Direct products of cyclic semigroups and left zero semigroups in $\beta \mathbb{N}$

Yuliya Zelenyuk
Dedicated to Themba Dube on the occasion of his $65^{t h}$ birthday.

Abstract

We show that for every $n \in \mathbb{N}$, the direct product of the cyclic semigroup of order n and period 1 and the left zero semigroup 2^{c} has copies in $\beta \mathbb{N}$.

The addition of the discrete semigroup \mathbb{N} of natural numbers extends to the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} so that for each $a \in \mathbb{N}$, the left translation $\lambda_{a}: \beta \mathbb{N} \ni x \mapsto a+x \in \beta \mathbb{N}$ is continuous, and for each $q \in \beta \mathbb{N}$, the right translation $\rho_{q}: \beta \mathbb{N} \ni x \mapsto x+q \in \beta \mathbb{N}$ is continuous.

We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N}, identifying the principal ultrafilters with the points of \mathbb{N}. For every $A \subseteq \mathbb{N}, \bar{A}=\{p \in \beta \mathbb{N}$: $A \in p\}$ and $A^{*}=\bar{A} \backslash A$. The subsets \bar{A}, where $A \subseteq \mathbb{N}$, form a base for the

Keywords: Stone-Čech compactification, idempotent, right cancelable ultrafilter, cyclic semigroup, left zero semigroup.
Mathematics Subject Classification [2020]: 22A15, 54D80, 05D10, 22A30.
This work is supported by NRF grant SRUG200318509932.
Received: 17 September 2023, Accepted: 17 December 2023.
ISSN: Print 2345-5853 Online 2345-5861.
(C) Shahid Beheshti University
topology of $\beta \mathbb{N}$, and \bar{A} is the closure of A. For $p, q \in \beta \mathbb{N}$, the ultrafilter $p+q$ has a base consisting of subsets of the form $\bigcup_{x \in A}\left(x+B_{x}\right)$, where $A \in p$ and for each $x \in A, B_{x} \in q$.

Being a compact Hausdorff right topological semigroup, $\beta \mathbb{N}$ has a smallest two sided ideal $K(\beta \mathbb{N})$ which is a disjoint union of minimal right ideals and a disjoint union of minimal left ideals. Every right (left) ideal of $\beta \mathbb{N}$ contains a minimal right (left) ideal, the intersection of a minimal right ideal and a minimal left ideal is a group, and the idempotents in a minimal right (left) ideal form a right (left) zero semigroup, that is, $x+y=y(x+y=x)$ for all x, y.

An elementary introduction to $\beta \mathbb{N}$ can be found in [4].
In 1979, E. van Douwen asked (in [3], published much later) whether there are topological and algebraic copies of $\beta \mathbb{N}$ contained in $\mathbb{N}^{*}=\beta \mathbb{N} \backslash \mathbb{N}$. This question was answered in the negative by D. Strauss in [6], where it was in fact established that continuous homomorphisms from $\beta \mathbb{N}$ to \mathbb{N}^{*} have finite images. It follows that if $\varphi: \beta \mathbb{N} \rightarrow \mathbb{N}^{*}$ is a continuous homomorphism, then $p=\varphi(1)$ is an element of a finite order n. That is, all $i p=\underbrace{p+\ldots+p}_{i}$, where $i \in\{1, \ldots, n\}$, are distinct and $(n+1) p=m p$ for some $m \in\{1, \ldots, n\}$. Conversely, every element $p \in \mathbb{N}^{*}$ of finite order determines a continuous homomorphism $\varphi: \beta \mathbb{N} \rightarrow \mathbb{N}^{*}$ by $\varphi(1)=p$. In 1996, Y. Zelenyuk proved that $\beta \mathbb{N}$ contains no nontrivial finite groups (see [4, Theorem 7.17]). Consequently, if $p \in \beta \mathbb{N}$ is an element of order n, then $(n+1) p=n p$.

As distinguished from finite groups, $\beta \mathbb{N}$ does contain bands (semigroups of idempotents): for example, left zero semigroups, right zero semigroups, chains of idempotents (with respect to the order $x \leq y$ if and only if $x+y=$ $y+x=x$), and rectangular bands (direct products of a left zero semigroup and a right zero semigroup). To ask whether $\beta \mathbb{N}$ contains a finite semigroup distinct from bands is the same as asking whether $\beta \mathbb{N}$ contains an element of order 2 which is the same as asking whether there exists a nontrivial continuous homomorphism from $\beta \mathbb{N}$ to \mathbb{N}^{*} [4, Question 10.19].

The question whether $\beta \mathbb{N}$ contains an element of order 2 was solved in the affirmative in [7, Theorem 1]. This result has an interesting Ramsey theoretic consequence, the implication itself was established in [2, Corollary 3.5], see also [1, 8]. In [8], some further finite semigroups in $\beta \mathbb{N}$ consisting
of idempotents and elements of order 2 were constructed, in particular null semigroups $(x+y=0$ for all $x, y)$. In [10], it was shown that for every $m \geq 1$, the direct product of the m-element null semigroup and the rectangular band $2^{\mathfrak{c}} \times 2^{\mathfrak{c}}$ has copies in $\beta \mathbb{N}$ (that the rectangular band $2^{\mathfrak{c}} \times 2^{\mathfrak{c}}$ has copies in $\beta \mathbb{N}$ was established in [5]).

