a
uniformity on a space traces originally to Weil [168](1937), thereafter to
Tukey [166, Chapter VI. Structs](1940) and then to the widely referenced
book by Isbell [139](1964). The introduction of the structure of a unifor-
mity into locales dates back to the Paris Séminaire Ehresmann (1957 - 1958)
with the first talk in the seminar presented by the Papert’s [153]. Therein is
included, for the first time, a definition of a uniformizable locale [153, Def-
initions. vi. p.1-05]. A further sample of theorems was presented where
they enunciated that uniformizability implies regularity and that normal-
ity together with regularity gives uniformizability [153, Théorèmes. v. a.,
b.]. Isbell [140, Section 3](1972) further looked at generalizing some of his
own work on uniform spaces [139](1964) into the pointfree context. A more
comprehensive treatment of uniformity via a covering approach is given by
Pultr [155](1984) and Frith [129, 130](1986, 1990). Pultr and Frith both
show by different means that a frame is uniformizable provided that it is
completely regular.

Herrlich [133](1974) introduced the concept of a nearness and the cate-
gory Near of nearness spaces and uniformly continuous maps. For any set
X, ℘X = {A : A ⊆ X} denotes the power set of X. A cover of X is any
collection C ⊆ ℘(X) with

⋃
C = X. If C and D are covers of X we have

the meet cover of C and D defined by C ∧ D = {C ∩D : C ∈ C , D ∈ D}.
The cover C refines the cover D (written C ≤ D) if for each C ∈ C , C ⊆ D
for some D ∈ D . A nearness space or N -space is a pair (X,µ) where X is
a set and µ is a nonempty collection of covers of X (called uniform covers)



56 I. Naidoo

that satisfy:

(N1) If A ∈ µ and A ≤ B then B ∈ µ.

(N2) If A ,B ∈ µ then A ∧ B ∈ µ.

(N3) If A ∈ µ then intµ A = {intµA : A ∈ A } ∈ µ where

intµA = {x ∈ X : {A, {X − {x}} ∈ µ}.

A morphism f : (X,µ) - (Y, ν) between nearness spaces is uniformly
continuous if f is a function on the underlying sets for which the preimage
f−1(A ) = {f−1(A) : A ∈ A } ∈ µ whenever A ∈ ν. The resulting category
Near contains the category of all uniform spaces and uniformly continuous
maps and the theory of nearness spaces mainly aimed to unify the various
types of topological structures.

Frith in [129, Notes on Chapter 7(5)](1986) posed the question of whether
a theory of nearness frames is possible. In his doctoral thesis [6](1992),
Dube independently presented a rich foundation for a general theory of
nearness on frames which responded to the open question of Frith. A suit-
able definition of a nearness frame was suggested by Dube’s doctoral advi-
sors, Baboolal and Ori (in 1990), as that of a uniform frame without the
star-refinement property. In the same year, Banaschewski [109](1990) pre-
sented a second series of lectures, this occasion on Cauchy points of nearness
frames at the University of Cape Town which Dube attended. The first se-
ries of lectures by Banaschewski at UCT was in 1988 on the category of
frames. Banaschewski’s definition of a nearness in [109] incidentally coin-
cided with the one suggested to Dube by Baboolal and Ori. The lectures of
Banaschewski [109] eventually culminated in the paper [118](1996).

Dube’s thesis [6] is a comprehensive disquistion into the concept of near-
ness in the pointfree context. His subsequent papers on nearness frames,
namely [7–11], emanated from the original work that he investigated in his
thesis. There are three specific areas covered by Dube in [6] that we high-
light below that is seldom made reference to that is profound in its very
nature and fundamental within the developments in the category NFrm.
Firstly, the adjoint relation between nearness spaces and nearness frames,
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secondly the construction of the completion of a nearness frame, and lastly
the construction of the coproduct of nearness frames.

4.2 Adjoint relations In [6] Dube introduces B-spaces. The concept
was initially materialised by Banaschewski [109] as the spatial counterparts
of nearness frames that were called nearness spaces. However, they were
not nearness spaces in the original sense of Herrlich. The category BNear
of those nearness spaces that arise from B-spaces (see Theorem 4.2 below)
is a full subcategory of Near. Dube investigates how a B-space can be
associated categorically in a natural way with a nearness frame and vice
versa producing an adjoint relation. A B-space is a pair (X,µ) where X is
a topological space and µ is a filter (with respect to ∧ and ≤) in OX such
that for each U ∈ OX and each x ∈ U there is V ∈ OX and C ∈ µ with
x ∈ V and St(V,C ) = CV =

⋃{C ∈ C : C ∩ V ̸= ∅} ⊆ U . Dube provides
a structured version of the adjoint relation between Top and Frm (given
in §3.1.) for B-spaces and nearness frames. This is the second of the type
following the first structured version of O and Σ shown by Frith [129, 130]
for uniform spaces and uniform frames.

For any B-space (X,µ), (OX,Oµ) is a nearness frame where Oµ is the
filter that makes (X,µ) a B-space. The passage from N -frames to B-spaces
is given by the following Proposition.

Proposition 4.1. [6, Proposition 1.3.2 and 1.3.3]. Let (L,NL) be a N -
frame. For each A ∈ NL and a ∈ A, Σa = {ξ : L - 2 : ξ(a) = 1}.

(a) If we let ΣA = {Σa : a ∈ A} and

µNL = {C : C ∈ CovOΣL and ΣA ≤ C for some A ∈ NL},

then (ΣL, µNL) is a B-space.

(b) If (L,NL) is a spatial N -frame, then µNL = {ΣA : A ∈ NL}.

A N -space is realised from a B-space by the following result.

Theorem 4.2. [6, Theorem 1.3.4]. If (X,Oβ) is a B-space, then (X,β) is
an N -space where β = {A ⊆ ℘(X) : B ≤ A for some B ∈ Oβ}.
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In the above result, if the canonical topology on the B-space (X,Oβ)
is τX and the topology on the induced N -space (X,β) is τβ, then τX = τβ.
Furthermore, uniformly continuous functions between B-spaces are continu-
ous functions between their associated topological spaces. As a consequence
of the above theorem, the path from an N -frame to an N -space is captured
in the following result.

Corollary 4.3. [6, Corollary 1.3.5].
For an N -frame (L,NL), (ΣL,ΣNL) is an N -space where

ΣNL = {A ⊆ ℘(ΣL) : ΣA ≤ A for some A ∈ NL}.
The functors O : BNear - NFrm and Σ : NFrm - BNear are

contravariant functors.

O : BNear - NFrm Σ : NFrm - BNear

Objects (X,β) - (OX,Oβ) (L,NL) - (ΣL,ΣNL)

(X,β) (OX,Oβ) h−1(U) (L,NL) (ΣL,ΣNL) ξ ◦ f

Morphisms - -

(Y, γ)

h

?
(OY,Oγ)

Oh

6

U

6

(M,NM)

f

?
(ΣM,ΣNM)

Σf

6

ξ

6

For all B-spaces (X,β) and N -frames (L,NL), along the similar lines
of uniform frames given by Frith [129, Theorem 2.18], Dube [6, Theorem
1.3.11] shows that the pair of functors O and Σ is an adjunction as an
isomorphism of the hom-sets

homNFrm((L,NL), (OX,Oβ)) ≃ homBNear((X,β), (ΣL,ΣNL)) (‡)
by exhibiting a bijection between the respective morphism sets which is
natural in (L,NL) and (X,β). For any uniform frame homomorphism
h ∈ homNFrm((L,NL), (OX,Oβ)), a uniformly continuous function h̄ ∈
homBNear((X,β), (ΣL,ΣNL)) where h̄(x) : L - 2 (h̄(x) ∈ ΣL) for each
x ∈ X is defined by h̄(x)(a) = 1 iff x ∈ h(a). For any uniformly continu-
ous function f ∈ homBNear((X,β), (ΣL,ΣNL)), a uniform frame homomor-
phism is defined by

f̂ ∈ homNFrm((L,NL), (OX,Oβ)) where f̂(a) = f−1(Σa)
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for each a ∈ L. We then define φ = φ(NFrm,BNear) by φ(h) = h̄ and

ψ = ψ(BNear,NFrm) by ψ(f) = f̂ :

h - h̄

homNFrm((L,NL), (OX,Oβ))
φ -�
ψ

homBNear((X,β), (ΣL,ΣNL))

f̂ � f

Since ˆ̄h = h and
¯̂
f = f we have that ψ(φ(h)) = ψ(h̄) = ˆ̄h = h and

φ(ψ(f)) = φ(f̂)) =
¯̂
f = f . Consequently φ−1 = ψ. Thus φ (and ψ) is a

bijection between the hom-sets which realises (‡). Thus for each B-space
(X,β) and each N -frame (L,NL), we have a bijection

homNFrm((L,NL), (OX,Oβ))
φ((L,NL),(OX,Oβ))

≃
- homBNear((X,β), (ΣL,ΣNL)).

Naturality follows exactly as in [129, Theorem 2.18] which we high-
light below, particularly for the categories NFrm and BNear. For nat-

urality in (L,NL) we take any N -map (L,NL)
h- (M,NM). Let k ∈

homNFrm((M,NM), (OX,Oβ)), then (ΣM,ΣNM)
Σh- (ΣL,ΣNL), k ◦

h ∈ homNFrm((L,NL), (OX,Oβ)), k̄ ∈ homBNear((X,β), (ΣL,ΣNL)) and
k ◦ h,Σh ◦ k̄ ∈ homBNear((X,β), (ΣL,ΣNL)) as illustrated in the triangles
below.

