Categories and General Algebraic Structures with Applications Volume 20, Number 1, January 2024, 201-219. https://doi.org/10.48308/cgasa.20.1.201

On one-local retract in modular metrics

Olivier Olela Otafudu* and Tlotlo Odacious Phawe

Dedicated to the 65^{th} birthday of Professor Themba Dube

Abstract. We continue the study of the concept of one-local retract in the settings of modular metrics. This concept has been studied in metric spaces and quasi-metric spaces by different authors with different motivations. In this article, we extend the well-known results on one-local retract in metric point of view to the framework of modular metrics. In particular, we show that any self-map $\psi: X_w \longrightarrow X_w$ satisfying the property $w(\lambda, \psi(x), \psi(y)) \leq w(\lambda, x, y)$ for all $x, y \in X$ and $\lambda > 0$, has at least one fixed point whenever the collection of all q_w -admissible subsets of X_w is both compact and normal.

1 Introduction

The concept of modular metric spaces was introduced by Chistyakov [2] in 2010. He developed the theory of modular metric on an arbitrary set and investigated the theory of metric spaces induced by a modular metric. He defined a modular metric in the following way. Let X be a nonempty set. Then the function $w: (0, \infty) \times X \times X \to [0, \infty]$ is called a modular metric

Mathematics Subject Classification [2020]: 46A80, 47H09, 46B20, 47H10.

^{*} Corresponding author

Keywords: Fixed point, one-local retract, normal structure, w-admissible.

Received: 5 August 2023, Accepted: 5 December 2023.

ISSN: Print 2345-5853 Online 2345-5861.

[©] Shahid Beheshti University

if it satisfies (a) $w(\lambda, x, y) = 0$ if and only if x = y whenever $\lambda > 0$, (b) $w(\lambda, x, y) = w(\lambda, y, x)$ whenever $x, y \in X$ and $\lambda > 0$ and (c) $w(\lambda + \mu) \le w(\lambda, x, z) + w(\mu, z, y)$ whenever $x, y, z \in X$ and $\lambda, \mu > 0$.

For $a \in X$, the modular set $X_w(a)$ is defined by

$$X_w(a) = \{ x \in X : \lim_{\lambda \to \infty} w(\lambda, x, a) = 0 \}.$$

In the sequel, we are going to write X_w in place of $X_w(a)$. We point out that Chistyakov equipped the set X_w with the metric q_w , where

$$q_w(x,y) := \inf\{\lambda > 0 : w(\lambda, x, y) < \lambda\}$$

whenever $x, y \in X_w$.

We are aware that a similar concept was studied by Abdou in [1]. Our approach is different from what was done in [1], the author used the set $B_w(x,r) := \{y \in X_w : w(1,x,y) \leq r\}$, where $x \in X_w$ and $r \geq 0$ which she called modular ball to define w-boundeness and other concepts related to this modular ball. In this article, we use the concept of entourage $B_{\lambda,\mu}(x) = \{y \in X_w : w(\lambda, x, y) < \mu\}$, where $\lambda, \mu > 0$ and $x \in X_w$ (see below) introduced in [4] to defined the w-boundedness and the topology induced by a modular metric w on a modular set X_w . It turns out that the modular ball due to [1] is just the entourage $B_{\lambda,\mu}(x)$, where $\lambda = 1$.

Moreover, we continue the study of the concept of one-local retract on modular metric in more general settings and we attempt to make connections between this concept in metric and modular metric frameworks. Furthermore, we extend some well-known results from [7, 8] in metric settings to the structure of modular metrics. For instance, we show that if a subset A of X_w is q_w -bounded then A is w-bounded. In addition, we show that most results of [1] on fixed point theorem on a modular set still hold in our context.

2 Basic definitions

Let us consider the set w equipped with a modular metric W. For any $x \in X_w$ and $\lambda, \mu > 0$, the sets $B_{\lambda,\mu}(x)$ and $C_{\lambda,\mu}(x)$ are defined by

$$B_{\lambda,\mu}(x) := \left\{ z \in X_w : w(\lambda, x, z) < \mu \right\}$$

and

$$C_{\lambda,\mu}(x) := \{ z \in X_w : w(\lambda, x, z) \le \mu \}.$$

The set $B_{\lambda,\mu}(x)$ is called a $w \leq -entourage$ about x relative to λ and μ , and the set $C_{\lambda,\mu}(x)$ is called a $w \leq -entourage$ about x relative to λ and μ .

Note that if $0 < \mu < \lambda$ and $x \in X_w$, then

$$C_{\mu,\mu}(x) \subseteq C_{\lambda,\lambda}(x)$$
 and $B_{\mu,\mu}(x) \subseteq B_{\lambda,\lambda}(x)$

Definition 2.1. [4] Let w be a modular metric on a set X. Given $x, y \in X$,

- (i) the limit from the right of w at each point $\lambda > 0$ denoted by $w_{+0}(\lambda, x, y)$ is defined by $w_{+0}(\lambda, x, y) = \lim_{\mu \to \lambda^+} w(\mu, x, y) = \sup \{ w(\mu, x, y) : \mu > \lambda \}.$
- (ii) the limit from the left of w at each point $\lambda > 0$ denoted by $w_{-0}(\lambda, x, y)$ is defined by $w_{-0}(\lambda, x, y) = \lim_{\mu \to \lambda^{-}} w(\mu, x, y) = \inf \{ w(\mu, x, y) : 0 < \mu < \lambda \}$. Furthermore,
- (iii) w is said to be continuous from the right on $(0, \infty)$ if for any $\lambda > 0$ we have $w(\lambda, x, y) = w_{+0}(\lambda, x, y)$.
- (iv) w is said to be continuous from the left on $(0, \infty)$ if for any $\lambda > 0$ we have $w(\lambda, x, y) = w_{-0}(\lambda, x, y)$.
- (v) w is said to be continuous on $(0, \infty)$ if w is continuous from the right and continuous from the left on $(0, \infty)$.