The question whether $\beta \mathbb{N}$ contains an element of finite order $n>2$ was solved in the affirmative in [9, Theorem 3]. In fact it was shown that for every $m \geq 1$ and every $n \geq 2$, there are distinct elements $p=p_{1}, p_{2}, \ldots, p_{m}$ in $\beta \mathbb{N}$ of order n such that $p_{s}+p_{t}=2 p$ for all $s, t \in\{1, \ldots, m\}$. The subsemigroup generated by p_{1}, \ldots, p_{m} consists of the elements $p_{1}, \ldots, p_{m}, 2 p, \ldots, n p$ and has defining relations $(n+1) p=n p$ and $p_{s}+p_{t}=2 p$. We denote this semigroup by $C_{m, n}$. If $m=1$, this is the cyclic semigroup of order n and period 1 , and if $n=2$, this is the m-element null semigroup.

In this paper we combine and modify constructions in [10] and [9] and prove that for every $m \geq 1$ and every $n \geq 2$, the direct product of the semigroup $C_{m, n}$ and the left zero semigroup $2^{\mathfrak{c}}$ has copies in $\beta \mathbb{N}$. In particular, the direct product of the cyclic semigroup of order n and period 1 and the left zero semigroup $2^{\mathfrak{c}}$ has copies in $\beta \mathbb{N}$.

Theorem 1.1. Let $m \geq 1$ and $n \geq 2$. There is an isomorphic embedding $\varepsilon: C_{m, n} \times 2^{\mathfrak{c}} \rightarrow \beta \mathbb{N}$. Furthermore, ε can be chosen so that $\varepsilon\left(C_{m, n} \times 2^{\mathfrak{c}}\right) \subseteq$ $\overline{K(\beta \mathbb{N})}$ and $\varepsilon(n p, \alpha) \in K(\beta \mathbb{N})$ for all $\alpha<2^{\mathfrak{c}}$.

In the rest of the paper we prove Theorem 1.1.
Let $l=m+n-1$. For every $x \in \mathbb{N}, \operatorname{supp} x$ is a unique finite nonempty subset of $\omega=\mathbb{N} \cup\{0\}$ such that

$$
x=\sum_{k \in \operatorname{supp} x} 2^{k}
$$

Pick an increasing sequence $I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{l}=\omega$ of subsets of ω such that $I_{i} \backslash I_{i-1}$ is infinite for each $i \in\{0,1, \ldots, l\}$ (with $I_{-1}=\emptyset$). Define a function h from \mathbb{N} onto the decreasing chain $0>1>\ldots>l$ of idempotents (with the operation $i * j=\max \{i, j\}$) by

$$
h(x)=\min \left\{i \leq l: \operatorname{supp} x \subseteq I_{i}\right\}=\max \left\{i \leq l:(\operatorname{supp} x) \cap\left(I_{i} \backslash I_{i-1}\right) \neq \emptyset\right\}
$$

and let the same letter h denote its continuous extension $\beta \mathbb{N} \rightarrow\{0,1, \ldots, l\}$. If $x, y \in \mathbb{N}$ and max supp $x<\min \operatorname{supp} y$, then $h(x+y)=h(x) * h(y)$. It then follows (see [4, Theorem 4.21]) that for any $u \in \beta \mathbb{N}$ and $v \in \mathbb{H}$, where

$$
\mathbb{H}=\bigcap_{n=0}^{\infty} \overline{2^{n} \mathbb{N}},
$$

one has $h(u+v)=h(u) * h(v)$, in particular, the restriction of h to \mathbb{H} is a homomorphism. For each $i \in\{0,1, \ldots, l\}$, let

$$
T_{i}=h^{-1}(\{0,1, \ldots, i\}) \cap \mathbb{H}
$$

Then $T_{0} \subseteq T_{1} \subseteq \ldots \subseteq T_{l}=\mathbb{H}$ is an increasing sequence of closed subsemigroups of \mathbb{H} such that $h\left(K\left(T_{i}\right)\right)=\{i\}$ for each $i \leq l$, and so $T_{i} \cap \overline{K\left(T_{i+1}\right)}=\emptyset$ for each $i<l$ and $K\left(T_{l}\right)=K(\beta \mathbb{N}) \cap T_{l}$ [8, Lemma 3.1], in particular, all $K\left(T_{0}\right), K\left(T_{1}\right), \ldots, K\left(T_{l}\right)$ are pairwise disjoint. Moreover, $h(K(\beta \mathbb{N}))=\{l\}$, and so $T_{l-1} \cap \overline{K(\beta \mathbb{N})}=\emptyset$.

To see this, let $u \in K(\beta \mathbb{N})$. Then $u+\beta \mathbb{N}$ is the minimal right ideal of $\beta \mathbb{N}$ containing u and $\beta \mathbb{N}+u$ the minimal left ideal containing u. Let v be the identity of the group $(u+\beta \mathbb{N}) \cap(\beta \mathbb{N}+u)$. Then $u=u+v$ and $v \in K(\mathbb{H})$, so $h(u)=h(u+v)=h(u) * h(v)=h(u) * l=l$.

For each $i \in\{0,1, \ldots, l\}$, let

$$
X_{i}=\left\{x \in \mathbb{N}:(\operatorname{supp} x) \cap\left(I_{i} \backslash I_{i-1}\right) \neq \emptyset\right\}
$$

Notice that for any $v \in \overline{X_{i}} \cap \mathbb{H}$ and $u \in \beta \mathbb{N}, u+v \in \overline{X_{i}}$, and for any $v \in \overline{X_{i}}$ and $w \in \mathbb{H}, v+w \in \overline{X_{i}}$.