(L,NL) (ΣL,ΣNL)

(OX,Oβ)

k◦h

-

(X,β)

Σ
h◦
k̄

-

(M,NM)

h

?

k

-

(ΣM,ΣNM)

Σh

6

k̄

-

Since k ◦ h = Σh ◦ k̄, the following diagram is commutative as required.
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homNFrm((L,NL), (OX,Oβ))
(−)

≃
- homBNear((X,β), (ΣL,ΣNL))

k ◦ h - k ◦ h, Σh ◦ k̄

k

6

- k̄

6

homNFrm((M,NM), (OX,Oβ))

(−)◦h

6

≃
(−)

- homBNear((X,β), (ΣM,ΣNM))

Σh◦(−)

6

For naturality in (X,β) we take any uniformly continuous function

(X,β)
j- (Y, γ). Let s ∈ homBNear((Y, γ), (ΣL,ΣNL)), we then have

(OY,Oγ)
Oj- (OX,Oβ), s ◦ j ∈ homBNear((X,β), (ΣL,ΣNL)) and ŝ ∈

homNFrm((L,NL), (OY,Oγ)). Furthermore, the morphisms ŝ ◦ j,Oj ◦ ŝ ∈
homNFrm((L,NL), (OX,Oβ)). These morphisms are represented in the tri-
angles below.

(X,β) (OX,Oβ)

(ΣL,ΣNL)

s◦j

-

(L,NL)

O
j◦ŝ

-

(Y, γ)

j

?

s

-

(OY,Oγ)

Oj

6

ŝ

-

Since ŝ ◦ j = Oj ◦ ŝ, the following diagram is commutative as required.

homBNear((X,β), (ΣL,ΣNL))
(̂−)

≃
- homNFrm((L,NL), (OX,Oβ))

s ◦ j - ŝ ◦ j, Oj ◦ ŝ

s

6

- ŝ

6

homBNear((Y, γ), (ΣL,ΣNL))

(−)◦j

6

≃
(̂−)

- homNFrm((L,NL), (OY,Oγ))

Oj◦(−)

6

We obtain the unit and counit of the adjunction using the specific identity
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morphisms (see for instance, Borceux [125, Theorem 3.1.5] or Simmons [163,
§5.4.]) as followed in [129]. We fix (L,NL) = (OX,Oβ). We then have the
isomorphism

homNFrm((OX,Oβ), (OX,Oβ))
φ((OX,Oβ),(OX,Oβ))

≃
- homBNear((X,β), (ΣOX,ΣOβ)).

In particular, the identity morphism id(OX,Oβ) in NFrm corresponds via
the adjunction isomorphism φ to a morphism εX in BNear as follows:

φ(id(OX,Oβ)) = id(OX,Oβ) := εX .

Thus for each x ∈ X, εX(x) = id(OX,Oβ)(x) : OX - 2 where εX(x)(U) =
1 iff x ∈ U so that εX(x) = x̃ which defines a natural transformation
ε : 1BNear

- ΣO similar as in §3.1.1.

Similarly, if we fix (X,β) = (ΣL,ΣNL), we have the isomorphism

homBNear((ΣL,ΣNL), (ΣL,ΣNL))
φ−1((ΣL,ΣNL,(ΣL,ΣNL))

≃
- homNFrm((L,NL), (OΣL,OΣNL)).

We then obtain for the identity morphism id(ΣL,Σµ) in BNear, correspond-
ing via the adjunction isomorphism φ−1, a morphism ηL inNFrm as follows:

φ−1(id(ΣL,ΣNL)) = îd(ΣL,ΣNL) := ηL.

Thus for each a ∈ L, we have that

ηL(a) = îd(ΣL,ΣNL)(a) = id−1
(ΣL,ΣNL)(Σa) = Σa,

which defines a natural transformation η : 1NFrm
- OΣ that is sim-

ilar as in §3.1.1.

In summary, Dube [6, Theorem 1.3.11] shows a structured version of the
adjunction between Top and Frm extended to BNear and NFrm as was
done by Frith [129, Theorem 2.18] for the category Unif of uniform spaces
and uniformly continuous maps, and UFrm. Furthermore, the functors
O and Σ induce a dual equivalence between spatial N -frames and sober B-
spaces. For a spatial nearness frame (L,NL), ηL : (L,NL) - (OΣL,OΣNL)
is an isomorphism whilst for any sober B-space (X,β),

εX : (X,β) - (ΣOX,ΣOβ)

is an isomorphism.
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4.3 The completion of a nearness frame Following the method
of Kř́ıž [141](1986), Dube provides a direct description of the completion of
a nearness frame in terms of generators and defining relations. We begin
with the notion of a precongruence R on a frame L, defined by Kř́ıž [141],
which is a relation R ⊆ L×L where for all x, y ∈ L, (x, y) ∈ R implies that
{a ∈ L : (a∧x, a∧ y) ∈ R} is a base for L. Let S ⊆ L×L and B be a base
for L that is closed under finite meets. Then

R(S,B) = {(s ∧ b, t ∧ b) : (s, t) ∈ S, b ∈ B} (⋄)

is a precongruence on L. If R ⊆ L × L and x ∈ L, then x is R-coherent if
for any pair a, b ∈ L with (a, b) ∈ R we have a ≤ x iff b ≤ x. The set of
all R-coherent elements of L is denoted by Coh(R) and is closed under all
meets. We then have the following theorem concerning a precongruence R
and Coh(R).

Theorem 4.4 (Theorem 2.2.3 [141]). Let R be a precongruence on a frame
L. Then Coh(R) together with the induced ordering is a frame and there
exists a nucleus j : L - L such that Fix(j) = Coh(R). Moreover,
j : L - Coh(R) is universal among the join-preserving mappings f
from L to complete lattices B satisfying (a, b) ∈ R implies f(a) = f(b).
(More exactly, for any such f there exists a unique join-preserving fj :
Coh(R) - B such that f = fj ◦ j).

The nucleus j : L - L in the above theorem is given by

j(x) = ∧{u ∈ Coh(R) : x ≤ u},

for each x ∈ L. Now let (L,NL) be a nearness frame and consider the frame
of downsets DL of L with base B = {# x : x ∈ L} which is closed under
finite meets as described in §3.1.3. We now let S ⊆ DL×DL be the system
of all pairs

(#a, k(a)), (L, c(U)), (#0L, ∅)
with a ∈ L and U ∈ NL where

k(a) =
⋃

{#b : b�NL a} and c(U) =
⋃

{#x : x ∈ U}.

Let R = R(S,B) as defined in (⋄). We also let L̄ = Coh(R) and j :
DL - DL be the nucleus in Theorem 4.4 with L̄ = Fix(j). Dube then
shows that
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(1) the base B ⊆ L̄,

(2) for each A ∈ NL, #A = {#a : a ∈ A} ∈ Cov L̄ and

(3) N0L̄ = {#A : A ∈ NL} is a N -base for the frame L̄.

We then let NL̄ be the nearness on L̄ with N -base N0L̄ and define p :
(L̄,NL̄) - (L,NL) by join, p(D) =

∨
D for each D ∈ L̄. Then p is a

uniform frame homomorphism (an N -map) and ((L̄,NL̄), p) is the comple-
tion of the nearness frame (L,NL).

Dube [6] also goes a step further and shows that the completion of a
nearness frame may be realised out of a nucleus. For a nearness frame
(L,NL) and for its completion that he describes as ((L̄,NL̄), p) the map
k : L̄ - L̄ defined by D - # (

∨
D) is a nucleus on L̄. With L̃ = {# a :

a ∈ L}, L̃ = Fix(k). Then L̃ is a frame with ∧ defined as # a∧ # b = # (a∧b)
for a, b ∈ L̃ and for any {# xi}i∈I in L̃,

∨
L̃

(# xi) = # (
∨
i∈I

xi). Furthermore,

the map # : L - L̃ given by a - # a for each a ∈ L is a frame
homomorphism. As a result defining ÑL = {# A : A ∈ NL} realises a
nearness on the frame L̃. Dube [6, Theorem 4.2.5] then concludes that the

nearness frame (L,NL) is complete iff (L̄,NL̄) = (L̃, ÑL). Furthermore,
if (M,NM) is a complete nearness frame and h : (M,NM) - (L,NL)
is any N -map, then h factors uniquely via h̄ through the completion map

pL : (L̄,NL̄) - (L,NL) where h̄ :M - L̄ is given by # x
h̄- # h(x)

for each x ∈ M . Furthermore, h = pL ◦ (h̄ ◦ p−1
M ) (the diagram below is

commutative):

(M,NM)
h- (L,NL)

(M,NM)

pM≃

6

p−1
M

?

h̄
- (L̄,NL̄)

pL

6h̄◦p −
1M

-

Pursuant to the above independent construction by Dube in 1992, Ba-
naschewski’s lecture series presented at the 1994 Symposium on Categorical
Topology (SoCat94) in Cape Town, where a description of the completion of



64 I. Naidoo

a nearness frame (without the use of generators and relations) is given, was
published by the Department of Mathematics and Applied Mathematics at
UCT as lectures notes (Banaschewski [111](1996)). The latter construction
also appears in the paper by Banaschewski and Pultr [118](1996) which is
the more widely referenced and popularised version of the completion of a
nearness frame described as a frame of specific downsets. For a nearness
frame (L,NL), x ∈ L and A ∈ NL, let k(x) = {y ∈ L : y �NL x} and
x ∧ A = {x ∧ a : a ∈ A}. Let γL be the closure system of all U ∈ (DL,⊆)
determined by

(1) if k(x) ⊆ U , then x ∈ U and

(2) if x ∧A ⊆ U for some A ∈ NL, then x ∈ U .

We define ℓ0 : DL - DL such that for each U ∈ DL,

ℓ0(U) = {x ∈ L : k(x) ⊆ U} ∪ {x ∈ L : x ∧A ⊆ U for some A ∈ NL}.

Then ℓ0 is a prenucleus and U ∈ γL iff ℓ0(U) = U . By Lemma 3.3 and
Lemma 3.2, the closure operator ℓ on DL determined by γL is a nucleus so
that γL is a frame. Furthermore, as described in §3.1.3., on the underlying
frames the join map

∨
: DL - L is a frame homomorphism with right

adjoint # : L - DL. The frame homomorphism
∨

: DL - L factors
through the frame homomorphism (the nucleus) ℓ : DL - γL via the
frame homomorphism γL : γL - L given by the join map restricted to
γL

γL
γL -�

(γL)∗
L

DL

∨

-�

ℓ

The right adjoint (γL)∗ : L - γL is given by (γL)∗(x) = #x for each x ∈ L.
For each A ∈ NL, (γL)∗(A) ∈ Cov γL. The system of covers ν = {(γL)∗(A) :
A ∈ NL} = {# A : A ∈ NL} is an N -base on γL generating a nearness
NνγL = γNL. We then have the N -map γ(L,NL) : (γL, γNL) - (L,NL)
given by join is a dense surjection rendering ((γL, γNL), γ(L,NL)) as the
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completion of the nearness frame (L,NL).