Remark 2.2. If w is continuous from the right on $(0, \infty)$, then for any $x, y \in X_w$ and $\lambda > 0$ we have $q_w(x, y) \leq \lambda$ if and only if $w(\lambda, x, y) \leq \lambda$.

Definition 2.3. ([4, Definition 4.3.1]) Let w be a modular metric on a set X and $\emptyset \neq O \subseteq X$. Then O is called $\tau(w)$ -open (or modular open) if for any $x \in O$ and $\lambda > 0$, there exists $\mu > 0$ such that $B_{\lambda,\mu}(x) \subseteq O$.

Remark 2.4. Note that in Definition 2.3, one can use $C_{\lambda,\mu'}(x)$ in place of $B_{\lambda,\mu}(x)$ by taking $\mu' = \frac{\mu}{2}$.

Remark 2.5. Let w be a modular metric on a set X and $\varphi : (0, \infty) \to (0, \infty)$ be a function. For any $x \in X_w$, we have $\bigcup_{\lambda > 0} B_{\lambda,\varphi(\lambda)}(x)$ is $\tau(w)$ -open whenever the following two conditions are satisfied:

(1) φ is nondecreasing on $(0, \infty)$.

- (2) w is convex and $\lambda \mapsto \lambda \varphi(\lambda)$ is nondecreasing on $(0, \infty)$.
- (3) In view of (1) above and [4, Remark 4.3.3] note that

$$\left\{\bigcup_{\lambda>0}B_{\lambda,\epsilon}(x):\epsilon>0\right\}$$

may not form a neighborhood base for $\tau(w)$.

(4) For any $\lambda > 0$ and $n \in \mathbb{N}$, the set $B_{\lambda,1/n}(x)$ is $\tau(w)$ -open for any $x \in X_w$.

It is very useful to note that if w is a modular metric on a set X, then for any $x, y \in X_w$ and $0 < \mu < \lambda$, we have

$$w(\lambda, x, y) = w(\lambda - \mu + \mu, x, y) \le (w(\lambda - \mu, x, x) + w(\mu . x, y) = w(\mu, x, y).$$
(2.1)

3 w-boundedness

In this section we introduce and discuss concepts of w-boundedness and diameter function on a subset of a modular set.

Lemma 3.1. Let w be a modular metric on a set X. Then for all $x, y \in X_w$ and $\lambda > 0$ we have:

- (a) $B_{q_w}(x,\lambda) \subseteq B_{\lambda,\lambda}(x),$
- (b) $C_{q_w}(x,\lambda) \subseteq C_{\lambda,\lambda}(x),$

where the sets $B_{q_w}(x,\lambda)$ and $C_{q_w}(x,\lambda)$ are known as open ball and closed ball centred at x with radius λ , respectively.

Proof. We only prove (b) and (a) follows by similar arguments. Let $y \in C_{q_w}(x, \lambda)$. Then $q_w(x, y) \leq \lambda$. It follows that

$$\mu' = \inf\{\mu > 0 : w(\mu, x, y) < \mu\} \le \lambda.$$

Thus we have $w(\mu', x, y) < \mu' \leq \lambda$, it follows that

$$w(\lambda, x, y) \le w(\mu', x, y) < \mu' \le \lambda$$
 by the inquality (2.1).

Hence $y \in C_{\lambda,\lambda}(x)$.

Example 3.2. Let \mathbb{R} be equipped with its usual metric q(x, y) = |x - y| for all $x, y \in \mathbb{R}$. Then for any $x, y \in \mathbb{R}$, the function $w(\lambda, x, y) = \frac{q(x, y)}{\lambda^2}$ is modular metric. For any $\lambda > 0$ and $x \in \mathbb{R}_w$, we have

$$B_{q_w}(x,\lambda) = \{ y \in \mathbb{R}_w : q_w(x,y) = q(x,y)^{\frac{1}{3}} < \lambda \} = (x - \lambda^3, x + \lambda^3)$$

and

$$B_{\lambda,\lambda}(x) = \{ y \in \mathbb{R}_w : w(\lambda, x, y) < \lambda \} = (x - \lambda^3, x + \lambda^3).$$

Clearly, $B_{q_w}(x,\lambda) = B_{\lambda,\lambda}(x)$ for any $\lambda > 0$.

Example 3.3. (compare [4, Example 4.2.2 (2)]) Let (X,q) be a metric space. Then for any $x, y \in X$, the function

$$w(\lambda, x, y) = \begin{cases} \infty & \text{if } 0 < \lambda < q(x, y) \\ 0 & \text{if } \lambda > q(x, y) \end{cases}$$
(3.1)

is modular metric on X. It is readily checked that for any $\lambda > 0$ we have

$$B_{q_w}(x,\lambda) = B_q(x,\lambda) \subset C_q(x,\lambda) = B_{\lambda,\lambda}(x)$$

whenever $x \in X_w = X$.

Definition 3.4. ([9, p.99]) Let w be a modular metric on X. A nonempty subset A of X_w is said to be w-bounded if there exists $x \in X_w$ such that $A \subseteq C_{\lambda,\lambda}(x)$ for some $\lambda > 0$.

Remark 3.5. Let w be a modular metric on a set X and $A \subseteq X_w$. If A is q_w -bounded, then A is w-bounded.

Proof. Suppose that A is q_w -bounded. Then there exist $x \in X_w$ and $\lambda > 0$ such that $A \subseteq C_{q_w}(x, \lambda)$. Since $C_{q_w}(x, \lambda) \subseteq C_{\lambda,\lambda}(x)$, it is follows that A is w-bounded.

The following observation follows from Remarks 2.2 and 3.5.