Define $\phi_{i}: X_{i} \rightarrow \omega$ by

$$
\phi_{i}(x)=\max \left((\operatorname{supp} x) \cap\left(I_{i} \backslash I_{i-1}\right)\right)
$$

and let the same letter ϕ_{i} denote its continuous extension $\overline{X_{i}} \rightarrow \beta \omega$. Notice that $\left\{2^{k}: k \in I_{i} \backslash I_{i-1}\right\} \subseteq X_{i}$ and, since $\phi_{i}\left(2^{k}\right)=k, \phi_{i}$ homeomorphically maps $\overline{\left\{2^{k}: k \in I_{i} \backslash I_{i-1}\right\}}$ onto $\overline{I_{i} \backslash I_{i-1}}$. If $x \in \mathbb{N}, y \in X_{i}$ and maxsupp $x<$ min supp y, then $x+y \in X_{i}$ and $\phi_{i}(x+y)=\phi_{i}(y)$. And if $y \in X_{i}, z \in \mathbb{N} \backslash X_{i}$ and max supp $y<\min \operatorname{supp} z$, then $\phi_{i}(y+z)=\phi_{i}(y)$. It then follows that for any $v \in \overline{X_{i}} \cap \mathbb{H}$ and $u \in \beta \mathbb{N}, \phi_{i}(u+v)=\phi_{i}(v)$, and for any $v \in \overline{X_{i}}$ and $w \in \mathbb{H} \backslash \overline{X_{i}}, \phi_{i}(v+w)=\phi_{i}(v)$.

To see for example the first statement, we first note that for any $x \in \mathbb{N}$ and $v \in \overline{X_{i}} \cap \mathbb{H}, \phi_{i}(x+v)=\phi_{i}(v)$ because the continuous functions $\phi_{i} \circ \lambda_{x}$ and ϕ_{i} agree on $X_{i} \cap 2^{n} \mathbb{N}$, where $n=(\max \operatorname{supp} x)+1$. Then for any $v \in \overline{X_{i}} \cap \mathbb{H}$ and $u \in \beta \mathbb{N}, \phi_{i}(u+v)=\phi_{i}(v)$ because the continuous function $\phi_{i} \circ \rho_{v}$ is constantly equal to $\phi_{i}(v)$ on \mathbb{N}.

Notice that $K\left(T_{i}\right) \subseteq \overline{X_{i}} \cap \mathbb{H}$ and $T_{i-1} \subseteq \mathbb{H} \backslash \overline{X_{i}}$ (with $T_{-1}=\emptyset$).
We shall construct
(i) a chain $e_{0}>e_{1}>\ldots>e_{l}$ of idempotents with $e_{i} \in K\left(T_{i}\right)$,
(ii) for each $i \in\{0,1, \ldots, l\}$, a left zero semigroup $\left\{e_{i, \alpha}: \alpha<2^{\text {c }}\right\} \subseteq$ $K\left(T_{i}\right)$ such that $e_{i, 0}=e_{i}$ and $e_{i, \alpha}=e_{0, \alpha}+e_{i}$ for all $\alpha<2^{\text {c }}$, and
(iii) for each $i \in\{1, m+1, \ldots, l-1\}$, a right zero semigroup $\left\{e_{i}(j)\right.$: $j \in \omega\} \subseteq K\left(T_{i}\right)$ such that $e_{i}(0)=e_{i}, e_{i}(j)<e_{i-1}$ for all $j \in \omega$, and $\phi_{i}\left(e_{i}(j)\right) \neq \phi_{i}\left(e_{i}(k)\right)$ if $j \neq k$.

Notice that (i) and (ii) imply that

$$
e_{i, \alpha}+e_{j, \beta}=e_{i * j, \alpha}
$$

for all $i, j \in\{0,1, \ldots, l\}$ and $\alpha, \beta<2^{\mathfrak{c}}$.
Indeed,

$$
\begin{aligned}
e_{i, \alpha}+e_{j, \beta} & =e_{0, \alpha}+e_{i}+e_{0, \beta}+e_{j}=e_{0, \alpha}+\left(e_{i}+e_{0}\right)+e_{0, \beta}+e_{j} \\
& =e_{0, \alpha}+e_{i}+\left(e_{0}+e_{0, \beta}\right)+e_{j}=e_{0, \alpha}+e_{i}+e_{0}+e_{j} \\
& =e_{0, \alpha}+e_{i * j}=e_{i * j, \alpha}
\end{aligned}
$$

The construction goes by induction on $i \in\{0,1, \ldots, l\}$.
For $i=0$, pick an injective $2^{\mathfrak{c}}$-sequence $\left\{r_{0, \alpha}: \alpha<2^{c}\right\}$ in $\left\{2^{k}: k \in I_{0}\right\}^{*}$.
Lemma 1.2. $\left(r_{0, \alpha}+T_{l}\right) \cap\left(r_{0, \beta}+T_{l}\right)=\emptyset$ if $\alpha \neq \beta$.
Proof. Consider the function $\mathbb{N} \ni x \mapsto \min \operatorname{supp} x \in \omega$ and let θ denote its continuous extension $\beta \mathbb{N} \rightarrow \beta \omega$. If $x, y \in \mathbb{N}$ and max supp $x<\min \operatorname{supp} y$, then $\theta(x+y)=\theta(x)$. It then follows that for any $u \in \beta \mathbb{N}$ and $v \in \mathbb{H}$, $\theta(u+v)=\theta(u)$. Consequently, $\theta\left(r_{0, \alpha}+T_{l}\right)=\left\{\theta\left(r_{0, \alpha}\right)\right\}$ and $\theta\left(r_{0, \beta}+T_{l}\right)=$ $\left\{\theta\left(r_{0, \beta}\right)\right\}$. Since $\theta\left(2^{k}\right)=k, \theta\left(r_{0, \alpha}\right) \neq \theta\left(r_{0, \beta}\right)$, so $\left(r_{0, \alpha}+T_{l}\right) \cap\left(r_{0, \beta}+T_{l}\right)=$ \emptyset.