In the above two independent constructions of the completion of a
nearness frame, the Dube description involves a precongruence whilst the
Banaschewski-Pultr version involves a prenucleus. Furthermore, the result
of Kř́ıž (Theorem 4.4) on precongruences has a striking resemblance and an
identical form to Banaschewski’s Lemma 3.3 on prenuclei. It is therefore
quite natural to then consider the relationship between prenuclei and pre-
congruences. They are seemingly distinct concepts, nevertheless they are re-
lated through the concept of a nucleus. Townsend [165, Lemma 2.3.1](1996)
shows a passage from a prenucleus ℓ0 : L - L on a frame L to a precon-
gruence in the following manner. Define Rℓ0 : L - L by

(a, b) ∈ Rℓ0 iff ∀u ∈ L, ℓ0(u) = u⇒ (a ≤ u iff b ≤ u).

Then (ℓ0(u), u) ∈ Rℓ0 for each u ∈ L and furthermore, Rℓ0 is a precongru-
ence on L such that Coh(Rℓ0) = Fix(ℓ0). Townsend also shows that for
any subset T of L × L one realises a prenucleus by defining p0 : L × L by
p0(u) = u∨∨{a∧ b : ∃ c, (c, a) ∈ T, c∧ b ≤ u}. T does not necessarily have
to be a precongruence.

4.4 Coproduct of nearnesss frames Dube in [150] relates his ex-
citement of independently constructing the coproduct of a nearness frame
whilst he was on a British grant visiting at the University of Cambridge
during his doctoral studies in 1992. Conveying the results to his supervisor
(Baboolal) from the UK to South Africa was one of his most memorable
moments. We highlight the need for the coproduct and its construction
below.

Bentley [123](1991) gave an analogue of the classical theorems of Tamano
[123, Theorem 21] and Dowker [123, Theorem 22] for nearness spaces. The
classical theorems involved the topological productX×Y of certain topolog-
ical spaces X and Y . Dube [6, Theorem 6.2.3] provides a pointfree version
of Bentley’s result [123, Theorem 23] on the Tamano-Dowker type theo-
rems for nearness frames. In so doing, the binary coproduct of two nearness
frames needed to be defined and constructed. We require the notion and
applications of a precongruence introduced by Kř́ıž [141] which we have de-
scribed in §4.2. Kř́ıž and Pultr [142](1989) construct the coproduct of two
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frames using a precongruence. For frames L and M let S ⊆ D(L ×M) be
the precongruence relation consisting of all pairs

(# (
∨

i∈I
ai, b),

⋃

i∈I
(# (ai, b)), (# (a,

∨

i∈I
bj),

⋃

i∈I
# (a, bi)), (# (0, b), ∅), (# (a, 0), ∅)

for all a, ai ∈ L and b, bi ∈M with i ∈ I. ThenX ∈ D(L×M) is S-coherent
iff

(1) (x, 0), (0, x) ∈ X for all x, y ∈ X and

(2) (
∨
i∈I

xi, y), (x,
∨
i∈I

yi) ∈ X whenever (xi, y), (x, yi) ∈ X ∀ i ∈ I.

The coproduct of the frames L and M is given by L⊕M = Coh(S). Then
L ⊕ M = Fix(j) for the nucleus j emanating from Theorem 4.4 and we
write x⊕ y for an element of L⊕M , i.e. x⊕ y = j(# (x, y)) for x ∈ L, y ∈
M . The set B⊕ = {x ⊕ y : x ∈ L, y ∈ M} is a base for L ⊕ M . The
top element of the frame L ⊕M is 1L⊕M = # (1L, 1M ) and the bottom is
0L⊕M = # (1L, 0M )∪ # (0L, 1M ). The operations of ⊕ with ∧,∨ and ≤ are
fairly standard where for x, xi, c ∈ L and y, yi, d ∈M for i ∈ I we have

(1) x⊕ y = 0L⊕M iff a = 0L or b = 0M ,

(2) x⊕ ∨
i∈I

yi =
∨
i∈I

(x⊕ yi) and (
∨
i∈I

xi)⊕ y =
∨
i∈I

(xi ⊕ y),

(3) (x⊕ y) ∧ (c⊕ d) = (a ∧ c)⊕ (y ⊕ d),

(4) x⊕ y ≤ c⊕ d whenever x ≤ c and y ≤ d and

(5) 0L⊕M ̸= x⊕ y ≤ c⊕ d implies that x ≤ c and y ≤ d.

For nearness frames (L,NL) and (M,NM), Dube uses the coproduct
L ⊕M of the underlying frames given by Kř́ıž and Pultr that is described
above and constructs a nearness on this coproduct frame. Noting that for
A ∈ NL and B ∈ NM ,

A⊕B = {a⊕ b : a ∈ A, b ∈ B} ∈ Cov(L⊕M),

Dube proceeds to define

N(L⊕M)



A TAD Celebration I 67

= {C ∈ Cov(L⊕M) : A⊕B ≤ C for someA ∈ NL,B ∈ NM},

and using the operations of ⊕ shows that N(L ⊕M) is a nearness on the
coproduct L ⊕M . Hence, the coproduct of the nearness frames (L,NL)
and (M,NM) is the nearness frame (L ⊕M,N(L ⊕M)). If NL and NM
are uniformities, then (L ⊕M,N(L ⊕M)) is a uniform frame which is the
coproduct of the uniform frames (L,NL) and (M,NM). With this for-
malisation of the coproduct of a nearness frame a pointfree version of the
Tamano-Dowker type theorems for nearness frames is also presented by
Dube in [8](1995). The structure of binary coproducts of frames is fur-
ther studied by Chen [126](1992). Further categorical properties of NFrm
are investigated by Seo and Lee [160](1998) and they particularly show
that NFrm is complete (has equalizers and products) and also cocomplete.
The arbitrary product of a family of nearness frames ((Li,NLi))i∈I is con-
structed and Seo and Lee show that the categories UFrm, StrNFrm and
AUNFrm are closed under the formation of products. The arbitrary co-
product of nearness frames is given by Picado and Pultr [154, §3.5. pp. 155].

Dube’s doctoral thesis, Structures in frames [6], covers various other
subcategories of nearness frames, including contigual, locally fine (LfN-
Frm) and paracompact (ParNFrm) nearness frames. The contigual near-
ness frames in a sense generalize compactness. In Dube [9, Proposition
4](1995) ParNFrm is shown to be a coreflective subcategory of NFrm
whilst LfNFrm is a reflective subcategory of NFrm [9, Proposition 10].
We recall that a nearness frame (L,NL) is locally fine iff whenever A ∈ NL
and (Ba)A = {Ba : a ∈ A} ⊆ NL then the collection A ∧ (Ba)A = {a ∧ b :
a ∈ A and b ∈ Ba} ∈ NL. If NL and ML are nearnesses on L, Dube defines
the following nearness on L:

NL/ML={A ∈ CovL :B ∧ (Cb)B ≤ A for someB ∈ ML, (Cb)B ⊆ NL}.

We will call the above nearness the Ginsberg-Isbell nearness NL/ML. The
locally fine reflection (which we will denote by ϑL) of a nearness frame
(L,NL) is constructed by the Ginsberg-Isbell derivatives which are defined
by transfinite induction:

N(0)L = NL,

N(α+1)L = N(α)L/N(α)L,
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N(β)L =
⋃

α<β

N(α)L for limit ordinalβ.

N(α)L are nearnesses on L for each α. If NfL is the first N(α)L such
that N(α)L = N(α+1)L then NL ⊆ NfL and ϑL = (L,NfL) is the locally
fine reflection of L with reflection N -map mapping L identically given by
idL : (L,NL) - (L,NfL) (x 7! x ∀ x ∈ L). Dube also introduces the
concepts of regular, uniformly completely regular, separated and uniformly
connected for nearness frames and investigates some of their properties in
his thesis.

Remark 4.5. We note that, in the terminology of Dube, a nearness frame
(L,NL) (or the nearness NL) is called

(1) contigual iff ∀ A ∈ NL ∃ B ⊆<ω A, B ∈ NL. This is essentially
the notion of total boundedness that is explained in the forthcoming
Section §5.1.

(2) paracompact iff ∀ A ∈ NL ∃ ulf B ∈ NL, B ≤ A. A subset B ⊆ L
is uniformly locally finite (or ulf for brevity) if there is C ∈ NL such
that for each b ∈ B, Cb = {c ∈ C : b ∧ c ̸= 0} ⊆<ω C. ParNFrm is
the subcategory of paracompact nearness frames.

(3) regular iff ∀ A ∈ NL ∃ B ∈ NL, B � A (B strongly refines A) iff ∀
A ∈ NL, Ǎ = {b ∈ L : ∃ a ∈ A, b � a} ∈ NL. This is precisely the
notion of a strong nearness.

(4) uniformly completely regular (ucr) iff ∀ A ∈ NL ∃ B ∈ NL, B � �A
where B��A means that ∀ b ∈ B ∃ a ∈ A, b�� a. Here, b�� a iff ∃
an N -map h : (O[0, 1],Oν) - (L,NL) such that a ∧ h((0, 1]) = 0L
and h([0, 1)) ≤ b where [0, 1] is the nearness space with usual nearness
ν.

(5) separated iff for each near and Cauchy A ⊆ L, ðA is near where
ðA = {y ∈ L : A ∪ {y} is near}. We recall from [6, Chapter 3, p.38]
that for (L,NL) ∈ NFrm, a subset A ⊆ L is near iff for each B ∈ NL,
B∩secA ̸= ∅ where secA = {x ∈ L : x∧a ̸= 0 ∀ a ∈ A}. Equivalently,
A is near iff A¬ /∈ NL where A¬ = {a∗ : a ∈ A}. Furthermore, A is
Cauchy iff secA is near.
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(6) uniformly connected iff each N -map (4,Cov 4)
φ- (L,NL) factors

through the N -map (2,Cov 2)
ψ- (L,NL) iff there is x ∈ 4\2,

φ(x) = 0L.