Remark 3.6. Let w be a modular metric on a set X which is continuous from the right on $(0, \infty)$. Then $C_{\lambda,\lambda}(x) = C_{q_w}(x, \lambda)$ whenever $\lambda > 0$ and $x \in X_w$.

The following result is a consequence of Remarks 3.5 and 3.6.

Lemma 3.7. Let w be a modular metric on a set X which is continuous from the right on $(0, \infty)$. Then boundedness in (X_w, q_w) is equivalent to w-boundedness.

We next introduce the diameter function on a subset of a modular set.

Definition 3.8. Let w be a modular pseudometric on X and $\emptyset \neq A \subseteq X_w$. Let a function $\Phi_A : (0, \infty) \longrightarrow [0, \infty]$ defined by

$$\Phi_A(\lambda) = \sup\{w(\lambda, x, y) : x, y \in A\}.$$

The modular metric diameter of A is defined by $\Phi_A(\lambda)$ for some $\lambda > 0$.

Lemma 3.9. Let w be a modular metric on X and $\emptyset \neq A \subseteq X_w$. It is easy to see that the function Φ_A is well defined for any $A \subseteq X_w$. Then we have the following properties:

- (a) if $0 < \lambda < \mu$, then $\Phi_A(\mu) \leq \Phi_A(\lambda)$,
- (b) if $A \subseteq B$, then $\Phi_A(\lambda) \leq \Phi_B(\lambda)$ for any $\lambda > 0$,
- (c) $\Phi_A(\lambda) = 0$ for some $\lambda > 0$ if and only if A is a singleton set.

Proof. (a) Suppose that $0 < \lambda < \mu$. Let $x, y \in A$. Then

$$w(\mu, x, y) \le w(\lambda, x, y).$$

It follows that

$$\sup\{w(\mu, x, y) : x, y \in A\} \le \sup\{w(\lambda, x, y) : x, y \in A\}.$$

Thus

$$\Phi_A(\mu) \le \Phi_A(\lambda).$$

(b) Suppose $A \subseteq B$ and $\lambda > 0$. Let $x, y \in A \subseteq B$. Then

$$w(\lambda, x, y) \le \Phi_B(\lambda).$$

Moreover,

$$\sup\{w(\lambda, x, y) : x, y \in A\} \le \Phi_B(\lambda).$$

So $\Phi_A(\lambda) \leq \Phi_B(\lambda)$.

(c) Suppose A is not a singleton set. There exist $x, y \in A$ with $x \neq y$. Then $w(\lambda, x, y) \neq 0$ for any $\lambda > 0$. Then

$$\sup\{w(\lambda, x, y) : x, y \in A\} \neq 0.$$

Thus $\Phi_A(\lambda) \neq 0$ for any $\lambda > 0$.

Conversely, suppose that $\Phi_A(\lambda) \neq 0$ for some $\lambda > 0$. It follows that for any $x, y \in A$ we have $w(\lambda, x, y) = 0$ for some $\lambda > 0$. Thus x = y.

Lemma 3.10. Let w be a modular pseudometric on X and $\emptyset \neq A \subseteq X_w$. Then we have $\Phi_A(\lambda) \leq diam_{q_w}(A)$ for some $\lambda > 0$.

Proof. Let $x, y \in A$. By the definition of q_w we have

$$q_w(x,y) = \inf\{\lambda > 0 : w(\lambda, x, y) \le \lambda\}.$$

So it follows that $w(\lambda, x, y) \leq q_w(x, y)$ for some $\lambda > 0$ such that $w(\lambda, x, y) \leq \lambda$. Thus for some $\lambda > 0$

$$\Phi_A(\lambda) = \sup\{w(\lambda, x, y) : x, y \in A\}$$

$$\leq \sup\{q_w(x, y) : x, y \in A\}$$

$$= \operatorname{diam}_{q_w}(A).$$

Lemma 3.11. Let w be a modular pseudometric on X. If A is a w-bounded subset of X_w , then $\Phi_A(\lambda) < \infty$.

Proof. Suppose that A is w-bounded. Then for some $\lambda > 0$ we have $A \subseteq C^w_{\lambda,\lambda}(x)$ for some $x \in X_w$.

If $z, y \in A$, then $w(\lambda, x, z) \leq \lambda$. Thus

$$w(2\lambda, y, z) \le (w(\lambda, y, x) + w(\lambda, x, z) \le 2\lambda.$$

Moreover,

$$\sup\{w(\lambda', y, z) : z, y \in A\} \le 2\lambda < \infty \quad \text{for some } \lambda' = 2\lambda > 0.$$

Therefore, $\Phi_A(\lambda') < \infty$ for some $\lambda' > 0$.

Suppose that w is a modular pseudometric on a set X. For $\lambda > 0$, we set:

$$\begin{aligned} r_A^x(\lambda) &:= \sup\{w(\lambda, x, y) : y \in A\} \\ r_A(\lambda) &:= \inf\{r_A^x(\lambda) : x \in X_w\} \\ R_A(\lambda) &:= \inf\{r_A^x(\lambda) : x \in A\} \\ C_A(\lambda) &:= \{x \in X_w : r_A^x(\lambda) = r_A(\lambda)\} \\ \operatorname{cov}_w(A) &:= \bigcap\{\mathcal{C} : \mathcal{C} \leq -entourage \text{ and } A \subseteq \mathcal{C}\}. \end{aligned}$$

Lemma 3.12. Let w be a modular pseudometric on a set X and A be a w-bounded subset of X_w . Then:

(1)
$$cov_w(A) = \bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \}.$$

(2) $r_{cov_w(A)}^x(\lambda) = r_A^x(\lambda) \text{ for any } x \in X_w \text{ and some } \lambda > 0.$
(3) $r_{cov_w(A)}(\lambda) = r_A(\lambda) \text{ for some } \lambda > 0.$

Proof. (1) Let $x \in X_w$ and $y \in A$. Then

$$w(r_A^x(\lambda), x, y) \le \sup\{w(r_A^x(\lambda), x, y) : y \in A\} = r_A^x(\lambda).$$

Then $y \in C_{r_A^x(\lambda), r_A^x(\lambda)}(x)$ for some $\lambda > 0$. It follows that

$$A \subseteq C_{r_A^x(\lambda), r_A^x(\lambda)}(x)$$
 for some $\lambda > 0$.

