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Direct products of cyclic semigroups and
left zero semigroups in βN

Yuliya Zelenyuk

Dedicated to Themba Dube on the occasion of his 65th birthday.

Abstract. We show that for every n ∈ N, the direct product of the cyclic
semigroup of order n and period 1 and the left zero semigroup 2c has copies
in βN.

The addition of the discrete semigroup N of natural numbers extends to
the Stone-Čech compactification βN of N so that for each a ∈ N, the left
translation λa : βN ∋ x 7! a + x ∈ βN is continuous, and for each q ∈ βN,
the right translation ρq : βN ∋ x 7! x+ q ∈ βN is continuous.

We take the points of βN to be the ultrafilters on N, identifying the
principal ultrafilters with the points of N. For every A ⊆ N, A = {p ∈ βN :
A ∈ p} and A∗ = A \ A. The subsets A, where A ⊆ N, form a base for the
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topology of βN, and A is the closure of A. For p, q ∈ βN, the ultrafilter p+q
has a base consisting of subsets of the form

⋃
x∈A(x+Bx), where A ∈ p and

for each x ∈ A, Bx ∈ q.

Being a compact Hausdorff right topological semigroup, βN has a small-
est two sided ideal K(βN) which is a disjoint union of minimal right ideals
and a disjoint union of minimal left ideals. Every right (left) ideal of βN
contains a minimal right (left) ideal, the intersection of a minimal right ideal
and a minimal left ideal is a group, and the idempotents in a minimal right
(left) ideal form a right (left) zero semigroup, that is, x+ y = y (x+ y = x)
for all x, y.

An elementary introduction to βN can be found in [4].

In 1979, E. van Douwen asked (in [3], published much later) whether
there are topological and algebraic copies of βN contained in N∗ = βN \ N.
This question was answered in the negative by D. Strauss in [6], where
it was in fact established that continuous homomorphisms from βN to N∗

have finite images. It follows that if φ : βN ! N∗ is a continuous homo-
morphism, then p = φ(1) is an element of a finite order n. That is, all
ip = p+ . . .+ p︸ ︷︷ ︸

i

, where i ∈ {1, . . . , n}, are distinct and (n + 1)p = mp

for some m ∈ {1, . . . , n}. Conversely, every element p ∈ N∗ of finite or-
der determines a continuous homomorphism φ : βN ! N∗ by φ(1) = p.
In 1996, Y. Zelenyuk proved that βN contains no nontrivial finite groups
(see [4, Theorem 7.17]). Consequently, if p ∈ βN is an element of order n,
then (n+ 1)p = np.

As distinguished from finite groups, βN does contain bands (semigroups
of idempotents): for example, left zero semigroups, right zero semigroups,
chains of idempotents (with respect to the order x ≤ y if and only if x+y =
y+ x = x), and rectangular bands (direct products of a left zero semigroup
and a right zero semigroup). To ask whether βN contains a finite semigroup
distinct from bands is the same as asking whether βN contains an element
of order 2 which is the same as asking whether there exists a nontrivial
continuous homomorphism from βN to N∗ [4, Question 10.19].

The question whether βN contains an element of order 2 was solved in
the affirmative in [7, Theorem 1]. This result has an interesting Ramsey
theoretic consequence, the implication itself was established in [2, Corollary
3.5], see also [1, 8]. In [8], some further finite semigroups in βN consisting
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of idempotents and elements of order 2 were constructed, in particular null
semigroups (x+y = 0 for all x, y). In [10], it was shown that for everym ≥ 1,
the direct product of them-element null semigroup and the rectangular band
2c × 2c has copies in βN (that the rectangular band 2c × 2c has copies in βN
was established in [5]).

The question whether βN contains an element of finite order n > 2 was
solved in the affirmative in [9, Theorem 3]. In fact it was shown that for ev-
ery m ≥ 1 and every n ≥ 2, there are distinct elements p = p1, p2, . . . , pm in
βN of order n such that ps + pt = 2p for all s, t ∈ {1, . . . ,m}. The subsemi-
group generated by p1, . . . , pm consists of the elements p1, . . . , pm, 2p, . . . , np
and has defining relations (n+ 1)p = np and ps + pt = 2p. We denote this
semigroup by Cm,n. If m = 1, this is the cyclic semigroup of order n and
period 1, and if n = 2, this is the m-element null semigroup.