5 Postdoctoral research (1993 - 1997)

Dube never ventured into or took up any postdoctoral fellowship locally in
South Africa nor abroad but pursued his academic career at the University
of Zululand after the award of his doctorate. He continued his research fo-
cussing on nearness frames and pointfree topology at the unstructured level
publishing the work from his doctoral thesis with further new results and
original postdoctoral work. The paper Dube [8](1995) focuses on present-
ing [6, Chapter 6.2] on the pointfree version of the Tamano-Dowker type
theorems given by Bentley for nearness spaces in [123](1991). In [9](1995),
Dube articulates the work in [6, Chapter 3] on paracompactness and locally
fine nearness frames. The main aim of [9] is to show that the category
ParNFrm forms a bicoreflective subcategory of NFrm whilst the category
LfNFrm forms a bifreflective subcategory of NFrm. In the next two sub-
sections we showcase the independent postdoctoral study of Dube [7](1994),
Dube [11, 12] (1996) and the 1994 investigation of Dube on the category
StrNFrm of strong nearness frames that appeared in Dube [12](1999).

5.1 Uniform complete regularity and uniform normality Ori
(Dube’s co-supervisor) together with Herrlich introduced the concept of
completely within and completely regular for nearness spaces in their pa-
per [134](1988). If (X,µ) is a nearness space and A,B ⊆ X, then A is com-
pletely within B (which we express as A ◀◀ B) if there is a uniformly contin-
uous map f : X - [0, 1] such that f(A) ⊆ {0} and f(X−B) ⊆ {1}. The
nearness space (X,µ) is then called completely regular if for each U ∈ µ, we
have that U◀◀ ∈ µ where U◀◀ = {A ∈ ℘(X) : A ◀◀ U for some U ∈ U }.

In [11](1996), emanating from his thesis, Dube provides a pointfree ana-
logue for the relation ◀◀ which he represents as �� and introduces uni-
form complete regularity (ucr) for nearness frames which we have described
in Remark 4.5(4). It then turns out that an N -space (X,β) ∈ BNear is
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completely regular iff the nearness frame (OX,Oβ) is ucr [11, Proposition
2.3] and that the category BNear contains all regular N -spaces [11, Lemma
2.8]. A nearness space (X,µ) is regular if for each A ∈ µ there is B such
that B ≤s A (B strongly refines A ) which means that for each A ∈ A
there is B ∈ B and C ∈ µ such that St(A,C ) ⊆ B. Consequently, (X,β) ∈
BNear is regular iff (OX,Oβ) ∈ StrNFrm. Baboolal [11, Proposition 2.5]
communicated that a frame is completely regular iff it has a ucr nearness.
As a consequence, Dube provides a new proof of the well-known result that
a topological space is uniformizable iff it is completely regular [11, Corollary
2.10].

Dube also introduces totally bounded nearnesses as those that have a
base consisting of finite uniform covers. TbNFrm denotes the subcategory
of totally bounded nearness frames. Given any nearness NL on a frame
L, NtL = {A ∈ NL : B ≤<ω A for someB ∈ NL} is a totally bounded
nearness on L. The pair (L,NtL) is then the totally bounded coreflection of
the nearness frame (L,NL) with coreflection N -map given by the identity
idL : (L,NtL) - (L,NL). Thus TbNFrm is a coreflective subcate-
gory of NFrm. By [11, Lemma 3] the totally bounded nearness frames
that are strong are precisely the uniform frames. Banaschewski and Pultr
in [120](2012) provide a more in-depth study into totally bounded nearness
frames. We discuss more coreflective subcategories of NFrm developed by
Dube in Section §6.1.

Dube then defines an N -frame (L,NL) to be uniformly normal (we ab-
breviate this to u-normal) if both NL and NtL are strong nearnesses on L
(NtL is thus a uniformity). Accordingly, normality for regular frames may
be characterised by u-normality of the fine nearness. We have that a regular
frame is normal provided that the fine nearness is u-normal. With Countable
Dependent Choice, u-normality implies ucr so that the underlying frame of
a u-normal nearness frame is completely regular [11, Proposition 3.6]. We
remark here that for a u-normal nearness frame (L,NL), (L,NtL) ∈ UFrm
which makes L completely regular (with CDC, since it is uniformizable).

The uniform coreflection of an N -frame is discussed for the very first
time by Dube [11](1996), the construction of which was communicated to
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Dube by Banaschewski. The research in [11] was carried out during the pe-
riod 1993 -1994 and submitted for publication in September of 1994. For an
N -frame (L,NL), the normal uniform covers (recall from §3.1.4.), which we
denote by NnL = {A ∈ Covn L : A ∈ NL}, is a preuniformity on L. Conse-
quently, NnL determines an interior operator k : L - L on L defined by
k(a) =

∨{x ∈ L : x�NnLa} such that µL = Fix(k) = {a ∈ L : a = k(a)} is
a subframe of L and UµL = {k(A) : A ∈ NnL} is a uniformity on µL which
generates NnL (see Banaschewski and Pultr [117, Lemma 2](1993)). Then
µL = (µL,UµL) is the uniform coreflection of (L,NL) with coreflection map
given by the inclusion i : (µL,UµL) - (L,NL). The construction of the
uniform coreflection µL of an N -frame (L,NL) is also given by Baboolal
and Ori [107, Theorem 2.1](1994) which they use in their construction of
the Samuel compactification of a nearness frame. Consequently, with the
use of the uniform coreflection of a nearness frame, Dube establishes the
pointfree analogue of the result in spaces given by Bentley [122, Proposition
2.6](1977) that a u-normal nearness frame has the same underlying frame
as its uniform coreflection.

In 1994, Dube presented a focussed study on the category StrNFrm
at the SoCat94 symposium at UCT that highlighted the relation between
regular nearness spaces and strong nearness frames (which was published
as [12](1999)). Characterizations of pointfree paracompactness was the
main theme with investigations into local fineness, subfiness and paracom-
pactness for nearness frames. Dube provides a neat consequence relating to
the latter and strongness in showing the pointfree version of the classical
result of Michael [147](1957) in the characterization of paracompact spaces
that a regular Lindelöf frame is paracompact [12, Corollary 6]. The result
here involves the use of entirely pointfree nearness concepts. The origins of
this result traces back as a consequence of the work of Madden and Ver-
meer [143](1986) who show that localic regular Lindelöfness and realcom-
pactness are equivalent. Alternate proofs of this novel result may be found
either in Sun [164, Corollary 1](1989) who uses σ-locally finite refinements
or in Walters-Wayland [167, Lemma, p.273](1999) who uses the cozero part
of a frame. Mugochi (Dube’s first doctoral student) pursued with studies
into totally boundedness, strongness and ucr for nearness frames in his doc-
toral studies [148](2009). Dube’s descendant in Mogochi’s master’s student
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Haimene [132](2018) also looked at the properties of totally strong and ucr
nearness frames and studied the relationship between them.

5.2 Separability and metrizability It is well-known that a topolog-
ical space is called separable provided that it has a countable dense subset.
The terminology was introduced in [128](1906) by Fréchet wherein the for-
mal notion of a metric space was first established. Metrizable locales were
first introduced by Isbell [140](1972) as those uniform locales for which the
uniformity has a countable base. Pultr in [155, 156](1984) formally intro-
duced metric diameters and provides an in-depth study of metric frames.
Sun in [164](1989) continued with the study of metric frames with an em-
phasis on investigating paracompactness and solving an open question posed
by Pultr [157](1984) on whether metrizable locales are paracompact. Sun
provides an affirmative answer to this open question in [164, Corollary 2].
Dube [7](1994) introduces a pointfree translation of separability for locales.
A locale L is separable if there is S ⊆ω L−{1} such that for each 0 ̸= x ∈ L,
x ∨ s = 1 for some s ∈ S. The concept is conservative for T1 spaces in the
sense that a T1 space X is separable iff the locale of its open sets OX is
separable. An observation is that a regular locale with a countable base is
separable. In so doing, Dube establishes a pointfree version of the classical
Metrization Theorem of Urysohn [7, Proposition 3.3] given below.

Proposition 5.1 (Urysohn’s Metrization Theorem for Locales).
A locale is separable and metrizable iff it is regular and has a countable base.

Four years later, Banaschewski and Pultr in [119](1998) presented a
unified treatment of pointfree metrization theorems based on an analysis of
special properties of bases. Particularly, they considered a frame L with a
basis B of the types σ-discrete (Bing base), σ-locally finite (Nagata-Smirnov
base), regular (Archangelskij base), σ-admissible or σ-stratified. For regu-
lar frames these various bases types coincide [119, Theorem 3.6]. The au-
thors relate that “any result which asserts the existence of a countable basis
of uniformity for a certain class of frames is rightly considered a metriza-
tion theorem”. Various metrization theorems are identified according to
the basis type and the authors realise what we may refer to as the Moore
Metrization Theorem , the Nagata-Smirnov Metrization Theorem, the Bing
Metrization Theorem (BMT) and the Archangelskij Metrization Theorem.
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Consequently, the BMT generalizes the original Urysohn’s Metrization The-
orem in pointfree form in that any regular frame with a countable basis is
metrizable. Thus in [119], the UMT is a consequence of the BMT which
also provides the compact variant of the UMT, namely that a compact reg-
ular frame is metrizable iff it has a countable basis. The Dube notion of
separability and the consequential proof of the UMT may thus be included
in the unified treatment of pointfree metrization theorems. The compact
variant of the UMT can be realised from Dube’s results in [10](1996) which
we briefly consider next.

Building on the results on Lindelöfness, paracompactness and coprod-
ucts, Dube shows that a paracompact separable locale is Lindelöf [7, Propo-
sition 3.6] and that, as in spaces, separability is countably productive. Con-
sequently, since metrizable locales are paracompact (Sun [164, Corollary
2]), separable metrizable locales are Lindelöf. The Stone-Čech compactifi-
cation βL features predominantly in the work of Dube post the award of
his doctorate. It is in [7] that he first makes reference to βL and proves
that if a normal regular locale L is separable, then so is βL [7, Proposition
3.9]. In [10](1996), Dube continues with the study on separability that he
defined in [7] and shows, as in the classical case for spaces, that separability
and Lindelöfness are equivalent for metrizable frames [10, Proposition 2].
Furthermore, quotients of separable metrizable frames are separable and
regular subframes of compact metrizable frames are metrizable.