Thus

$$\operatorname{cov}_w(A) \subseteq \bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \}.$$
(3.2)

Suppose that A is a w-bounded. Then for some $x \in X_w$ and $\lambda > 0$, $A \subseteq C_{\lambda,\lambda}(x)$. For any $y \in A$, we have $w(\lambda, x, y) \leq \lambda$ for some $\lambda > 0$.

Then

$$r_A^x(\lambda) = \sup\{w(\lambda, x, y) : y \in A\} \le \lambda \text{ for some } \lambda > 0.$$

It follows that

$$C_{r_{\mathcal{A}}^{x}(\lambda), r_{\mathcal{A}}^{x}(\lambda)}(x) \subseteq C_{\lambda, \lambda}(x)$$
 for some $\lambda > 0$.

Hence

$$\bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \} \subseteq C_{\lambda, \lambda}(x) \text{ for some } \lambda > 0.$$

Thus

$$\bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \} \subseteq \operatorname{cov}_w(A).$$
(3.3)

Therefore, we have $\operatorname{cov}_w(A) = \bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \}$ from (3.2) and (3.3).

(2) Let $x \in X_w$, we have

$$r^x_{\operatorname{cov}_w(A)}(\lambda) = \sup\{w(r^x_A(\lambda), x, y) : y \in \operatorname{cov}_w(A)\}.$$

By (1), we have $y \in \bigcap \{ C_{r_A^x(\lambda), r_A^x(\lambda)}(x) : x \in X_w \text{ and } \lambda > 0 \}$. Thus

$$y \in C_{r_A^x(\lambda), r_A^x(\lambda)}(x)$$
 for some $\lambda > 0$.

Hence $w(r_A^x(\lambda), x, y) \leq r_A^x(\lambda)$ for some $\lambda > 0$. Furthermore,

 $r^x_{\operatorname{cov}_w(A)}(\lambda) = \sup\{w(r^x_A(\lambda), x, y) : y \in \operatorname{cov}_w(A)\} \le r^x_A(\lambda) \text{ for some } \lambda > 0.$

Thus

$$r_{\operatorname{cov}_{w}(A)}^{x}(\lambda) \le r_{A}^{x}(\lambda) \quad \text{for some } \lambda > 0.$$
 (3.4)

Since $A \subseteq r^x_{cov_w}(A)$ by definition, it follows

1

$$r_{\operatorname{cov}_w(A)}^x(\lambda) \ge r_A^x(\lambda) \quad \text{for some } \lambda > 0.$$
 (3.5)

From (3.4) and (3.5) we have

$$r_{\operatorname{cov}_w(A)}^x(\lambda) = r_A^x(\lambda)$$

for any $x \in X_w$ and some $\lambda > 0$.

(3) Let $x \in X_w$. From the axiom (2) above we have

$$r^x_{\operatorname{cov}_w(A)}(\lambda) = r^x_A(\lambda)$$

for some $\lambda > 0$. Therefore,

 $r_{\operatorname{cov}_w(A)}(\lambda) = \inf\{r_{\operatorname{cov}_w(A)}^x(\lambda) : x \in X_w\} = \inf\{r_A^x(\lambda) : x \in X_w\} = r_A(\lambda)$ for some $\lambda > 0$. **Remark 3.13.** Note that a *w*-admissible subset of X_w can be written as the intersection of a family of the form $C_{\lambda,\lambda}(x)$, where $x \in X_w$ and $\lambda > 0$.

Definition 3.14. [9] Let w be a modular quasi-pseudometric on a nonempty set X. We say that X_w is w-Isbell-convex if for any family of points $(x_i)_{i \in I}$ in X_w and family of point $(\lambda_i)_{i \in I}$ in $(0, \infty)$ such that

$$w(\lambda_i + \lambda_j, x_i, x_j) \le \lambda_i + \lambda_j,$$

for all $i, j \in I$, then

$$\bigcap_{i \in I} \left[C_{\lambda_i, \lambda_i}(x_i) \right] \neq \emptyset.$$

Lemma 3.15. Let w be a modular pseudometric on X. If X_w is w-Isbellconvex and $A \subseteq X_w$. Then:

- (1) $r_A(\lambda) = \frac{\Phi_A(\lambda)}{2}$ for some $\lambda > 0$.
- (2) $\Phi_A(\lambda) = \Phi_{cov_w(A)}(\lambda)$ for some $\lambda > 0$.
- (3) If $A = cov_w(A)$, then $r_A(\lambda) = R_A(\lambda)$ and $R_A(\lambda) = 1/2\Phi_A(\lambda)$ for some $\lambda > 0$.

Proof. (1) Let us consider the set $\{C_{\Phi_A(t)/2,\Phi_A(\lambda)/2}(a) : a \in A\}$ for some $\lambda > 0$. If $a, b \in A$, then

$$w(\Phi_A(\lambda), a, b) \le \Phi_A(\lambda) = \Phi_A(\lambda)/2 + \Phi_a(\lambda)/2.$$

Then we have by the w-Isbell-convexity,

(

$$\bigcap_{a \in A} \left[C_{\Phi_A(t)/2, \Phi_A(\lambda)/2}(a) \right] \neq \emptyset.$$

Let

$$x \in \bigcap_{a \in A} \left[C_{\Phi_A(t)/2, \Phi_A(\lambda)/2}(a) \right],$$

thus

$$w(\Phi_A(\lambda)/2, a, x) \leq \Phi_A(\lambda)/2$$
 for some $\lambda > 0$.