In this paper we combine and modify constructions in [10] and [9] and
prove that for every m ≥ 1 and every n ≥ 2, the direct product of the semi-
group Cm,n and the left zero semigroup 2c has copies in βN. In particular,
the direct product of the cyclic semigroup of order n and period 1 and the
left zero semigroup 2c has copies in βN.

Theorem 1.1. Let m ≥ 1 and n ≥ 2. There is an isomorphic embedding
ε : Cm,n × 2c ! βN. Furthermore, ε can be chosen so that ε(Cm,n × 2c) ⊆
K(βN) and ε(np, α) ∈ K(βN) for all α < 2c.

In the rest of the paper we prove Theorem 1.1.

Let l = m+ n− 1. For every x ∈ N, supp x is a unique finite nonempty
subset of ω = N ∪ {0} such that

x =
∑

k∈supp x

2k.

Pick an increasing sequence I0 ⊆ I1 ⊆ . . . ⊆ Il = ω of subsets of ω such
that Ii \ Ii−1 is infinite for each i ∈ {0, 1, . . . , l} (with I−1 = ∅). Define a
function h from N onto the decreasing chain 0 > 1 > . . . > l of idempotents
(with the operation i ∗ j = max{i, j}) by

h(x) = min{i ≤ l : supp x ⊆ Ii} = max{i ≤ l : (supp x) ∩ (Ii \ Ii−1) ̸= ∅}
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and let the same letter h denote its continuous extension βN! {0, 1, . . . , l}.
If x, y ∈ N and max supp x < min supp y, then h(x + y) = h(x) ∗ h(y). It
then follows (see [4, Theorem 4.21]) that for any u ∈ βN and v ∈ H, where

H =

∞⋂

n=0

2nN,

one has h(u + v) = h(u) ∗ h(v), in particular, the restriction of h to H is a
homomorphism. For each i ∈ {0, 1, . . . , l}, let

Ti = h−1({0, 1, . . . , i}) ∩ H.

Then T0 ⊆ T1 ⊆ . . . ⊆ Tl = H is an increasing sequence of closed subsemi-
groups of H such that h(K(Ti)) = {i} for each i ≤ l, and so Ti∩K(Ti+1) = ∅
for each i < l and K(Tl) = K(βN) ∩ Tl [8, Lemma 3.1], in particular, all
K(T0),K(T1), . . . ,K(Tl) are pairwise disjoint. Moreover, h(K(βN)) = {l},
and so Tl−1 ∩K(βN) = ∅.

To see this, let u ∈ K(βN). Then u + βN is the minimal right ideal of
βN containing u and βN + u the minimal left ideal containing u. Let v be
the identity of the group (u+βN)∩(βN+u). Then u = u+v and v ∈ K(H),
so h(u) = h(u+ v) = h(u) ∗ h(v) = h(u) ∗ l = l.

For each i ∈ {0, 1, . . . , l}, let

Xi = {x ∈ N : (supp x) ∩ (Ii \ Ii−1) ̸= ∅}.

Notice that for any v ∈ Xi ∩H and u ∈ βN, u+ v ∈ Xi, and for any v ∈ Xi

and w ∈ H, v + w ∈ Xi.
Define ϕi : Xi ! ω by

ϕi(x) = max((supp x) ∩ (Ii \ Ii−1))

and let the same letter ϕi denote its continuous extension Xi ! βω. Notice
that {2k : k ∈ Ii \ Ii−1} ⊆ Xi and, since ϕi(2

k) = k, ϕi homeomorphically

maps {2k : k ∈ Ii \ Ii−1} onto Ii \ Ii−1. If x ∈ N, y ∈ Xi and max supp x <
min supp y, then x+y ∈ Xi and ϕi(x+y) = ϕi(y). And if y ∈ Xi, z ∈ N\Xi

and max supp y < min supp z, then ϕi(y + z) = ϕi(y). It then follows that
for any v ∈ Xi ∩ H and u ∈ βN, ϕi(u+ v) = ϕi(v), and for any v ∈ Xi and
w ∈ H \Xi, ϕi(v + w) = ϕi(v).
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To see for example the first statement, we first note that for any x ∈ N

and v ∈ Xi ∩ H, ϕi(x+ v) = ϕi(v) because the continuous functions ϕi ◦ λx
and ϕi agree on Xi ∩ 2nN, where n = (max supp x) + 1. Then for any
v ∈ Xi ∩ H and u ∈ βN, ϕi(u+ v) = ϕi(v) because the continuous function
ϕi ◦ ρv is constantly equal to ϕi(v) on N.