6 Structured frames and completion

Dube’s direct description of the completion (L̄,NL̄) of a nearness frame
(L,NL) emanating from his doctoral thesis is described in Section §4.3. If
NL is a uniformity, then (L̄,NL̄) is also its uniform completion. Further
discussions on the category UFrm and constructions of the completion of a
uniform frame are given by Isbell [140](1972), Kř́ıž [141](1986), in a series of
papers by Banaschewski and Pultr [116](1990), [118](1996) and [120](2012),
and individually in [111](1996) by Banaschewski. Apart from the founda-
tions on nearness frames presented in [6] and the work on metrizable locales
that we have encountered in Section §5.2, Dube has made further note-
worthy contributions in the category NFrm and UFrm. Particularly, in
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NFrm, various subcategories are discovered over and above the ones that
he initially studied in [6]. Dube (together with Mugochi) investigate cer-
tain subcategories of NFrm and determine whether they are coreflective
or reflective in the subcategories of nearness frames. We highlight these
in Section §6.1. Thereafter we consider preservation of properties by the
completion in Section 6.2 that Dube establishes for nearness frames and
some of its subcategories. Lastly, in Section §6.3, we feature the notion of
uniform paracompactness and its applications in UFrm that Dube invents
and delves into.

6.1 Reflections and coreflections in NFrm In Section §4 we re-
called the subcategory LfNFrm of locally fine nearness frames and the
category ParNFrm of paracompact nearness frames and their homomor-
phisms. In this section we also refer to the category of strong nearness
frames StrNFrm and almost uniform nearness frames AuNFrm that we
have describe in Section §3.4 and the subcategory TbNFrm shared in Sec-
tion §5. We consolidate the various subcategories emerging from Dube’s
workings. We recall the following classifications of nearness structures or a
nearness frame.

Remark 6.1. A nearness frame (L,NL) or the nearness NL is called

(1) fine ifNL = CovL. FNFrm is the subcategory of fine nearness frames
(see Section §3.4). FNFrm is a reflective subcategory of NFrm.

(2) quotient-fine if there is an onto frame homomorphism h : M - L
such that NL = {h(C) : C ∈ CovM}. QfNFrm is the resulting
subcategory of quotient-fine nearness frames. An alternate charac-
terisation of quotient-fine nearness frames is given by its completion.
(L,NL) is quotient-fine iff its completion (L̄,NL̄) is fine [35, lemma
3.2]. Furthermore, FNFrm ⊂ QfNFrm ⊆ StrNFrm.

(3) interpolative if x�NL z in L then x�NL y�NL z for some y ∈ L. The
subcategory of interpolative nearness frames is denoted by IntNFrm.

(4) uniform prenormal if NL is strong and its totally bounded coreflection
NtL is also strong. The nearness NtL is described in Section §5.1.
UpnNFrm denotes the subcategory of uniformly prenormal nearness
frames.
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(5) uniformly normal if NL is strong and the totally bounded coreflection
of its completion NtL̄ is also strong. UnNFrm is the subcategory of
uniformly normal nearness frames.

We then have the following strict containment of subcategories of AuN-
Frm.

Proposition 6.2 ([40], Proposition 4.3).

UFrm ⊂ UnNFrm ⊂ UpnNFrn ⊂ AuNFrn.

We now summarize the various reflective and coreflective subcategories
of nearness frames established by Dube in [6, 9, 40, 41, 56].

Proposition 6.3. The following are reflective subcategories.

(1) LfNFrm is reflective in NFrm [9, Proposition 10].

(2) FNFrm is reflective in NFrm [40].

(3) QfNFrm is reflective in StrNFrm [40, Proposition 3.4] .

Proposition 6.4. We have the following coreflective subcategories.

(1) ParNFrm is coreflective in NFrm [9, Proposition 4].

(2) TbNFrm is coreflective in NFrm [11, 41].

(3) AuNFrm is coreflective in IntNFrm [41, Proposition 3.3].

Proposition 6.4(3) was proved by means of a direct construction of the
coreflection in [41](2011). An open question arose in [41] as to whether
strong nearness frames are coreflective in nearness frames. The result, how-
ever, could not be achieved by a direct construction and remained open.
Frith and Schauerte in [131](2014) pursued with a study on coreflections of
nearness frames and conceived a general method for constructing coreflec-
tions in the category of nearness frames. With their general method, they
show that StrNFrm is coreflective in NFrm thereby answering the open
question in [41] in the affirmative. The category of complete nearness frames
is CNFrm and we note that completion is a coreflection for uniform frames
(Banaschewski and Pultr [116](1990)), and also for strong nearness frames
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(Banaschewski, Hong and Pultr [121, Proposition 2.4].(1998)). Further sub-
categories of nearness frames are created in Dube and Mugochi [35](2010),
and Dube, Mugochi and Naidoo [56](2014). These are ZdNFrm the zero-
dimensional nearness frames , HzdNFrm the H-zero-dimensional nearness
frames, ConNFrm the constrained nearness frames, and CntrNFrm the
controlled nearness frames. These subcategories are discussed in the next
section.

6.2 Permanence of properties under completion If a nearness
(or uniform) frame (L,NL) has a property P , the necessary and sufficient
conditions under which the completion (L̄,NL̄) has property P is a natural
inquiry. Dube in his doctoral thesis [6](1992) investigates such and shows
that a nearness frame (L,NL) has property P iff its completion (L̄,NL̄)
also has property P for all of the properties P given in Remark 4.5.

Proposition 6.5. Let (L,NL) be a nearness frame with completion (L̄,NL̄).
Then (L,NL) is

(1) locally fine iff (L̄,NL̄) is locally fine.

(2) paracompact iff (L̄,NL̄) is paracompact.

(3) contigual iff (L̄,NL̄) is contigual.

(4) uniform iff (L̄,NL̄) is uniform.

(5) regular iff (L̄,NL̄) is regular.

(6) ucr iff (L̄,NL̄) is ucr.

(7) separated iff (L̄,NL̄) is separated.

(8) uniformly connected iff (L̄,NL̄) is uniformly connected.

The above properties are thus permanent under completion. This inves-
tigative theme continues in Dube [13](1999), Dube and Mugochi [35](2010),
and Dube, Mugochi and Naidoo [56](2014) albeit not the sole intention.
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6.2.1 σ-compactness

One of the essential purposes in [13](1999) is to establish permanence for the
property of σ-compactness under completion that Dube introduces in the
categories Near and NFrm akin to the same-named classical topological
notion. We recall that a topological space is said to be σ-compact in case it
is expressible as a union of compact subsets. Dube defines σ-compactness for
a nearness frame (L,NL) via totally bounded elements of the underlying
frame and a base B for the nearness NL. An element t ∈ L is totally
bounded iff ∀ B ∈ B ∃ F ⊆<ω B such that t ≤ ∨

F (every basic uniform
cover has a finite subcollection whose join is above t). We will denote the
collection of all totally bounded elements of a nearness frame (L,NL) by
tbL. For a fine nearness frame, totally bounded elements are precisely the
compact elements of the frame that are described in Remark 3.1(4) so that
tbL = kL for fine nearness frames. A nearness frame (L,NL) is σ-compact if
∃ T ∈ NL such that T ⊆ω tbL (L has a countable uniform cover consisting
of totally bounded elements). In the category Near, in a similar fashion,
Dube defines a nearness space to be σ-compact if the space has a countable
uniform cover consisting of totally bounded subspaces. Dube then goes
on to show the permanence of σ-compactness under completion for regular
nearness spaces [13, Proposition 6]. However, in NFrm, σ-compactness is
permanent under Cauchy completion.

Theorem 6.6 ([13], Proposition 5).
(L,NL) is σ-compact iff (cL,NcL) is σ-compact.

Permanence under Cauchy completion also features in Dube [18](2004).
Dube provides and alternate proof that locally fine is permanent under
completion and also includes the following upshot in the same result.

Theorem 6.7 ( [18], Corollary 4).
(L,NL) is locally fine iff (cL,NcL) is locally fine.

Hence, the locally fine property on a nearness frame is permanent under
Cauchy completion.

6.2.2 Zero-dimensionality

We recall from Remark 3.1(5) that a frame L is zero-dimensional if for
each x ∈ L, x =

∨
C for some C ⊆ cL (every element of L is a join
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of complemented elements). ZdFrm is the category of zero-dimensional
frames. In [35](2010), Dube together with Mugochi extend the notion of
zero-dimensionality to nearness frames by calling an N -frame uniformly
zero-dimensional if for each A ∈ NL there is some B ∈ NL in which b�NL b
for each b ∈ B such that B ≤ A. The resulting subcategory of uniformly
zero-dimensional nearness frames is denoted ZdNFrm. The motivation be-
hind formalizing the category ZdNFrm was to materialise the results of Mc-
Kee [146, Theorem 3](1994) on zero-dimensional nearness spaces in pointfree
form. For (L,NL) ∈ ZdNFrm, the underlying frame L ∈ ZdFrm. Further-
more, ZdNFrm ⊆ StrNFrm. Mckee’s result in pointfree form is realised
in [35, Proposition 3.8]. Herrlich [133](1974) initially presented a notion
of zero-dimensionality for nearness spaces by uniform partitions. Herrlich’s
notion is translated into the language of frames and a nearness frame is
called H-zero-dimensional (H for Herrlich) if every uniform cover is refined
by a uniform partition. A partition of a frame L is any cover in which
its distinct elements miss each other. The resulting category of H-zero-
dimensional nearness frames is denoted HzdNFrm. In comparison, it turns
out that HzdNFrm ⊆ UFrm and HzdNFrm ⊂ ZdNFrm. Furthermore,
both ZdNFrm and HzdNFrm are closed under coproducts [35, Proposi-
tion 3.10 & 3.20]. The following result is also solidified in both ZdNFrm
and HzdNFrm.