So $r_A^x(\lambda) \leq \Phi_A(\lambda)/2$.

Let $x \in X_w$ and $a, b \in A$. We have

$$w(\Phi_A(\lambda), a, b) \le w(\Phi_A(\lambda)/2, a, x) + w(\Phi_A(\lambda)/2, x, b).$$

Then

$$\begin{split} \Phi_A(\lambda) &= \sup\{w(\Phi_A(\lambda), a, b) : a, b \in A\} \\ &\leq \inf\{w(\Phi_A(\lambda)/2, a, x) : x \in X_w\} + \inf\{w(\Phi_A(\lambda)/2, x, b) : x \in X_w\} \\ &= r_A(\lambda) + r_A(\lambda). \end{split}$$

Thus $\Phi_A(\lambda) \leq 2r_A(\lambda)$. Therefore, we have

$$\Phi_A(\lambda) \le 2r_A(\lambda) \le 2r_A^x(\lambda) \le \Phi_A(\lambda).$$

Hence $r_A(\lambda) = \frac{\Phi_A(\lambda)}{2}$ for any $\lambda > 0$.

(2) The result follows from (1) above and Lemma 3.12(3).

(3) Indeed for some $\lambda > 0$ we have

$$\frac{\Phi_A(\lambda)}{2} \le r_A(\lambda) \le R_A(\lambda). \tag{3.6}$$

Since $A = \bigcap_{i \in I} C_i$, where C_i is \leq -entourages with $A \subseteq C_i$ for any $i \in I$. Since

$$\bigcap_{a \in A} C_{\frac{\Phi_A(\lambda)}{2}, \frac{\Phi_A(\lambda)}{2}}(a) \neq \emptyset,$$

it follows that the collection of sets

$$\{\mathcal{C}_i: i \in I\} \cup \{C_{\frac{\Phi_A(\lambda)}{2}, \frac{\Phi_A(\lambda)}{2}}(a): a \in A\}$$

has the mixed binary intersection property. By the *w*-Isbell-convexity of X_w , we have

$$\mathcal{C} = A \cap \{C_{\frac{\Phi_A(\lambda)}{2}, \frac{\Phi_A(\lambda)}{2}}(a) : a \in A\} = \bigcap_{i \in I} \mathcal{C}_i \cap \{C_{\frac{\Phi_A(\lambda)}{2}, \frac{\Phi_A(\lambda)}{2}}(a) : a \in A\} \neq \emptyset.$$

Let $x \in \mathcal{C}$. Then

$$r_A^x(\lambda) \le \frac{\Phi_A(\lambda)}{2} \text{ since } w\left(\frac{\Phi_A(\lambda)}{2}, a, x\right) \le \frac{\Phi_A(\lambda)}{2}.$$
 (3.7)

Combining inequalities (3.6), (3.7) and the definition of $r_A^x(\lambda)$, we have

$$r_A^x(\lambda) \le \frac{\Phi_A(\lambda)}{2} \le r_A(\lambda) \le R_A(\lambda) \le r_A^x(\lambda)$$

Therefore, for some $\lambda > 0$.

$$r_A(\lambda) = R_A(\lambda) = 1/2\Phi_A(\lambda).$$

Definition 3.16. Let w be a modular pseudometric on X. Given a subset A of X_w , for $\lambda > 0$, the λ -parallel set of A is defined as

$$P_{\lambda}(A) = \bigcup_{a \in A} \left[C^w_{\lambda,\lambda}(a) \right].$$

Proposition 3.17. Let w be a modular pseudometric on X. If X_w is w-Isbell-convex and A is a w-admissible subset of X_w , that is, $A = \bigcap_{i \in I} C_{\lambda_i,\lambda_i}(x_i)$ where $x_i \in X_w$ and $\lambda_i > 0$ for each $i \in I \neq \emptyset$, then

$$P_{\lambda}(A) = \bigcap_{i \in I} \left[C_{\lambda_i + \lambda, \lambda_i + \lambda}(x_i) \right]$$
(3.8)

whenever $\lambda > 0$.

Proof. Let $y \in P_{\lambda}(A)$. Then we have $w(\lambda, a, y) \leq \lambda$ for some $a \in A$. Moreover, for each $i \in I$,

$$w(\lambda_i + \lambda, x, y) \le w(\lambda_i, x_i, a) + w(\lambda, a, y) \le \lambda_i + \lambda.$$

It follows that $y \in C_{\lambda_i + \lambda, \lambda_i + \lambda}(x_i)$ whenever $i \in I$. Hence,

$$P_{\lambda}(A) \subseteq \bigcap_{i \in I} \left[C_{\lambda_i + \lambda, \lambda_i + \lambda}(x_i) \right].$$

Suppose that $y \in \bigcap_{i \in I} \left[C_{\lambda_i + \lambda, \lambda_i + \lambda}(x_i) \right]$. Then

$$\psi(\lambda_i + \lambda, x_i, y) \le \lambda_i + \lambda_i$$

for any $i \in I$. For any $a \in A$ and $i, j \in I$ we have

u

$$w(\lambda_i + \lambda_j, x_i, x_j) \le w(\lambda_i, x_i, a) + w(\lambda_j, a, x_j) \le \lambda_i + \lambda_j$$

by the definition of A and the triangle inequality.