Notice that K(Ti) ⊆ Xi ∩ H and Ti−1 ⊆ H \Xi (with T−1 = ∅).
We shall construct
(i) a chain e0 > e1 > . . . > el of idempotents with ei ∈ K(Ti),
(ii) for each i ∈ {0, 1, . . . , l}, a left zero semigroup {ei,α : α < 2c} ⊆

K(Ti) such that ei,0 = ei and ei,α = e0,α + ei for all α < 2c, and
(iii) for each i ∈ {1,m + 1, . . . , l − 1}, a right zero semigroup {ei(j) :

j ∈ ω} ⊆ K(Ti) such that ei(0) = ei, ei(j) < ei−1 for all j ∈ ω, and
ϕi(ei(j)) ̸= ϕi(ei(k)) if j ̸= k.

Notice that (i) and (ii) imply that

ei,α + ej,β = ei∗j,α

for all i, j ∈ {0, 1, . . . , l} and α, β < 2c.
Indeed,

ei,α + ej,β = e0,α + ei + e0,β + ej = e0,α + (ei + e0) + e0,β + ej

= e0,α + ei + (e0 + e0,β) + ej = e0,α + ei + e0 + ej

= e0,α + ei∗j = ei∗j,α.

The construction goes by induction on i ∈ {0, 1, . . . , l}.
For i = 0, pick an injective 2c-sequence {r0,α : α < 2c} in {2k : k ∈ I0}∗.

Lemma 1.2. (r0,α + Tl) ∩ (r0,β + Tl) = ∅ if α ̸= β.

Proof. Consider the function N ∋ x 7! min supp x ∈ ω and let θ denote its
continuous extension βN ! βω. If x, y ∈ N and max supp x < min supp y,
then θ(x + y) = θ(x). It then follows that for any u ∈ βN and v ∈ H,
θ(u + v) = θ(u). Consequently, θ(r0,α + Tl) = {θ(r0,α)} and θ(r0,β + Tl) =
{θ(r0,β)}. Since θ(2k) = k, θ(r0,α) ̸= θ(r0,β), so (r0,α + Tl) ∩ (r0,β + Tl) =
∅.

For every α < 2c, choose a minimal right ideal R0,α of T0 contained in
r0,α + T0. Pick a minimal left ideal L0 of T0, and for every α < 2c, let e0,α
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be the identity of the group R0,α ∩L0. By Lemma 1.2, e0,α ̸= e0,β if α ̸= β.
Put e0 = e0,0.

For i = 1, choose a minimal right ideal R1,α of T1 contained in e0 + T1.
Pick an injective sequence (r1,j)

∞
j=0 in {2k : k ∈ I1\I0}∗, and for every j ∈ ω,

choose a minimal left ideal L1,j of T1 contained in T1 + r1,j + e0. For every
j ∈ ω, let e1(j) be the identity of the group R1,0 ∩ L1,j . Then ϕ1(e1,j) =
ϕ1(r1,j + e0) = ϕ1(r1,j). Since e1(j) ∈ e0 + T1, one has e0 + e1(j) = e1(j),
and since e1(j) ∈ T1 + r1,j + e0, one has e1(j) + e0 = e1(j), so e1(j) < e0.
Put e1 = e1(0). For every α < 2c, put e1,α = e0,α + e1. Then e1,α + e1,β =
e0,α+e1+e0,β+e1 = e0,α+(e1+e0)+e0,β+e1 = e0,α+e1+(e0+e0,β)+e1 =
e0,α+e1+e0+e1 = e0,α+e1 = e1,α, so {e1,α : α < 2c} is a left zero semigroup
(in K(T1)). Since e1,α = e0,α + e1 ∈ r0,α + T0 + e1 ⊆ r0,α + T1, by Lemma
1.2, e1,α ̸= e1,β if α ̸= β.