Proposition 6.8 ([35], Corollary 3.6 & Lemma 3.17). (L,NL) is uniformly
zero-dimensional (resp. H-zero-dimensional) iff its completion (L̄,NL̄) is
uniformly zero-dimensional (resp. H-zero-dimensional).

For nearness frames, the properties of uniform zero-dimensionality and
H-zero-dimensionality are thus permanent under completion.

6.2.3 Čech completeness

In [56](2014), the notion of Čech-complete and strong Čech complete is de-
fined for any frame via the clustering and convergence of certain designated
filters in a frame, the cover-dependent C−Cauchy ones, as an adaptation of
Hong’s notion of convergence [136](1995). The intention of these concepts is
to crystallize a pointfree version of Bentley and Hunsaker’s notion of Čech-
comptete nearness spaces [124](1992). For a frame L and C ⊆ CovL, a filter
F in L is C-Cauchy if F ∩C ̸= ∅ ∀ C ∈ C. A frame L is then Čech-complete
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(resp. strongly Čech-complete) if there is a countable collection C of cov-
ers of L such that every C-Cauchy filter F in L clusters (resp. converges).
The notion of constrained (resp. controlled) in [56] is the adaptation of
Čech-completeness (resp. strong Čech-completeness) to nearness frames. A
nearness frame (L,NL) is constrained if there is a countable collection C of
uniform covers such that each every C-Cauchy filter F in L is weakly Cauchy
(that is, F¬ = {x∗ : x ∈ F} /∈ NL), the latter notion defined by the au-
thor in [151](2005). We then have the subcategory of constrained nearness
frames ConNFrm which is countably coproductive in NFrm [56, Propo-
sition 4.11]. On the other hand, (L,NL) ∈ NFrm is controlled if there is
C ⊆ω NL such that every C-Cauchy filter F in L is Cauchy (F meets every
uniform cover). The resulting subcategory of controlled nearness frames
is denoted by CntrNFrm and CntrNFrm ⊆ ConNFrm. The following
result is then materialised in the categories ConNFrm and CntrNFrm.

Proposition 6.9 ([56], Corollary 4.6 & Corollary 4.17). (L,NL) is con-
strained (resp. controlled) iff its completion (L̄,NL̄) is constrained (resp.
controlled).

Thus the property of a nearness frame being constrained or controlled
is permanent under completion and we may add the above result to the list
in Proposition 6.5.

6.3 Uniform paracompactness in UFrm Dube’s study on uni-
form paracompactness independently in [18](2004) transpired over his busy
term as Vice-Rector for Academic Affairs and Research at the University of
Zululand. He was looking at realising a pointfree version of uniform para-
compactness for uniform frames given in the study of Hohti [135](1981) in
spaces on the same named classical concept. Particularly, Dube wanted to
characterise uniform paracompactness in terms of C-normality in attempt-
ing to show that a uniform frame L is uniformly paracompact iff L ⊕ βL
is C-normal. Coincidently, I was also an academic staff at the University
of Zululand at that time working on my doctoral studies and labouring
on the work of Howes [138](1992) on paracompactifications and prepara-
compactness in pointfree form. Little did I (or Dube) know that our in-
dependent work would coincide with uniform paracompactness. I recall an
appointment with Dube at his deluxe executive management office at the
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University of Zululand. He spent some time, over his busy schedule, relat-
ing to me his proof of [18, Proposition 8] which I really appreciated coming
from him and in his capacity as Vice-Rector. We would then present our
independent results at the South African Mathematical Society Congress
hosted at our destiny UNISA in 2000. Professor Peter Witbooi, from the
University of the Western Cape, attended our talks and commented that
we should consider joint work in the future being at the same institution
after all. Peter Witbooi’s prophetic words eventually materialised some 11
years later. Moreover, a follow up joint publication on uniform paracom-
pactness [66](2015) combined the initial work we had done independently
in 1999.

In [18], Dube continues with his initial study on paracompactness and
locally fine nearness frames that he presented in [9](1995) which ensued
from [6]. Dube shows that TbNFrm ⊆ LfNFrm [18, Proposition 1] and
then considers the locally fine reflection ϑL of a nearness frame (L,NL)
that we have illustrated towards the end of Section §4. Each Ginsberg-
Isbell derivative (L,N(α)L) ∈ StrNFrm whenever (L,NL) ∈ StrNFrm.
Thus for every strong nearness frame (L,NL) its locally fine reflection ϑL
is also a strong nearness frame [18, Proposition 2]. Dube then considers the
transactions of the locally fine reflector ϑ with the completion coreflector
γ which we relate in the next Section §7. Dube turns the attention to the
category ParNFrm but focuses on the subcategory UFrm. It is the first
occasion that Dube departs from nearness frames and presents a focussed
study just in the category UFrm. For a uniform frame (L,UL), Dube
extends the notion of a locally finite subset as done for nearness frames,
retains the nomenclature and calls A ⊆ L uniformly locally finite (ulf for
brevity) if there is U ∈ UM such that for each u ∈ U , Au = {a ∈ A : a∧u ̸=
0} ⊆<ω A. (L,UL) is uniformly paracompact if for each A ∈ CovL there
is ulf B ∈ CovL such that B ≤ A. The precompact coreflection (totally
bounded terminology for nearness frames) (L,UtL) of the uniform frame
(L,UL) is then considered with the Ginsberg-Isbell nearness UtL/UL. The
following characterisations of uniform paracompactness is then proved by
Dube.

Proposition 6.10. The following statements are equivalent for any uniform
frame (L,UL).
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(1) For each A ∈ CovL, A<ω = {∨B : B ⊆<ω A} ∈ UL.

(2) L is a paracompact frame and CovL = Covt L/UL.

(3) (L,UL) is uniformly paracompact.

For (2) in the above proposition, L paracompact renders CovL a uni-
formity and Covt L is the associated precompact uniformity. Dube then
considers small elements of a frame (see Remark 3.1(8)) and defines a uni-
form frame (L,UL) to be uniformly locally compact if there is U ∈ UL such
that U ⊆ L≪. Uniform paracompactness for continuous frames are then
characterised as follows in [18, Proposition 13].

Proposition 6.11. A uniform frame with a continuous underlying frame
is uniformly paracompact iff it is uniformly locally compact.

Other pertinent results that Dube achieves pertaining to uniform para-
compactness are given next.

Theorem 6.12. If a uniform frame (L,UL) is uniformly paracompact, then
(L,UL) is complete, Cauchy complete and C-normal.

Let (L,UL) be a uniform (or nearness ) frame, A ⊆ L and b ∈ L.
Dube [6] defines b ∧A = {b ∧ a : a ∈ A} and

b ∧ UL = {C ∈ Cov(# b) : b ∧D ≤ C for some D ∈ UL}.

A is uniformly locally uniform (ulu for brevity) if there is B ∈ UL such that
for each b ∈ B, b ∧ A ∈ b ∧ UL. The uniform frame (L,UL) is C-normal
if each of its two-covers (those {a, b} ∈ UL, a, b ∈ L) is ulu. Equivalently,
a uniform frame is C-normal iff each of its finite covers is ulu [18, Corol-
lary 17]. The result of Hohti that Dube was aiming to achieve still remains
elusive and it is an open question whether a uniform frame L is uniformly
paracompact iff L⊕ βL is C-normal.

In [152](2007) an independent study of uniform paracompactness in uni-
form frames was ventured into with a different point of view focusing on
convergence in frames. In [151](2005) weakly Cauchy filters and the no-
tion of strong Cauchy complete for uniform frames were introduced. For
(L,UL) ∈ UFrm a filter F in L is weakly Cauchy if secF ∩A ̸= ∅ for each
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A ∈ UL where secF = {y ∈ L : y ∧ x ̸= 0 ∀x ∈ F}. The uniform frame
(L,U) is strongly Cauchy complete if every weakly Cauchy filter in L clusters
in the sense of Hong [136]. It is then shown in [152, Theorem 3.5] that if the
underlying frame of a uniform frame is Boolean then strong Cauchy com-
pleteness and uniform paracompactness are equivalent. It was left an open
question whether Booleaness could be dropped. This open question formed
the basis for continuing with the study on uniform paracompactness in Dube
and Naidoo [66](2015). The initial discussions surrounding providing a so-
lution to the open question arose at the airport in Lisbon, Portugal in 2012.
Both Dube and I were returning home to South Africa after participating at
the Workshop on Category Theory hosted by the University of Coimbra in
Coimbra. The conference was in honour of George Janelidze, on the occa-
sion of his 60th birthday. We had a long layover at the airport and decided
to use the time profitably in addressing the solution. The result [66, Propo-
sition 3.1] answers the open question in the affirmative. It is shown that
uniform paracompactness and strong Cauchy completeness are equivalent
for any uniform frame. Consequently, the three variants of completeness
for uniform frames have the strict implication: strong Cauchy complete ⇒
complete ⇒ Cauchy complete. The article also brings to the fore the role of
the Stone-Čech compactication βL in the completeness criteria for uniform
frames under the guise of uniform paracompactness. Uniform paracompact-
ness for uniform frames is then characterised in terms of compactifications
as follows in [66, Proposition 3.3].

Proposition 6.13. The following statements are equivalent for a uniform
frame (L,UL).

(1) L is uniformly paracompact.

(2) For any compactification h : M - L of L, if c ∈ M , h(c) = 1L,
then ∃ U ∈ UL, h∗(u) ≺≺ c ∀ u ∈ U .

(3) For any c ∈ βL, βL(c) = 1L ∃ U ∈ UL, (βL)∗(u) ≺≺ c ∀ u ∈ U .

The above concepts are then adapted to rope in the regular Lindelöf
coreflection λL and its associated coreflection map λL - L. Furthermore,
a countable version of uniform paracompactness is formulated and, as might
be expected, the cozero part of a frame is enlisted. For a uniform frame
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(L,UL) and A ⊆ L, A is called locally countable (for brevity loctble) if ∃
B ∈ UL such that ∀ b ∈ B, Ba = {a ∈ A : b∧a ̸= 0} ⊆ω A. (L,UL) is called
uniformly para-Lindelöf if ∀ A ∈ CovL ∃ loctble B ∈ UL, B ≤ A (every
cover of the underlying frame has a uniformly locally countable refinement).
The concept is a pointfree version of the uniformly para-Lindelöf spaces
given in Hohti [135]. Analogous to Proposition 6.10, we have the following
result for para-Lindelöf uniform frames.