For every $\alpha<2^{\mathfrak{c}}$, choose a minimal right ideal $R_{0, \alpha}$ of T_{0} contained in $r_{0, \alpha}+T_{0}$. Pick a minimal left ideal L_{0} of T_{0}, and for every $\alpha<2^{\mathfrak{c}}$, let $e_{0, \alpha}$
be the identity of the group $R_{0, \alpha} \cap L_{0}$. By Lemma $1.2, e_{0, \alpha} \neq e_{0, \beta}$ if $\alpha \neq \beta$. Put $e_{0}=e_{0,0}$.

For $i=1$, choose a minimal right ideal $R_{1, \alpha}$ of T_{1} contained in $e_{0}+T_{1}$. Pick an injective sequence $\left(r_{1, j}\right)_{j=0}^{\infty}$ in $\left\{2^{k}: k \in I_{1} \backslash I_{0}\right\}^{*}$, and for every $j \in \omega$, choose a minimal left ideal $L_{1, j}$ of T_{1} contained in $T_{1}+r_{1, j}+e_{0}$. For every $j \in \omega$, let $e_{1}(j)$ be the identity of the group $R_{1,0} \cap L_{1, j}$. Then $\phi_{1}\left(e_{1, j}\right)=$ $\phi_{1}\left(r_{1, j}+e_{0}\right)=\phi_{1}\left(r_{1, j}\right)$. Since $e_{1}(j) \in e_{0}+T_{1}$, one has $e_{0}+e_{1}(j)=e_{1}(j)$, and since $e_{1}(j) \in T_{1}+r_{1, j}+e_{0}$, one has $e_{1}(j)+e_{0}=e_{1}(j)$, so $e_{1}(j)<e_{0}$. Put $e_{1}=e_{1}(0)$. For every $\alpha<2^{\mathfrak{c}}$, put $e_{1, \alpha}=e_{0, \alpha}+e_{1}$. Then $e_{1, \alpha}+e_{1, \beta}=$ $e_{0, \alpha}+e_{1}+e_{0, \beta}+e_{1}=e_{0, \alpha}+\left(e_{1}+e_{0}\right)+e_{0, \beta}+e_{1}=e_{0, \alpha}+e_{1}+\left(e_{0}+e_{0, \beta}\right)+e_{1}=$ $e_{0, \alpha}+e_{1}+e_{0}+e_{1}=e_{0, \alpha}+e_{1}=e_{1, \alpha}$, so $\left\{e_{1, \alpha}: \alpha<2^{\mathfrak{c}}\right\}$ is a left zero semigroup (in $K\left(T_{1}\right)$). Since $e_{1, \alpha}=e_{0, \alpha}+e_{1} \in r_{0, \alpha}+T_{0}+e_{1} \subseteq r_{0, \alpha}+T_{1}$, by Lemma 1.2, $e_{1, \alpha} \neq e_{1, \beta}$ if $\alpha \neq \beta$.

For $i \in\{2, \ldots, m\}$, pick a minimal right ideal R_{i} of T_{i} contained in $e_{i-1}+T_{i}$ and a minimal left ideal L_{i} of T_{i} contained in $T_{i}+e_{i-1}$ and let e_{i} be the identity of the group $R_{i} \cap L_{i}$. For every $\alpha<2^{\mathfrak{c}}$, let $e_{i, \alpha}=e_{0, \alpha}+e_{i}$. Then $\left\{e_{l, \alpha}: \alpha<2^{\mathfrak{c}}\right\}$ is a left zero semigroup and $e_{i, \alpha} \neq e_{i, \beta}$ if $\alpha \neq \beta$.

For $i \in\{m+1, \ldots, l-1\}$ (for $n \geq 3$), choose a minimal right ideal R_{i} of T_{i} contained in $e_{i-1}+T_{i}$. Pick an injective sequence $\left(r_{i, j}\right)_{j=0}^{\infty}$ in $\left\{2^{k}: k \in I_{i} \backslash I_{i-1}\right\}^{*}$, and for every $j \in \omega$, choose a minimal left ideal $L_{i, j}$ of T_{i} contained in $T_{i}+r_{i, j}+e_{i-1}$, and let $e_{i}(j)$ be the identity of the group $R_{i} \cap L_{i, j}$. Then $\phi_{i}\left(e_{i}(j)\right)=\phi_{i}\left(r_{i, j}+e_{0}\right)=\phi_{i}\left(r_{i, j}\right)$ and $e_{i}(j)<e_{i-1}$ for all j. Put $e_{i}=e_{i}(0)$. For every $\alpha<2^{\mathfrak{c}}$, put $e_{i, \alpha}=e_{0, \alpha}+e_{i}$. Then $\left\{e_{i, \alpha}: \alpha<2^{\mathfrak{c}}\right\}$ a left zero semigroup and $e_{i, \alpha} \neq e_{i, \beta}$ if $\alpha \neq \beta$.