For i ∈ {2, . . . ,m}, pick a minimal right ideal Ri of Ti contained in
ei−1 + Ti and a minimal left ideal Li of Ti contained in Ti + ei−1 and let ei
be the identity of the group Ri ∩ Li. For every α < 2c, let ei,α = e0,α + ei.
Then {el,α : α < 2c} is a left zero semigroup and ei,α ̸= ei,β if α ̸= β.

For i ∈ {m + 1, . . . , l − 1} (for n ≥ 3), choose a minimal right ideal
Ri of Ti contained in ei−1 + Ti. Pick an injective sequence (ri,j)

∞
j=0 in

{2k : k ∈ Ii \ Ii−1}∗, and for every j ∈ ω, choose a minimal left ideal Li,j
of Ti contained in Ti + ri,j + ei−1, and let ei(j) be the identity of the group
Ri ∩Li,j . Then ϕi(ei(j)) = ϕi(ri,j + e0) = ϕi(ri,j) and ei(j) < ei−1 for all j.
Put ei = ei(0). For every α < 2c, put ei,α = e0,α + ei. Then {ei,α : α < 2c}
a left zero semigroup and ei,α ̸= ei,β if α ̸= β.

For i = l, pick a minimal right ideal Rl of Tl contained in el−1 + Tl and
a minimal left ideal Ll of Tl contained in Tl+ el−1 and let el be the identity
of the group Rl ∩ Ll. For every α < 2c, put el,α = e0,α + el.

Now let

Dl−1 =

{
{el + e1(j) : j < ω} if n = 2

{el + el−1(j) : j < ω} if n ≥ 3

and pick ql−1 ∈ Dl−1\Dl−1. Then inductively, for each i ∈ {l−2, . . . ,m+1}
(for n ≥ 4), let

Di = {ei+1 + qi+1 + ei(j) : j < ω}
and pick qi ∈ Di \Di. For i = m (for n ≥ 3), let

Dm = {em+1 + qm+1 + e1(j) : j < ω}
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and pick qm ∈ Dm \Dm.
Since el ∈ K(βN) andK(βN) is an ideal of βN [4, Theorem 4.44], we have

inductively that for each i ∈ {l − 1, . . . ,m}, Di ⊆ K(βN) and qi ∈ K(βN).
For each s ∈ {0, 1, . . . , l}, el = es + el and es ∈ Xs, so el ∈ Xs. It then

follows inductively that for each i ∈ {l − 1, . . . ,m}, Di ⊆ Xs ∩ H and qi ∈
Xs∩H. Notice that for each i ∈ {l−1, . . . ,m+1} (for n ≥ 3), ϕi is injective
onDi (because ϕl−1(el+el−1(j)) = ϕl−1(el−1(j)) and ϕi(ei+1+qi+1+ei(j)) =
ϕi(ei(j))), and ϕ1 is injective on Dm (ϕ1(em+1+e1(j)) = ϕ1(e1(j)) for n = 2
and ϕ1(em+1 + qm+1 + e1(j)) = ϕ1(e1(j)) for n ≥ 3).

An ultrafilter q ∈ N∗ is right cancelable (in βN) if the right translation
of βN by q is injective. An ultrafilter q ∈ N∗ is right cancelable if and only
if q /∈ N∗ + q [4, Theorem 8.18]. From the next lemma we obtain that all
qm, . . . , ql−1 are right cancelable.

Lemma 1.3. Let i ∈ {0, 1, . . . , l}. Also, let D be a countable subset of
Xi∩H, and suppose that ϕi is injective on D. Then every q ∈ D\D is right
cancelable.

Proof. This is [9, Lemma 5].

The next lemma gives us relations between qm, . . . , ql−1 and ei,α.

Lemma 1.4. For every α < 2c,

(1) ql−1 + el−1,α = el,

(2) if n = 2, then for each s ∈ {1, . . . , l}, ql−1 + es,α = el,

(3) if n ≥ 3, then for each i ∈ {m+ 1, . . . , l − 1}, qi + ei−1,α = qi,

(4) if n ≥ 3, then for each i ∈ {m, . . . , l − 2}, qi + ei,α = ei+1 + qi+1, and

(5) if n ≥ 3, then for each s ∈ {1, . . . ,m}, qm + es,α = em+1 + qm+1.