Proposition 6.14. The following statements are equivalent for a uniform
frame (L,UL).

(1) L is uniformly para-Lindelöf.

(2) For each A ∈ CovL, A<ω1 = {∨B : B ⊆ω A} ∈ UL.

(3) L is a paracompact frame and CovL = Cove L/UL.

In the above result, the Ginsberg-Isbell nearness Cove L/UL (now a uni-
formity) coincides with the fine uniformity, and the separable coreflection

Cove L = {A ∈ CovL : B ≤ A for some countableB ∈ UL}

is used. Analogous to Proposition 6.13, λL : λL - L is now used together
with its right adjoint in place of the Stone-Čech compactiication.

Proposition 6.15. A uniform frame (L,UL) is uniformly para-Lindelöf iff
∀ a ∈ λL with λL(c) = 1L ∃ U ∈ UL, (λL)∗(u) ≺≺ a ∀ u ∈ U .

It is known that the properties of uniform paracompactness and uniform
para-Lindelöfness coincide for fine uniform frames. The equivalence of the
two properties for all uniform frames remains an open question, noting
that every uniformly paracompact uniform frame is uniformly para-Lindelöf.
Next, for the countable version: A uniform frame is uniformly countably
paracompact (or uctpara for brevity) if every countable uniform cover of the
underlying frame has a ulf refinement. For Lindelöf uniform frames uctpara
and uniformly paracompact coincide. Recall that a completely regular frame
is countably paracompact (ctpara for short) if every countable cover has a
locally finite refinement. We then have the corresponding analogous results
for uctpara uniform frames with the invocation of the cozero part of the
underlying frame and weakly Cauchy filters.
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Proposition 6.16. The following statements are equivalent for a uniform
frame (L,UL).

(1) L is uctpara.

(2) L is ctpara, and for any compactiication h : M - L of L, if c ∈
CozM , h(c) = 1L, then ∃ U ∈ UL, h∗(u) ≺≺ c ∀ u ∈ U .

(3) L is ctpara and for any c ∈ CozβL, βL(c) = 1L ∃ U ∈ UL, (βL)∗(u) ≺≺
c ∀ u ∈ U .

(4) L is ctpara and every countably-based weakly Cauchy filter in L clus-
ters.

7 Commutation of functors

If we have any functors ϱ, ζ : C - C in a category C , we say that ϱ
and ζ commute if for an C -object X we have that ϱ(ζX) is isomorphic to
ζ(ϱX). Dube’s first encounter with the commutativity of functors appears
in [18]. He considers the completion functor γ and the locally fine reflection
functor ϑ in NFrm. Dube then shows that the locally fine reflection of the
completion of a strong nearness frame is isomorphic to the completion of
the locally fine reflection of the given strong nearness frame. In this sense
the functors ϑ and γ commute.

Proposition 7.1 ([18], Proposition 7). For (L,NL) ∈ StrNFrm, ϑ(γL) =
γ(ϑL).

The next such occasion appears with Mugochi in [40]. The almost uni-
form coreflection functor α : IntNFrm - IntNFrm is considered where
for any interpolative nearness frame (L,NL), αL denotes its almost uniform
coreflection and for any h : (L,NL) - (M,NM) between interpolative
nearness frames, αh : αL - αM is the uniform homomorphism mapping
as h. Next, for a nearness frame (L,NL) the totally bounded coreflection
τL = (L,NtL) is considered. We have illuminated τL in Section §5.1. Dube
and Mugochi then show that L is interpolative iff τL is interpolative so
that we have the functor τ : IntNFrm - IntNFrm where τ(L) = τL
and for any uniform homomorphism h : (L,NL) - (M,NM) between
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interpolative nearness frames τh : τL - τM is a uniform homomorphism
mapping as h. In general, α(τL) ̸= τ(αL). However, α and τ do commute
on the category of those nearness frames that have a strong totally bounded
coreflection.

Proposition 7.2 ([40], Proposition 3.10). Let (L,NL) ∈ NFrm such that
τL ∈ StrNFrm. Then (L,NL) ∈ IntNFrm and α(τL) = τ(αL).

The uniform coreflection µL of a nearness frame (L,NL) is depicted in
Section §5.1. Let µ be the uniform coreflection functor. It is then shown
in [40] that α and µ commute.

Proposition 7.3 ([40], Proposition 3.13). If (L,NL) ∈ IntNFrm, then
α(µL) = µ(αL) = µL.

Remark 7.4 (The paracompact coreflection). Isbell in [140][Corol-
lary 3.10](1972) first showed that the paracompact completely regular lo-
cales form a full reflective subcategory of completely regular locales. A
more palatable offering of the paracompact coreflection πL is given by Ba-
naschewski and Pultr [117, Proposition 2](1993) for a completely regular
frame L. The latter description may also be found in Picado and Pultr [154,
Chapter IX] which we outline below. Let L ∈ CRegFrm. Equip L with its
fine uniformity UFL (described in Section §3.4) and consider the completion
γ(L,UFL). Let πL = γL be the underlying frame of the completion and
πL : πL - L be the underlying frame homomorphism induced by the
completion (acts as γL : γL - L). πL is paracompact and is the para-
compact coreflection of L with coreflection map given by the dense and onto
homomorphism πL. We denote the coreflection functor (the paracompact
coreflector) by π : CRegFrm - ParFrm.

Dube in [85](2017) considers necessary and sufficient conditions for the
commutativity of the Boolean functor ß (see Remark 3.1(6) and Banaschewski
[112]) with the regular Lindelöf coreflector λ, the realcompact (Hewitt) core-
flector υ, the paracompact coreflector π and the Stone-Čech coreflector β.
To this end, Dube adapts the notion of weakly Lindelöf frames (see Sec-
tion §3.1.5 and Madden and Vermeer [143]) to quasi-covers. Dube defines
a frame to be q-Lindelöf if for each A ∈ Covq L there is B ⊆ω A such that
B ∈ Covq L (every quasi-cover has a countable subset which is itself a quasi-
cover). Furthermore, extending the notion to realcompactness, a frame L is
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q-realcompact if each maximal ideal of CozL with a dense join has a count-
able subset with a dense join. Equivalently, L is q-realcompact iff every
prime ideal of CozL which is a quasi-cover has a countable quasi-subcover.
The regular Lindelöf coreflector λ is akin to q-Lindelöfness as the Hewitt
reflector υ is to q-realcompactness. For L ∈ CRegFrm, the commutativity
of ß with λ is materialised under q-Lindelöfness whilst ß commutes with υ
under q-realcompactness.

Proposition 7.5 ([85] Proposition 3.6 & Proposition 5.4). The following
are equivalent for L ∈ CRegFrm.

(1) ß(λL) ≃ λ(ßL) (resp. ß(υL) ≃ υ(ßL)).

(2) L is q-Lindelöf (resp. q-realcompact).

(3) ßL is Lindelöf (resp. realcompact).

(4) ßL is q-Lindelöf (resp. q-realcompact).

Concerning the commutativity of ß with π, since πL : πL - L is
dense onto and Boolean frames are paracompact we immediately have that
for any L ∈ CRegFrm ß commutes with π vacuously.

Proposition 7.6. ß(πL) ≃ π(ßL) ≃ ßL.

Since Boolean frames are compact iff they are finite we concisely have
the following commutation.

Proposition 7.7. ß(βL) ≃ β(ßL) iff L is finite.

8 Celebratory tributes

The following personal tributes were homaged to Themba Dube at the fes-
tive Gala Dinner of the TACT2022 International Conference. The authors
have kindly agreed to have their transcripts included. Parts 8.1 and 8.4
were delivered by Naidoo at the gala dinner on behalf of the authors. The
recording of Part 8.2 was audio streamed at the conference Gala Dinner
venue, The Kloofzicht Lodge and Spa at the Oevermeer Bistro.
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8.1 Prof Loyiso Nongxa Loyiso Nongxa is a former Vice Chancellor
of the University of the Witwatersrand.

Good evening to everyone who has graced this special occasion by their
presence, from near and afar. A warm and BIG HELLO to Professor
Themba Dube who is being deservedly honoured this week. I sometimes
regard or look at him as a precocious younger brother, but of course cannot
say that loudly, lest I get into trouble.

I wish to express deep thanks and gratitude to the organisers of this
event. I am cognizant of the fact that this is not an honour bestowed on all-
and-sundry. Great idea and I hope it will serve as an inspiration to the next
generation of mathematicians to aim for a similar recognition down the road.

Themba, I deeply regret that I have not been able to attend the
TACT2022 in your honour. I had previously informed the organisers that
I would attend and present a paper: the subject of the presentation would
have been “Evolution of SA Algebra research” and highlight your con-
tributions to the topic. Originally I had been invited to the Heidelberg
Laureate Forum taking place this week in Germany, but I am currently self-
isolating at home after contracting the dreaded COVID (I suspect in the
Republic of the Western Cape two weeks ago).

I remember vividly when you and I first met just over 45 years ago at
the University of Fort Hare. You were a bright-eyed self-confident incoming
first year student with a reputation for being an outstanding mathematics
student. I was a beginning graduate student and I think silently we each
‘sized” each other up wondering who had a better aptitude or talent for
mathematics. Well the passage of time has long settled that question and
clearly and categorically demonstrated who is. Proof: this week’s event –
QED.

I cringe when I recall that I taught you undergraduate mathematics with
only a 4-year degree in mathematics – what did I know about mathematics?
I was just an enthusiast for the subject, with a little bit of arrogance and
self-belief? I suspect I may have blithely and naively proclaimed that all
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finite groups would be known (by the beginning of the 21st century?) and
that we simply needed to (a) classify all finite simple groups and (b) solve
the “extension problem”. I am relieved that my teaching did not lead to
permanent damage to your mathematical potential.