For $i=l$, pick a minimal right ideal R_{l} of T_{l} contained in $e_{l-1}+T_{l}$ and a minimal left ideal L_{l} of T_{l} contained in $T_{l}+e_{l-1}$ and let e_{l} be the identity of the group $R_{l} \cap L_{l}$. For every $\alpha<2^{\mathfrak{c}}$, put $e_{l, \alpha}=e_{0, \alpha}+e_{l}$.

Now let

$$
D_{l-1}= \begin{cases}\left\{e_{l}+e_{1}(j): j<\omega\right\} & \text { if } n=2 \\ \left\{e_{l}+e_{l-1}(j): j<\omega\right\} & \text { if } n \geq 3\end{cases}
$$

and pick $q_{l-1} \in \overline{D_{l-1}} \backslash D_{l-1}$. Then inductively, for each $i \in\{l-2, \ldots, m+1\}$ (for $n \geq 4$), let

$$
D_{i}=\left\{e_{i+1}+q_{i+1}+e_{i}(j): j<\omega\right\}
$$

and pick $q_{i} \in \overline{D_{i}} \backslash D_{i}$. For $i=m$ (for $n \geq 3$), let

$$
D_{m}=\left\{e_{m+1}+q_{m+1}+e_{1}(j): j<\omega\right\}
$$

and pick $q_{m} \in \overline{D_{m}} \backslash D_{m}$.
Since $e_{l} \in K(\beta \mathbb{N})$ and $\overline{K(\beta \mathbb{N})}$ is an ideal of $\beta \mathbb{N}[4$, Theorem 4.44], we have inductively that for each $i \in\{l-1, \ldots, m\}, D_{i} \subseteq \overline{K(\beta \mathbb{N})}$ and $q_{i} \in \overline{K(\beta \mathbb{N})}$.

For each $s \in\{0,1, \ldots, l\}, e_{l}=e_{s}+e_{l}$ and $e_{s} \in \overline{X_{s}}$, so $e_{l} \in \overline{X_{s}}$. It then follows inductively that for each $i \in\{l-1, \ldots, m\}, D_{i} \subseteq \overline{X_{s}} \cap \mathbb{H}$ and $q_{i} \in$ $\overline{X_{s}} \cap \mathbb{H}$. Notice that for each $i \in\{l-1, \ldots, m+1\}$ (for $n \geq 3$), ϕ_{i} is injective on $D_{i}\left(\right.$ because $\phi_{l-1}\left(e_{l}+e_{l-1}(j)\right)=\phi_{l-1}\left(e_{l-1}(j)\right)$ and $\phi_{i}\left(e_{i+1}+q_{i+1}+e_{i}(j)\right)=$ $\left.\phi_{i}\left(e_{i}(j)\right)\right)$, and ϕ_{1} is injective on $D_{m}\left(\phi_{1}\left(e_{m+1}+e_{1}(j)\right)=\phi_{1}\left(e_{1}(j)\right)\right.$ for $n=2$ and $\phi_{1}\left(e_{m+1}+q_{m+1}+e_{1}(j)\right)=\phi_{1}\left(e_{1}(j)\right)$ for $\left.n \geq 3\right)$.

An ultrafilter $q \in \mathbb{N}^{*}$ is right cancelable (in $\beta \mathbb{N}$) if the right translation of $\beta \mathbb{N}$ by q is injective. An ultrafilter $q \in \mathbb{N}^{*}$ is right cancelable if and only if $q \notin \mathbb{N}^{*}+q$ [4, Theorem 8.18]. From the next lemma we obtain that all q_{m}, \ldots, q_{l-1} are right cancelable.

Lemma 1.3. Let $i \in\{0,1, \ldots, l\}$. Also, let D be a countable subset of $\overline{X_{i}} \cap \mathbb{H}$, and suppose that ϕ_{i} is injective on D. Then every $q \in \bar{D} \backslash D$ is right cancelable.

Proof. This is [9, Lemma 5].
The next lemma gives us relations between q_{m}, \ldots, q_{l-1} and $e_{i, \alpha}$.
Lemma 1.4. For every $\alpha<2^{\mathfrak{c}}$,
(1) $q_{l-1}+e_{l-1, \alpha}=e_{l}$,
(2) if $n=2$, then for each $s \in\{1, \ldots, l\}, q_{l-1}+e_{s, \alpha}=e_{l}$,
(3) if $n \geq 3$, then for each $i \in\{m+1, \ldots, l-1\}, q_{i}+e_{i-1, \alpha}=q_{i}$,
(4) if $n \geq 3$, then for each $i \in\{m, \ldots, l-2\}, q_{i}+e_{i, \alpha}=e_{i+1}+q_{i+1}$, and
(5) if $n \geq 3$, then for each $s \in\{1, \ldots, m\}, q_{m}+e_{s, \alpha}=e_{m+1}+q_{m+1}$.