Thus, the families of $w \leq$ -entourages

$$\left[(C_{\lambda_i,\lambda_i}(x_i))_{i\in I}; (C_{\lambda,\lambda}(y)) \right]$$

satisfy the hypothesis of w-Isbell-convexity of X_w . Then

$$\begin{split} \emptyset &\neq \left(\bigcap_{i \in I} C_{\lambda_i, \lambda_i}(x_i) \right) \cap \left(C_{\lambda, \lambda}(y) \right) \\ &= A \cap C_{\lambda, \lambda}(y). \end{split}$$

It then follows that $w(\lambda, y, a) \leq \lambda$ for some $a \in A$. Therefore, $y \in P_{\lambda}(A)$.

Definition 3.18. (compare [10, Definition 2.6]) Let w be a modular pseudometric on X. A nonempty and w-bounded subset A of X_w is called w-admissible if $A = \operatorname{cov}_w(A)$.

Remark 3.19. Note that a *w*-admissible subset of X_w can be written as the intersection of a family of the form $C^w_{\lambda,\lambda}(x)$, where $x \in X_w$ and $\lambda > 0$.

It should be observed that the collection of all w-admissible subsets of X_w will be denoted by $\mathcal{A}_w(X_w)$.

Definition 3.20. Let w be a modular metric on X. We say that:

(i) The collection $\mathcal{A}_w(X_w)$ is *compact* if every descending chain of nonempty subsets of $\mathcal{A}_w(X_w)$ has a nonempty intersection.

(ii) The collection $\mathcal{A}_w(X_w)$ is *w*-normal (or has a *w*-normal structure) if for any $A \in \mathcal{A}_w(X_w)$ with A having more than one point, there exists $\lambda > 0$ such that $\lambda < \Phi_A(\lambda)$ and for $a \in A$ with $A \subseteq C^w_{\lambda\lambda}(a)$.

Remark 3.21. In line of Remark 3.5 it is easy to see that $\mathcal{A}_{q_w}(X_w) \subseteq \mathcal{A}_w(X_w)$. Then the compactness of $\mathcal{A}_{q_w}(X_w)$ implies the compactness of $\mathcal{A}_w(X_w)$.

Theorem 3.22. Let w be a modular metric on X. If X_w is q_w -bounded and $\psi : X_w \to X_w$ is a map such that $w(\lambda, \psi(x), \psi(y)) \leq w(\lambda, x, y)$ for all $x, y \in X_w$ and $\lambda > 0$, then ψ has at least one fixed point whenever $\mathcal{A}_w(X_w)$ is compact and normal.

Proof. Suppose that X_w is q_w -bounded and $\mathcal{A}_{q_w}(X_w)$ is compact and normal from the compactness. Since the map $\psi: X_w \to X_w$ satisfies the property

$$w(\lambda, \psi(x), \psi(y)) \le w(\lambda, x, y)$$

for all $x, y \in X_w$ and $\lambda > 0$, it follows from the corollary of [3, Theorem 5.2] with k = 1 that

$$q_w(\psi(x),\psi(y)) \le q_w(x,y)$$

for all $x, y \in X_w$. Thus $\psi : (X_w, q_w) \to (X_w, q_w)$ is a nonexpansive map and $\mathcal{A}_{q_w}(X_w)$ is compact and normal by the hypothesis. By [8, Theorem 5.1], the map $\psi : (X_w, q_w) \to (X_w, q_w)$ has at least one fixed point. \Box

4 One-local retract

In this section we study the concept of one-local retract and we also investigate some fixed point theorems. We recommend to the reader [5, 6] for more details about one-local retract on metric spaces.

Definition 4.1. Let w be a modular metric on X. A subset A of X_w is said to be a 1-local retract of X_w if for any family $\{A_i\}_{i \in I}$ of \leq -entourages on A for which

$$\bigcap_{i\in I}\mathcal{A}_i\neq \emptyset$$

it follows that $A \cap (\bigcap_{i \in I} \mathcal{A}_i) \neq \emptyset$.

The following lemma is obvious therefore we leave the proof to the reader.

Proposition 4.2. Let w be a modular metric on X and $A \subseteq X_w$. If A is a 1-local retract of (X_w, q_w) , then A is a 1-local retract of X_w in the sense of Definition 4.1.

Let us recall that the fixed point set $Fix(\psi)$ of a map $\psi : X_w \longrightarrow X_w$ is defined by $Fix(\psi) = \{x \in X_w : \psi(x) = x\}.$

Theorem 4.3. Let w be a modular metric on X. If X_w is q_w -bounded for which $\mathcal{A}_{q_w}(X_w)$ is compact and normal and $\psi : X_w \to X_w$ is a map such that $w(\lambda, \psi(x), \psi(y)) \leq w(\lambda, x, y)$ for all $x, y \in X_w$ and $\lambda > 0$, then $Fix(\psi)$ of ψ is nonempty 1-local retract of X_w . Furthermore, $Fix(\psi)$ is compact and w-normal in the sense of Definitions 3.20 and 4.1, respectively.

Proof. Indeed the fixed point set $\operatorname{Fix}(\psi) \neq \emptyset$ by Theorem 3.22. In order to show that $\operatorname{Fix}(\psi)$ is a 1-local retract of X_w , we consider a family of \leq -entourages

$$\{C_{\lambda_{\alpha},\lambda_{\alpha}}(x_{\alpha})\}_{\alpha\in\Gamma},$$

where $x_{\alpha} \in \operatorname{Fix}(\psi)$ and $\lambda_{\alpha} > 0$ for all $\alpha \in \Gamma$ such that

$$A = \bigcap_{\alpha \in \Gamma} C_{\lambda_{\alpha}, \lambda_{\alpha}}(x_{\alpha}) \neq \emptyset.$$

It follows that A is w-admissible and w-normal. Then the map $\psi : A \longrightarrow A$ satisfies the same property with ψ .