I followed your academic progress from afar, having chosen to spend
almost 8 years outside South Africa. I often wondered by how much you
smashed my mathematics records at Fort Hare. I believed then, and still
do, that one needed international exposure in order to blossom and realise
their full potential. When you stayed put within the South African univer-
sity system, I feared that your talent would be wasted. I think you found
as a supervisor one of the finest human beings and most understated and
underrated mathematicians in our system whose contributions have gone
unnoticed and unrecognized. I may be biased because he is a very good
friend of mine. You and he have made significant contributions in nurturing
and training the next generation of young “pointless” topologists some of
whom I have come to admire. I wish they emulate your example.

Few people are aware or realise that you rose to the highest echelons
of university administration - Deputy Vice-Chancellor and Acting Vice-
Chancellor. From experience, I know that this is the graveyard of many
research careers in academia. I still recall the few occasions when I would
visit the University of Zululand as a member of one or the other Advisory
Committee of the Foundation for Research Development. I was always told
you were busy – now I am not sure whether you would be in meetings or
working behind closed doors proving theorems! I would make it a point to
remind our UZ hosts that I was your mathematics lecturer, that I taught
you Abstract Algebra; I hoped that then they would afford me more unde-
served respect. I remember also that years later I made a vain attempt to
‘drag’ you back into university administration during my time at the Uni-
versity of the Witwatersrand. But you wisely and firmly tuned us down – I
forgave you for the rebuff, almost immediately.

Recently we have been trying to map out the mathematical sciences re-
search landscape in South Africa, from antiquity until the present. One sim-
ply comes up with boxes labelled: Graph Theory; Analysis; Topology; Fluid
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Dynamics; Group Theory; Cosmology and Relativity, Symmetry Analysis
and place each name in a box; and research how the contents of each box
have evolved over time. We found your name popping up in different boxes:
Topology; Category Theory; Algebraic Structures and Commutative Alge-
bra. I am somewhat ‘relieved’ that there is a ‘point’ to your mathematics
and you are a fellow Algebraist.

Mathematical discovery and the sheer joy, satisfaction and fulfilment
that one derives from it is, I believe, the main reason why many mathemati-
cians persecute research. It is not simply about the number of publications
or citations. I have always been struck and inspired by the energy you bring
to sharing with others, during your seminars, the joy of mathematical dis-
covery. Your seminars are taking the audience along on a journey that you
have traversed and reaching the mountain top (a proof of a good theorem).
Your enthusiasm is always infectious and of course your smile that brightens
the seminar room. I suspect this has been an inspiration to your graduate
students.

I am reminded of those papers that from time to time you would share
with me, sometimes in the early hours of a Saturday morning with the mes-
sage “Loyiso, here’s a nice piece of work that I am sure you will enjoy” . I
may have forgotten to inform you that I have been retired for almost FIVE
years! Did I read and enjoy all these gems? I choose to invoke the 5th
Amendment.

We are all proud of you and bask in the glory of your achievements. You
deserve all the accolades, past present and surely many more to come.

8.2 Prof Hlengani James Siweya Hlengani Siweya is the Executive
Dean of the Faculty of Science and Agriculture at the University of Limpopo.

(Siweya wrote to the author indicating: “Indeed the occasion has ar-
rived. Please receive a clip which is about 4 minutes and 30 seconds on
my thoughts about Themba. Unfortunately, because of our own Faculty
Postgraduate Day and demanding responsibilities, I am unable to join the
celebration. However, there will be a few colleagues from here who will be
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in the audience. I wish you and all a successful celebration of one of our
celebrated Mathematicians in our country. Stay safe, I remain: Prof Dr.
HJ Siweya, Pr. Sci. Nat. Executive Dean: Science & Agriculture”)

Good day Ladies and Gentlemen. I would like to express my sincerest
and warmest appreciation to colleagues, the organisers of this celebration,
Professor Inderasan Naidoo and Professor Ighedo for inviting me to say a
few words at this occasion. It is my pleasure and honour and privilege for
me on an august occasion such as this to say a few words about a man I
respect and love, Professor Themba Dube. I got to know Themba some 35
years ago through our late Head of Department, Professor Sentsho Mashike
(may his soul rest in peace). From then onwards, Themba became a role
model to me and many of our students. Indeed, I followed him into pointfree
topology because when Themba completed his PhD in pointfree topology
under the supervision of Professor Dharms Baboolal, I trekked down to
the then University of Durban-Westville to also do my PhD in pointfree
topology under Professor Baboolal. Upon completing my Phd, I spent a
week on a visit to the University of Zululand to continue my research with
Professor Themba Dube. We did not write any joint papers together. How-
ever, our collaboration continued into the training of masters students that
I had recruited from our honours group at the University of the North-West.
Amongst these students were Silwana, Siwana and Matlabyana. Interest-
ingly, of these students, Mack Matlabyana went on to complete a PhD under
the mentorship of Professor Dube. In a way, Professor Dube has been an
inspiration to the Mathematics Department at the University of Limpopo.
His association with us, at Limpopo University, has lived until the present
day. As we are gathered here today to celebrate Themba’s birthday, for the
days, the years, and the hours well spent in his resolve for the advancement
and development of mathematics in our country and the globalised world,
it is my wish and prayer - may my God hear me - that he Themba continues
his selfless contributions in mathematics and pointfree topology in particu-
lar, so that the many young men and women in mathematics draw courage
from one of our finest black mathematicians in our country - Themba Dube.

To Themba himself, I have this to say. You have been a brother and a
mentor to me and so you remain. May this day be a reminder that you came
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and made lifelong contributions to the development of many and that’s why
we are celebrating you today. Happy birthday brother.

8.3 Prof Thekiso Seretlo Thekiso Seretlo is a former Director of the
School of Mathematical Sciences at the University of Limpopo (UL).

Ladies and Gentlemen and my fellow Mathematicians. Thank you ever
so much for inviting me to this great occasion to honour Professor Dube.
May I also express my heartfelt gratitude for being granted the opportunity
and privilege to say a few words about him as the guest of honour. Allow
me therefore to begin by saying that I have known Prof Dube for almost 45
years. When I was a first year student, following the era of the Professor
Nongxa’s as Fort Harians, there was this Themba Dube everyone used to
talk about all over that campus. This person was said to be an extremely
talented mathematician. He was also good in mathematical courses. But it
was whispered that he did not have any liking for the life sciences.

In 1980 when I was a third year student, Prof Dube had just finished his
honours and had stepped in to lecture us in the Real Analysis course. That
step was a blessing to us, because the professor who previously lectured the
same course, had not been very popular. This was perhaps because there
had been a remarkably high failure rate among students taking the course.
Things changed for the better after the young Prof Dube took over lectur-
ing Real Analysis. I seem to recall that many students, myself included,
started to indulge in Mathematics with more dedication and vigour. This
was a result of Prof Dube’s youthful inspiration and example at that time.
Indeed, it is interesting to note that at the end of this year (2022), Prof
Dube will have finished 42 years as an academic. In particular, he will have
lectured Mathematics for nearly half a century, after he first started in the
early 80s, at Fort Hare, with people like me, having been his student. On a
lighter note, my father also lectured at Fort Hare at the time that the young
Prof Dube arrived to work at that institution. In those days, Prof Dube
would occasionally visit our home. Since he was my lecturer, whenever he
visited us, I would call my father to attend to him. One day, my father
called me aside and gently pointed out that Prof Dube was more my age,
than him, that is, my father. That was the beginning of my friendship with
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Prof Dube. Prof Dube left Fort Hare at the beginning of 1985 and went
to join UniZul. I lost contact with him as he shunted between UniZul and
UniVen. I then met him again in 1994 at the SAMS conference in Univer-
sity of Natal. He was then at UniZul where he rose to the rank of DVC,
including being the acting VC, at one stage. To me, he always seemed to
prefer to do Mathematics than being in an administrative position.

From there he has not only been a friend; but he has intervened on my
behalf in very crucial situations. He has advised me on very awkward and
difficult decisions I had to take. He has also established very good relations
with NWU (Mafikeng Campus) while I was there. He had established solid
relations with UL (Turfloop) even before I joined this institution. The re-
lations, I believe, got even stronger when I got here to be Director in the
School for Mathematical Sciences. Prof Dube has contributed a great deal
to the academic advancement of other students of Mathematics. For ex-
ample, he supervised Dr Matlabyana on his PhD studies. The Executive
Dean of the Faculty of Science and Agriculture at UL, Prof Siweya, told me
that he was encouraged by Prof Dube to register for a PhD in Mathematics
under Prof Baboolal who was also Prof Dube’s supervisor. I am sure NWU
is deeply grateful to him for the research contributions he has made to the
University. I know that UL feels greatly indebted to Prof Dube. And, on a
more personal level, I am certain that I am not exaggerating when I say, I
owe him at least, half of my academic life. We all hope that his retirement
will mean being relieved of administrative duties to allow him to focus on
his beloved Mathematics. We all wish him very well in all his future en-
deavours. Let me leave you with the famous saying by Erdos. In it, Erdos
probably captures what is Prof Dube’s perspective on Mathematics. The
saying goes like this: “Without Mathematics, there’s nothing you can do.”
Everything around you is Mathematics. Mathematics is the most beautiful
and most powerful creation of the human spirit.

Thank you for paying attention to this short delivery. Thank you all
and I join you all in wishing Prof Dube and his loved ones the very best on
his retirement. God Speed and Good Luck going forward.

8.4 Prof Mandirevesa Martin Mugochi Martin Mugochi was the
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first doctoral student of Dube. He is currently the Head of Department
(Mathematics) and the University of Namibia.

I didn’t know a Mathematician with such a loud commanding voice until
I met and listened to Themba at a conference in Cape Town, speaking about
nearness frames. That caught my attention and a few years later I was his
PhD student. I would like to think that I am his first offspring in the
PhD genealogy (unless there are some illegitimate ones before me). For a
while, Tega and I were the only siblings feeding on his wisdom, until others
came along. Themba transcended from being an advisor to a mentor and
friend. In fact I’m still wondering why we are talking about his retirement,
since he has always displayed this youthful demeanour in our interactions.
I still continue to learn a lot from him, and continue to be inspired by his
tremendous impact, especially championing the cause and relevance of Pure
Mathematics in our world today. This is one occasion I would have loved to
attend in person, but circumstances prevented me from that privilege. My
best wishes to Themba on this new chapter in his life, and looking forward
to even better things in the new era. Cheers, Martin.
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