Proof. (1) For $n \geq 3,\left(e_{l}+e_{l-1}(j)\right)+e_{l-1, \alpha}=e_{l}+\left(e_{l-1}(j)+e_{l-2}\right)+e_{l-1, \alpha}=$ $e_{l}+e_{l-1}(j)+\left(\left(e_{l-2}+e_{l-1, \alpha}\right)\right)=e_{l}+e_{l-1}(j)+e_{l-1}=e_{l}+e_{l-1}=e_{l}$, and since $\rho_{e_{l-1, \alpha}}$ is constantly equal to e_{l} on $D_{l-1}, \rho_{e_{l-1, \alpha}}\left(q_{l-1}\right)=e_{l}$, so $q_{l-1}+e_{l-1, \alpha}=e_{l}$. The case $n=2$ is included in (2).
(2) $\left(e_{l}+e_{1}(j)\right)+e_{s, \alpha}=e_{l}+\left(e_{1}(j)+e_{0}\right)+e_{s, \alpha}=e_{l}+e_{1}(j)+\left(e_{0}+e_{s, \alpha}\right)=$ $e_{l}+e_{1}(j)+e_{s}=e_{l}+e_{1}(j)+\left(e_{1}+e_{s}\right)=e_{l}+\left(e_{1}(j)+e_{1}\right)+e_{s}=e_{l}+e_{1}+e_{s}=e_{l}$.
(3) For $i=l-1,\left(e_{l}+e_{l-1}(j)\right)+e_{l-2, \alpha}=e_{l}+\left(e_{l-1}(j)+e_{l-2}\right)+e_{l-2, \alpha}=$ $e_{l}+e_{l-1}(j)+\left(e_{l-2}+e_{l-2, \alpha}\right)=e_{l}+e_{l-1}(j)+e_{l-2}=e_{l}+e_{l-1}(j)$, and for $i \leq l-2$,
$\left(e_{i+1}+q_{i+1}+e_{i}(j)\right)+e_{i-1, \alpha}=e_{i+1}+q_{i+1}+\left(e_{i}(j)+e_{i-1}\right)+e_{i-1, \alpha}=e_{i+1}+$ $q_{i+1}+e_{i}(j)+\left(e_{i-1}+e_{i-1, \alpha}\right)=e_{i+1}+q_{i+1}+e_{i}(j)+e_{i-1}=e_{i+1}+q_{i+1}+e_{i}(j)$.
(4) For $i \geq m+1$, $\left(e_{i+1}+q_{i+1}+e_{i}(j)\right)+e_{i, \alpha}=e_{i+1}+q_{i+1}+\left(e_{i}(j)+\right.$ $\left.e_{i-1}\right)+e_{i, \alpha}=e_{i+1}+q_{i+1}+e_{i}(j)+\left(e_{i-1}+e_{i, \alpha}\right)=e_{i+1}+q_{i+1}+e_{i}(j)+e_{i}=$ $e_{i+1}+q_{i+1}+e_{i}=e_{i+1}+q_{i+1}$. The case $i=m$ is included in (5).
(5) $e_{m+1}+q_{m+1}+e_{1}(j)+e_{s, \alpha}=e_{m+1}+q_{m+1}+\left(e_{1}(j)+e_{0}\right)+e_{s, \alpha}=$ $e_{m+1}+q_{m+1}+e_{1}(j)+\left(e_{0}+e_{s, \alpha}\right)=e_{m+1}+q_{m+1}+e_{1}(j)+e_{s}=e_{m+1}+q_{m+1}+$ $e_{1}(j)+\left(e_{1}+e_{s}\right)=e_{m+1}+q_{m+1}+\left(e_{1}(j)+e_{1}\right)+e_{s}=e_{m+1}+q_{m+1}+e_{1}+e_{s}=$ $e_{m+1}+q_{m+1}+e_{s}=e_{m+1}+q_{m+1}$.

Now for each $s \in\{1, \ldots, m\}$ and each $\alpha<2^{\mathfrak{c}}$, let

$$
p_{s}(\alpha)=e_{s, \alpha}+q_{m} .
$$

Lemma 1.5. For all $i \geq 2, s_{1}, \ldots, s_{i} \in\{1, \ldots, m\}$, and $\alpha_{1}, \ldots, \alpha_{i}<2^{\text {c }}$,

$$
p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{i}}\left(\alpha_{i}\right)= \begin{cases}e_{m+i-1, \alpha_{1}}+q_{m+i-1}+\ldots+q_{m} & \text { if } i \leq n-1 \\ e_{l, \alpha_{1}}+q_{l-1}+\ldots+q_{m} & \text { otherwise } .\end{cases}
$$

Proof. We use Lemma 1.4. If $n=2$, then

$$
\begin{aligned}
p_{s_{1}}\left(\alpha_{1}\right)+p_{s_{2}}\left(\alpha_{2}\right) & =e_{s_{1}, \alpha_{1}}+q_{m}+e_{s_{2}, \alpha_{2}}+q_{m} x \\
& =e_{s_{1}, \alpha_{1}}+\left(q_{m}+e_{s_{2}, \alpha_{2}}\right)+q_{m} \\
& =e_{s_{1}, \alpha_{1}}+e_{l}+q_{m} \\
& =e_{l, \alpha_{1}}+q_{m}, \text { and } \\
p_{s_{1}}\left(\alpha_{1}\right)+p_{s_{2}}\left(\alpha_{2}\right)+p_{s_{3}}\left(\alpha_{3}\right) & =\left(p_{s_{1}}\left(\alpha_{1}\right)+p_{s_{2}}\left(\alpha_{2}\right)\right)+p_{s_{3}}\left(\alpha_{3}\right) \\
& =e_{l, \alpha_{1}}+q_{m}+e_{s_{3}, \alpha_{3}}+q_{m} \\
& =e_{l, \alpha_{1}}+\left(q_{m}+e_{s_{3}, \alpha_{3}}\right)+q_{m} \\
& =e_{l, \alpha_{1}}+e_{l}+q_{m} \\
& =e_{l, \alpha_{1}}+q_{m} .
\end{aligned}
$$