Therefore, ψ has a fixed point by Theorem 3.22 and then

$$\emptyset \neq \operatorname{Fix}(\psi).$$

Thus the fixed point set $\operatorname{Fix}(\psi)$ is a 1-local retract of S. Furthermore, the definition of 1-local retract assures that $\mathcal{A}_w(\operatorname{Fix}(\psi))$ is compact.

To finish, we need to show that $\mathcal{A}_w(\operatorname{Fix}(\psi))$ is *w*-normal. Let $C \in \mathcal{A}_w(\operatorname{Fix}(\psi))$. From Lemmas 3.12 and 3.15 we have

$$\Phi_{\operatorname{cov}_w(C)}(\lambda) = \Phi_C(\lambda)$$

and

$$r_{\operatorname{cov}_w(C)}(\lambda) = r_C(\lambda)$$
 for some $\lambda > 0$.

Moreover, the *w*-normality of $\mathcal{C}_w(X_w)$ implies that

$$\lambda < \Phi_{\operatorname{cov}_w(C)}(\lambda)$$
 for some $\lambda > 0$.

Then it follows that

$$\lambda < \Phi_C(\lambda)$$
 for some $\lambda > 0$.

Thus $\mathcal{A}_w(\operatorname{Fix}(\psi))$ is *w*-normal.

Theorem 4.4. Let w be a modular metric on X. If X_w is nonempty q_w bounded for which $\mathcal{A}_w(X_w)$ is compact and normal, then any commuting family of maps $\{\psi_\alpha\}_{\alpha\in\{1,\dots,n\}}$, (with for all α , $\psi_\alpha: X_w \longrightarrow X_w$ satisfies the property of the map ψ in Theorem 3.22) has a nonempty common fixed point set. Moreover, the common fixed point set $\bigcap_{\alpha=1}^{n} Fix(\psi_\alpha)$ is a 1-local retract of X_w in the sense of Definition 4.1.

Proof. We note first that $Fix(\psi_{\alpha}) \neq \emptyset$ by Theorem 3.22 for any $\alpha \in \{1, \dots, n\}$. Thus there exists $x \in X_w$ such that $\psi_{\alpha}(x) = x$ for all $\alpha \in \{1, \dots, n\}$.

Since ψ_1 and ψ_2 commute, let us show that $\psi_2(\operatorname{Fix}(\psi_1)) \subseteq \operatorname{Fix}(\psi_1)$. If for some $x \in X_w$, then we have $x = \psi_1(x)$ and $\psi_2(x) = \psi_2(\psi_1(x)) = \psi_1(\psi_2(x))$. Thus $\psi_2(x) \in \operatorname{Fix}(\psi_1)$.

We conclude that ψ_2 : Fix $(\psi_1) \longrightarrow$ Fix (ψ_1) has a fixed point $z \in$ Fix (ψ_1) , which is a fixed point of ψ_2 and ψ_1 . By mathematical induction for each finite family $\{\psi_{\alpha}\}_{\alpha \in \{1, \dots, n\}}$ of self-maps on X_w satisfying the same property of the map ψ in Theorem 3.22, the set of common fixed point $\bigcap_{\alpha=1}^{n}$ Fix $(\psi_{\alpha}) \neq$

Ø.

To complete the proof, let us show that $\bigcap_{\alpha=1}^{n} \operatorname{Fix}(\psi_{\alpha})$ is 1-local retract.

Consider a family of
$$\leq$$
-entourages $\{C_{\lambda_{\alpha},\lambda_{\alpha}}(x_{\alpha})\}_{\alpha\in\Gamma}$, where $x_{\alpha}\in\bigcap_{\alpha=1}^{n}\operatorname{Fix}(\psi_{\alpha})$

and $\lambda_{\alpha} > 0$ for all $\alpha \in \Gamma$ such that

$$A = \bigcap_{\alpha=1}^{n} \operatorname{Fix}(\psi_{\alpha}) \neq \emptyset.$$

For any $\alpha \in \{1, \dots, n\}$, we have $\psi_{\alpha} : A \longrightarrow A$ is such that for all $x, y \in A$ and $\lambda > 0$: $w(\lambda, \psi_{\alpha}(x), \psi_{\alpha}(y)) \leq w(\lambda, x, y)$.

Since A is w-admissible, $\mathcal{A}_{q_w}(A)$ is compact and normal. Then by Theorem 3.22, the map ψ_{α} has a fixed point in A, that is

$$\bigcap_{\alpha=1}^{n} \operatorname{Fix}(\psi_{\alpha}) \cap A \neq \emptyset.$$

This proves that $\bigcap_{\alpha=1}^{n} \operatorname{Fix}(\psi_{\alpha})$ is a 1-local retract of X_w .

Theorem 4.5. Let w be a modular metric on X. Also, let X_w be nonempty q_w -bounded for which $\mathcal{A}_w(X_w)$ is compact and w-normal. Suppose that $(H_\alpha)_{\alpha\in\Gamma}$ be a descending family of 1-local retracts of X_w , where we assume that Γ is totally ordered such that $\alpha_1, \alpha_2 \in \Gamma$ and $\alpha_1 \leq \alpha_2$ holds if and only if $H_{\alpha_1} \subseteq H_{\alpha_2}$. Then $\bigcap_{\alpha\in\Gamma} H_\alpha$ is nonempty and is a 1-local retract of X_w .

Proof. Indeed, the descending family $(H_{\alpha})_{\alpha\in\Gamma}$ is 1-local retract of (X_w, q_w) since the descending family $(H_{\alpha})_{\alpha\in\Gamma}$ is a 1-local retracts of X_w by Proposition 4.2. From the well-known result of Khamsi [7, Theorem 6] we have $\bigcap_{\alpha\in\Gamma} H_{\alpha} \neq \emptyset$.