Proof. (1) For n ≥ 3, (el+el−1(j))+el−1,α = el+(el−1(j)+el−2)+el−1,α =
el + el−1(j) + ((el−2 + el−1,α)) = el + el−1(j) + el−1 = el + el−1 = el,
and since ρel−1,α

is constantly equal to el on Dl−1, ρel−1,α
(ql−1) = el, so

ql−1 + el−1,α = el. The case n = 2 is included in (2).
(2) (el+e1(j))+es,α = el+(e1(j)+e0)+es,α = el+e1(j)+(e0+es,α) =

el+e1(j)+es = el+e1(j)+(e1+es) = el+(e1(j)+e1)+es = el+e1+es = el.
(3) For i = l− 1, (el+ el−1(j))+ el−2,α = el+(el−1(j)+ el−2)+ el−2,α =

el+el−1(j)+(el−2+el−2,α) = el+el−1(j)+el−2 = el+el−1(j), and for i ≤ l−2,
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(ei+1 + qi+1 + ei(j)) + ei−1,α = ei+1 + qi+1 + (ei(j) + ei−1) + ei−1,α = ei+1 +
qi+1+ei(j)+(ei−1+ei−1,α) = ei+1+qi+1+ei(j)+ei−1 = ei+1+qi+1+ei(j).

(4) For i ≥ m + 1, (ei+1 + qi+1 + ei(j)) + ei,α = ei+1 + qi+1 + (ei(j) +
ei−1) + ei,α = ei+1 + qi+1 + ei(j) + (ei−1 + ei,α) = ei+1 + qi+1 + ei(j) + ei =
ei+1 + qi+1 + ei = ei+1 + qi+1. The case i = m is included in (5).

(5) em+1 + qm+1 + e1(j) + es,α = em+1 + qm+1 + (e1(j) + e0) + es,α =
em+1+qm+1+e1(j)+(e0+es,α) = em+1+qm+1+e1(j)+es = em+1+qm+1+
e1(j)+(e1+es) = em+1+qm+1+(e1(j)+e1)+es = em+1+qm+1+e1+es =
em+1 + qm+1 + es = em+1 + qm+1.

Now for each s ∈ {1, . . . ,m} and each α < 2c, let

ps(α) = es,α + qm.

Lemma 1.5. For all i ≥ 2, s1, . . . , si ∈ {1, . . . ,m}, and α1, . . . , αi < 2c,

ps1(α1) + . . .+ psi(αi) =

{
em+i−1,α1 + qm+i−1 + . . .+ qm if i ≤ n− 1

el,α1 + ql−1 + . . .+ qm otherwise.

Proof. We use Lemma 1.4. If n = 2, then

ps1(α1) + ps2(α2) = es1,α1 + qm + es2,α2 + qmx

= es1,α1 + (qm + es2,α2) + qm

= es1,α1 + el + qm

= el,α1 + qm, and

ps1(α1) + ps2(α2) + ps3(α3) = (ps1(α1) + ps2(α2)) + ps3(α3)

= el,α1 + qm + es3,α3 + qm

= el,α1 + (qm + es3,α3) + qm

= el,α1 + el + qm

= el,α1 + qm.

Let n ≥ 3. We first notice that for each j ∈ {m, . . . , l − 2},

qj + . . .+ qm + es,α = ej+1 + qj+1 + . . .+ qm+1 and

ql−1 + . . .+ qm + es,α = el + ql−1 + . . .+ qm+1.
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Indeed, inductively, qm + es,α = em+1 + qm+1, and for j ≥ m+ 1,

qj + . . .+ qm + es,α = qj + (qj−1 + . . .+ qm + es,α)

= qj + ej + qj + . . .+ qm+1

= ej+1 + qj+1 + qj + . . .+ qm+1,

and then

ql−1 + . . .+ qm + es,α = ql−1 + (ql−2 + . . .+ qm + es,α)

= ql−1 + el−1 + ql−1 + . . .+ qm+1

= el + ql−1 + . . .+ qm+1.