Let $n \geq 3$. We first notice that for each $j \in\{m, \ldots, l-2\}$,

$$
\begin{aligned}
q_{j}+\ldots+q_{m}+e_{s, \alpha} & =e_{j+1}+q_{j+1}+\ldots+q_{m+1} \text { and } \\
q_{l-1}+\ldots+q_{m}+e_{s, \alpha} & =e_{l}+q_{l-1}+\ldots+q_{m+1} .
\end{aligned}
$$

Indeed, inductively, $q_{m}+e_{s, \alpha}=e_{m+1}+q_{m+1}$, and for $j \geq m+1$,

$$
\begin{aligned}
q_{j}+\ldots+q_{m}+e_{s, \alpha} & =q_{j}+\left(q_{j-1}+\ldots+q_{m}+e_{s, \alpha}\right) \\
& =q_{j}+e_{j}+q_{j}+\ldots+q_{m+1} \\
& =e_{j+1}+q_{j+1}+q_{j}+\ldots+q_{m+1}
\end{aligned}
$$

and then

$$
\begin{aligned}
q_{l-1}+\ldots+q_{m}+e_{s, \alpha} & =q_{l-1}+\left(q_{l-2}+\ldots+q_{m}+e_{s, \alpha}\right) \\
& =q_{l-1}+e_{l-1}+q_{l-1}+\ldots+q_{m+1} \\
& =e_{l}+q_{l-1}+\ldots+q_{m+1} .
\end{aligned}
$$

Now by induction on $i \in\{2, \ldots, n-1\}$,

$$
\begin{aligned}
p_{s_{1}}\left(\alpha_{1}\right)+p_{s_{2}}\left(\alpha_{2}\right) & =e_{s_{1}, \alpha_{1}}+q_{m}+e_{s_{2}, \alpha_{2}}+q_{m} \\
& =e_{s_{1}, \alpha_{1}}+\left(q_{m}+e_{s_{2}, \alpha_{2}}\right)+q_{m} \\
& =e_{s_{1}, \alpha_{1}}+e_{m+1}+q_{m+1}+q_{m} \\
& =e_{m+1, \alpha_{1}}+q_{m+1}+q_{m}
\end{aligned}
$$

and for $i \geq 2$,

$$
\begin{aligned}
p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{i}}\left(\alpha_{i}\right) & =\left(p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{i-1}}\left(\alpha_{i-1}\right)\right)+p_{s_{i}}\left(\alpha_{i}\right) \\
& =e_{m+i-2, \alpha_{1}}+q_{m+i-2}+\ldots+q_{m}+e_{s_{i}, \alpha_{i}}+q_{m} \\
& =e_{m+i-2, \alpha_{1}}+e_{m+i-1}+q_{m+i-1}+\ldots+q_{m+1}+q_{m} \\
& =e_{m+i-1, \alpha_{1}}+q_{m+i-1}+\ldots+q_{m}
\end{aligned}
$$

and then

$$
\begin{aligned}
p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{n}}\left(\alpha_{n}\right) & =\left(p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{n-1}}\left(\alpha_{n-1}\right)\right)+p_{s_{n}}\left(\alpha_{n}\right) \\
& =e_{l-1, \alpha_{1}}+q_{l-1}+\ldots+q_{m}+e_{s_{n}, \alpha_{i}}+q_{m} \\
& =e_{l-1, \alpha_{1}}+e_{l}+q_{l-1}+\ldots+q_{m+1}+q_{m} \\
& =e_{l, \alpha_{1}}+q_{l-1}+\ldots+q_{m}
\end{aligned}
$$

and

$$
p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{n+1}}\left(\alpha_{n+1}\right)=\left(p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{n}}\left(\alpha_{n}\right)\right)+p_{s_{n+1}}\left(\alpha_{n+1}\right)
$$

$$
\begin{aligned}
& =e_{l, \alpha_{1}}+q_{l-1}+\ldots+q_{m}+e_{s_{n+1}, \alpha_{n+1}}+q_{m} \\
& =e_{l, \alpha_{1}}+e_{l}+q_{l-1}+\ldots+q_{m+1}+q_{m} \\
& =e_{l, \alpha_{1}}+q_{l-1}+\ldots+q_{m}
\end{aligned}
$$

It follows from Lemma 1.5 that for each $i \geq 2, p_{s_{1}}\left(\alpha_{1}\right)+\ldots+p_{s_{i}}\left(\alpha_{i}\right)=$ $i p\left(\alpha_{1}\right)$, where $p(\alpha)=p_{1}(\alpha)$, and for $i \geq n, i p(\alpha)=n p(\alpha)$.

Lemma 1.6. All elements $p_{s}(\alpha)$ and $\operatorname{ip}(\alpha)$, where $\alpha<2^{\mathfrak{c}}, s \in\{1, \ldots, m\}$, and $i \in\{2, \ldots, n\}$, are pairwise distinct.

Proof. Since all $e_{s, \alpha}$ are distinct and q_{m} is right cancelable (Lemma 1.3), it follows that all $p_{s}(\alpha)=e_{s, \alpha}+q_{m}$ are distinct. Suppose that $i p_{s}(\alpha)=j p_{t}(\beta)$ for some $\alpha, \beta<2^{\mathfrak{c}}, s, t \in\{1, \ldots, m\}$, and $i, j \in\{1, \ldots, n\}$ with $i+j \geq 3$. We show that $i=j$ and $\alpha=\beta$.