We now show that $H := \bigcap_{\alpha \in \Gamma} H_{\alpha}$ is 1-local retract of X_w . Let us consider a family of \leq -entourages $\{C_{\lambda_{\beta},\lambda_{\beta}}(x_{\beta})\}_{\beta \in \Gamma'}$, where $\lambda_{\beta} > 0$ and $x_{\beta} \in$ H for all $\beta \in \Gamma'$ for which

$$\bigcap_{\beta \in \Gamma'} C_{\lambda_{\beta}, \lambda_{\beta}}(x_{\beta}) \neq \emptyset.$$

By fixing $\alpha \in \Gamma$, since H_{α} is 1-local retract of X_w and since $x_{\beta} \in H_{\alpha}$ whenever $\beta \in \Gamma'$, thus $\mathcal{A}_{\alpha} = \bigcap_{\beta \in \Gamma'} C_{\lambda_{\beta},\lambda_{\beta}}(x_{\beta}) \cap H_{\alpha} \neq \emptyset$.

$$\emptyset \neq \bigcap_{\alpha \in \Gamma} \mathcal{A}_{\alpha} = \bigcap_{\alpha \in \Gamma} \left[\bigcap_{\beta \in \Gamma'} C_{\lambda_{\beta}, \lambda_{\beta}}(x_{\beta}) \cap H_{\alpha} \right]$$

$$= \bigcap_{\beta \in \Gamma'} C_{\lambda_{\beta}, \lambda_{\beta}}(x_{\beta}) \cap \bigcap_{\alpha \in \Gamma} H_{\alpha}$$
$$= \bigcap_{\beta \in \Gamma'} C_{\lambda_{\beta}, \lambda_{\beta}}(x_{\beta}) \cap H,$$

since the family $\{\mathcal{A}_{\alpha}\}_{\alpha\in\Gamma}$ is descending. Therefore $H = \bigcap_{\alpha\in\Gamma} H_{\alpha}$ is 1-local retract of X_w .

The next result is a consequence of Theorem 4.5 and an application of Zorn's lemma.

Corollary 4.6. Let w be a modular metric on a set X and X_w be a nonempty q_w -bounded. If $\{H_\alpha\}_{\alpha\in\Gamma}$ is a family of 1-local retract of subsets of X_w such that $\bigcap_{\alpha\in\Psi} H_\alpha$ is 1-local retract of X_w whenever $\Psi \subseteq \Gamma$ is finite, then $\bigcap_{\alpha\in\Gamma} H_\alpha$ is nonempty and 1-local retract of X_w .

Theorem 4.7. Let w be a modular metric on X. If X_w is nonempty q_w bounded for which $\mathcal{A}_{q_w}(X_w)$ is compact and normal, then any commuting family of maps $\{\psi_{\alpha}\}_{\alpha\in\Gamma}$ satisfying the property of the map ψ in Theorem 3.22, has a common fixed point. Furthermore, the common fixed point set $\bigcap_{\alpha\in\Gamma} Fix(\psi_{\alpha})$ is 1-local retract of X_w .

Proof. For any $\alpha \in \Gamma$ and $x, y \in X_w$ and $\lambda > 0$, we have $w(\lambda, \psi(x), \psi(y)) \leq w(\lambda, x, y)$. It follows the corollary of [3, Theorem 5.2] with k = 1 that $\psi_{\alpha} : (X_w, q_w) \longrightarrow (X_w, q_w)$ is a nonexpansive map for all $\alpha \in \Gamma$ and since $\mathcal{A}_w(X_w)$ is compact and normal on (X_w, q_w) . We have the family of maps $\{\psi_{\alpha}\}_{\alpha\in\Gamma}$ has a common fixed point by Theorem [7, Theorem 8]. Moreover, the set $\bigcap_{\alpha\in\Gamma} \operatorname{Fix}(\psi_{\alpha})$ is 1-local retract of X_w by Theorems 3.22, 4.3 and Corollary 4.6.

Acknowledgement

We thank the referee for the suggestion of references [5, 6].

References

- [1] Abdou, A.A.N., One-local retract and common fixed point in modular metric spaces, Abstr. Appl. Anal. (2013), Art. ID 67206, 8pp.
- [2] Chistyakov, V.V., Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010), 1-14.
- [3] Chistyakov, V.V., A fixed point theorem for contractions in modular metric spaces, https://arxiv.org/abs/1112.5561 (preprint).
- [4] Chistyakov, V.V., "Metric Modular Spaces: Theory and Applications", Springer Briefs in Mathematics, Springer, 2015.
- [5] Hussain, N., Khamsi, M.A., and Kirk, W.A., One-local retracts and Banach operator pairs in Metric Spaces, Appl. Math. Comput. 218 (2012), 10072-10081.
- [6] Hussain, N., Jungck, G., and Khamsi, M.A., Nonexpansive retracts and weak compatible pairs in metric spaces, Fixed Point Theory Appl. (2012), Art. No. 100 (2012).
- [7] Khamsi, M.A., One-local retract and common fixed point for commuting mappings in metric spaces, Nonlinear Anal. 27 (1996), 1307-1313.
- [8] Khamsi, M.A. and Kirk, W.A., "An Introduction to Metric Spaces and Fixed Point Theory", John Wiley, 2001.
- [9] Otafudu, O.O. and Sebogodi, K., On w-Isbell-convexity, Appl. Gen. Topol. 23 (2022), 91-105.
- [10] Otafudu, O.O., On one-local retract in quasi-metric spaces, Topology Proc. 45 (2015), 271-281.

Olivier Olela Otafudu School of Mathematical and Statistical Sciences North-West University, Potchefstroom Campus, Potchefstroom 2520, South Africa. Email: olivier.olelaotafudu@nwu.ac.za

Tlotlo Odacious Phawe School of Mathematical and Statistical Sciences North-West University, Potchefstroom Campus, Potchefstroom 2520, South Africa.

 $Email:\ tlotlo.odacious@gmail.com$