Now by induction on i ∈ {2, . . . , n− 1},

ps1(α1) + ps2(α2) = es1,α1 + qm + es2,α2 + qm

= es1,α1 + (qm + es2,α2) + qm

= es1,α1 + em+1 + qm+1 + qm

= em+1,α1 + qm+1 + qm,

and for i ≥ 2,

ps1(α1) + . . .+ psi(αi) = (ps1(α1) + . . .+ psi−1(αi−1)) + psi(αi)

= em+i−2,α1 + qm+i−2 + . . .+ qm + esi,αi + qm

= em+i−2,α1 + em+i−1 + qm+i−1 + . . .+ qm+1 + qm

= em+i−1,α1 + qm+i−1 + . . .+ qm,

and then

ps1(α1) + . . .+ psn(αn) = (ps1(α1) + . . .+ psn−1(αn−1)) + psn(αn)

= el−1,α1 + ql−1 + . . .+ qm + esn,αi + qm

= el−1,α1 + el + ql−1 + . . .+ qm+1 + qm

= el,α1 + ql−1 + . . .+ qm

and

ps1(α1) + . . .+ psn+1(αn+1) = (ps1(α1) + . . .+ psn(αn)) + psn+1(αn+1)
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= el,α1 + ql−1 + . . .+ qm + esn+1,αn+1 + qm

= el,α1 + el + ql−1 + . . .+ qm+1 + qm

= el,α1 + ql−1 + . . .+ qm.

It follows from Lemma 1.5 that for each i ≥ 2, ps1(α1) + . . .+ psi(αi) =
ip(α1), where p(α) = p1(α), and for i ≥ n, ip(α) = np(α).

Lemma 1.6. All elements ps(α) and ip(α), where α < 2c, s ∈ {1, . . . ,m},
and i ∈ {2, . . . , n}, are pairwise distinct.

Proof. Since all es,α are distinct and qm is right cancelable (Lemma 1.3), it
follows that all ps(α) = es,α+qm are distinct. Suppose that ips(α) = jpt(β)
for some α, β < 2c, s, t ∈ {1, . . . ,m}, and i, j ∈ {1, . . . , n} with i + j ≥ 3.
We show that i = j and α = β.

Without loss of generality one may suppose that i ≥ j and i = n (by
adding (n − i)ps(α) to both sides of the equality from the right), and con-
sequently, we have

el,α + ql−1 + . . .+ qm =





es,β + qm if j = 1

em+j−1,β + qm+j−1 + . . .+ qm if 2 ≤ j < n

el,β + ql−1 + . . .+ qm if j = n.

If j = 1, then canceling the equality by qm we obtain el,α + ql−1 + . . .+
qm+1 = es,β in the case n ≥ 3 or el,α = es,β in the case n = 2. The second
possibility is impossible, and the first also gives a contradiction because
qm+1 is in K(βN) and so is el,α + ql−1 + . . . + qm+1, and es,β ∈ Ts (and

Ts ∩K(βN) = ∅). Thus j ≥ 2.
If j = n−1, then canceling by qm, . . . , ql−1 we obtain el,α = el−1,β which

is impossible, and if j ≤ n− 2, then canceling we obtain

el,α + ql−1 + . . .+ qk = em+j−1,β,

where k = l − (i − j − 1), which also gives a contradiction because qk
is in K(βN) and so is el,α + ql−1 + . . . + qk, and em+j−1,β ∈ Tl−1 (and

Tl−1 ∩K(βN) = ∅). Hence j = n = i. Then canceling we obtain el,α = el,β,
whence α = β.
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Define ε : Cm,n × 2c ! βN by

ε(ips, α) = ips(α).

By Lemma 1.6, ε is injective, and

ε((ips, α) + (jpt, β)) = ε(ips + jpt, α+ β) = ε((i+ j)ps, α) = (i+ j)ps(α)

and

ε(ips, α) + ε(jpt, β) = ips(α) + jpt(β) = (i+ j)ps(α),

so ε is an isomorphic embedding.

Since qm is in K(βN), so are ε(ps, α) = ps(α) = es,α+ qm and ε(ip, α) =
iε(p, α), and since el,α are in K(βN), so are ε(np, α) = np(α) = el,α+ ql−1+
. . .+ qm.

This finishes the proof of Theorem 1.1.
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