Without loss of generality one may suppose that $i \geq j$ and $i=n$ (by adding $(n-i) p_{s}(\alpha)$ to both sides of the equality from the right), and consequently, we have

$$
e_{l, \alpha}+q_{l-1}+\ldots+q_{m}= \begin{cases}e_{s, \beta}+q_{m} & \text { if } j=1 \\ e_{m+j-1, \beta}+q_{m+j-1}+\ldots+q_{m} & \text { if } 2 \leq j<n \\ e_{l, \beta}+q_{l-1}+\ldots+q_{m} & \text { if } j=n\end{cases}
$$

If $j=1$, then canceling the equality by q_{m} we obtain $e_{l, \alpha}+q_{l-1}+\ldots+$ $q_{m+1}=e_{s, \beta}$ in the case $n \geq 3$ or $e_{l, \alpha}=e_{s, \beta}$ in the case $n=2$. The second possibility is impossible, and the first also gives a contradiction because q_{m+1} is in $\overline{K(\beta \mathbb{N})}$ and so is $e_{l, \alpha}+q_{l-1}+\ldots+q_{m+1}$, and $e_{s, \beta} \in T_{s}$ (and $\left.T_{s} \cap \overline{K(\beta \mathbb{N})}=\emptyset\right)$. Thus $j \geq 2$.

If $j=n-1$, then canceling by q_{m}, \ldots, q_{l-1} we obtain $e_{l, \alpha}=e_{l-1, \beta}$ which is impossible, and if $j \leq n-2$, then canceling we obtain

$$
e_{l, \alpha}+q_{l-1}+\ldots+q_{k}=e_{m+j-1, \beta}
$$

where $k=l-(i-j-1)$, which also gives a contradiction because q_{k} is in $\overline{K(\beta \mathbb{N})}$ and so is $e_{l, \alpha}+q_{l-1}+\ldots+q_{k}$, and $e_{m+j-1, \beta} \in T_{l-1}$ (and $\left.T_{l-1} \cap \overline{K(\beta \mathbb{N})}=\emptyset\right)$. Hence $j=n=i$. Then canceling we obtain $e_{l, \alpha}=e_{l, \beta}$, whence $\alpha=\beta$.

Define $\varepsilon: C_{m, n} \times 2^{\mathfrak{c}} \rightarrow \beta \mathbb{N}$ by

$$
\varepsilon\left(i p_{s}, \alpha\right)=i p_{s}(\alpha)
$$

By Lemma 1.6, ε is injective, and

$$
\varepsilon\left(\left(i p_{s}, \alpha\right)+\left(j p_{t}, \beta\right)\right)=\varepsilon\left(i p_{s}+j p_{t}, \alpha+\beta\right)=\varepsilon\left((i+j) p_{s}, \alpha\right)=(i+j) p_{s}(\alpha)
$$

and

$$
\varepsilon\left(i p_{s}, \alpha\right)+\varepsilon\left(j p_{t}, \beta\right)=i p_{s}(\alpha)+j p_{t}(\beta)=(i+j) p_{s}(\alpha)
$$

so ε is an isomorphic embedding.
Since q_{m} is in $\overline{K(\beta \mathbb{N})}$, so are $\varepsilon\left(p_{s}, \alpha\right)=p_{s}(\alpha)=e_{s, \alpha}+q_{m}$ and $\varepsilon(i p, \alpha)=$ $i \varepsilon(p, \alpha)$, and since $e_{l, \alpha}$ are in $K(\beta \mathbb{N})$, so are $\varepsilon(n p, \alpha)=n p(\alpha)=e_{l, \alpha}+q_{l-1}+$ $\ldots+q_{m}$.

This finishes the proof of Theorem 1.1.

References

[1] Bergelson, V. and Hindman, N., Some new multi-cell Ramsey theoretic results, Proc. Amer. Math. Soc., Ser. B 8 (2021), 358-370.
[2] Davenport, D., Hindman, N., Leader, I., and Strauss, D., Continuous homomorphisms on $\beta \mathbb{N}$ and Ramsey theory, New York J. Math. 6 (2000), 73-86.
[3] Douwen, E.V., The Čech-Stone compactification of a discrete groupoid, Topology Appl. 39 (1991), 43-60.
[4] Hindman, N. and Strauss, D., "Algebra in the Stone-Čech Compactification", De Gruyter, 1998.
[5] Hindman, N., Strauss, D., and Zelenyuk, Y., Large rectangular semigroups in StoneČech compactifications, Trans. Amer. Math. Soc. 355 (2003), 2795-2812.
[6] Strauss, D., \mathbb{N}^{*} does not contain an algebraic and topological copy of $\beta \mathbb{N}$, J. London Math. Soc. 46 (1992), 463-470.
[7] Zelenyuk, Y., Elements of order 2 in $\beta \mathbb{N}, 252$ (2021), 355-360.
[8] Zelenyuk, Y., Finite semigroups in $\beta \mathbb{N}$ and Ramsey theory, Bull. London Math. Soc. 53 (2021), 710-722.
[9] Zelenyuk, Y., Elements of finite order in $\beta \mathbb{N}$, Adv. Math. 408 (2022), 108608.
[10] Zelenyuk, Y. and Zelenyuk, Yu., Direct products of null semigroups and rectangular bands in $\beta \mathbb{N}$, New York J. Math. 28 (2022), 610-616.

Yuliya Zelenyuk School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa.
Email: yuliya.zelenyuk@wits.ac.za

