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Abstract. In this paper we study topological spaces, frames, and their
confrontation in the presheaf topos of M -sets for a monoid M . We introduce
the internalization, of the frame of open subsets for topologies, and of topolo-
gies of points for frames, in our universe. Then we find functors between the
categories of topological spaces and of frames in our universe. We show that,
in contrast to the classical case, the obtained functors do not have an adjoint
relation for a general monoid, but in some cases such as when M is a group,
they form an adjunction. Furthermore, we define and study soberity and
spatialness for our topological spaces and frames, respectively. It is shown
that if M is a group then the restriction of the adjunction to sober spaces
and spatial frames becomes into an isomorphism.
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1 Introduction and Preliminaries

The study of topological spaces via their open subsets, rather than their ele-
ments, formed a branch, called the “frame theory” or “pointfree topology”.
The set O(X) of open subsets of a topological space X forms a frame, a
complete lattice in which binary meets distributes over arbitrary joins. In
this way, a functor O from the category Top, of topological spaces, to the
dual of the category Frm, of frames, is obtained. But, not every frame L
is of the form O(X) for some topological space X, such frames are called
“spatial”. The functor O has a left adjoint which is given by taking the set
ΣL, of “points” of a frame L, that is frame homomorphisms from L to the
two element frame 2. The idea of this definition of “points” obtains from
the fact that each element x of X can be considered as a continuous map
1 ! X, and it gives rise to a frame homomorphism O(X) ! O(1) ∼= 2.
The topology on ΣL is constructed by taking Σa = {f ∈ ΣL : f(a) = 1},
for a ∈ L, as open subsets. Again, it is shown that not every topological
space X is of the form ΣL, such topological spaces are called “sober spaces”.
Sober spaces play important roles in the theory of topological spaces as well
as in theoretical computer science. In [13], Paul Taylor used sober spaces
to model meta observations in computation, and soberity as Leibniz Prin-
ciple for spaces. Also, Jimmie Lawson in [9] applied soberification to get a
completion for abstract bases (see [1]). For more detail about frames one
can see [8].

On the other hand, topos theory is a branch of mathematics that studies
categories behaving similar to the category of sets, however the mathematics
that one develops in a topos is constructive. Also, it is proposed by Dana
Scott that a topos is a suitable discourse to study models of computations
([6]).

In this paper, taking the presheaf topos SetM , for a monoid M , con-
sidered as a one object category, as our universe, we define the notion of
a topology, and study the fundamentals of frame theory. Our definition of
the notion of topology is inspired from Hyland ([6]), where he specifies an
object S and regards the subobjects that classifies by S, as “open” sub-
objects. In the classical case, the Sierpinki space plays the role of S. We
find the counterpart of Sierpinki for topological spaces in our universe. For
the notion of a frame in a topos, we refer to [7]. The internalization of the
(open subset) functor O and (point) functor Σ, between topological spaces
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and frames are then constructed. It is shown that the obtained functors do
not generally form an adjoint pair. We also define and study spatial frames
and sober spaces in our topos. Finally, we consider the results for the case
where M is a group, and in particular, show that the adjunction holds in
that case.

In the following, we recall preliminary notions needed in this paper. For
more information about the category of M -sets one can see [3] and [5]; and
about topos theory one may see [5] and [7].

M-sets. Let M be a monoid with e as its identity. An M -set is a set X
with a function µ : M ×X ! X, called the action of M on X, such that,
denoting µ(s, x) = sx, we have

ex = x, (st)x = s(tx).

A subset A of anM -set X is called a subM -set of X if it is closed under
the action of M on X. That is, for each x ∈ A and s ∈M we have sx ∈ A.

A function f : X ! Y between M -sets is called equivariant (or action-
preserving) if for each s ∈M and x ∈ X we have f(sx) = sf(x).

By a zero element of an M -set X we mean an element x of X such that
for each s ∈M , sx = x. The sub M -set of all zero elements of X is denoted
by Z(X). In fact, Z(X) ∼= HomM−Set(1, X), where M -Set is the category
of all M -sets with equivariant maps between them.

The equational category of M-sets. One can consider an M -set X as a
unary universal algebra with operations λs : X ! X given by λs(x) = sx,
for all s ∈ M . In this way, M -Set would be an equational category of
algebras. This implies that it is a complete, and cocomplete category in
which products are cartesian products with componentwise operations. In
particular, the singleton M -set 1 is the terminal object, and the monomor-
phisms are one-one action-preserving maps, and therefore subobjects can
be identified by sub M -sets.

The topos of M-sets. Considering a monoid M as a one object category
with elements of M as morphisms and the binary operation of M as the
composition, the category of M -sets is isomorphic to the functor (presheaf)
category SetM . Therefore, M -Set is a topos.

The subobject classifier Ω in this topos is the set LM of all left ideal of
M , in other words the subM -set of theM -setM (with its binary operation
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as the action), with the action ofM on it defined by s.I = {t ∈M : ts ∈ I},
for all I ∈ LM and s ∈ S. The truth arrow is t : 1 = {∗} ! LM given
by t(∗) = M . Also, for every sub M -set A of an M -set X, the classifying
morphism χA which makes the diagram

A ↪! X
!
y y χA
1

t
−! Ω

into a pullback square, is defined by χA(a) = {s ∈M : sa ∈ A}.
The Exponentiation Y X of two M -sets X and Y in this topos is the set

{(fs)s∈M : fs : X ! Y is a function, tfs(x) = fts(tx) ∀t, s ∈M, x ∈ X}
equipped with the action m(fs)s∈M = (fsm)s∈M for all (fs)s∈M ∈ Y X

and m ∈ M . The evaluation arrow evXY : Y X × X ! Y is defined by
evXY ((fs)s∈M , x) = fe(x). Also, given an equivariant map g : Z ×X ! Y ,
the unique arrow ĝ, which makes the diagram

Y X ×X
evXY // Y

Z ×X

ĝ×idX

OO

g

;;

commutative, is defined by ĝ(z)s(x) = g(sz, x), for z ∈ Z, s ∈M,x ∈ X.
The power object ΩX of an M -set X in this topos is the set

{(Xs)s∈M : Xs ⊆ X, tXs ⊆ Xts, ∀t, s ∈M}
with the action given by m(Xs)s∈M = (Xsm)s∈M , for all (Xs)s∈M ∈ ΩX

and m ∈M .
Finally, notice that for the case whereM is a group, Y X ∼= HomSet(X,Y )

under the assignment (fs)s∈M 7! fe, also Ω = {∅,M} and ΩX ∼= P(X) un-
der the assignment (Xs)s∈M 7! Xe.

2 M-topological spaces and M-frames

In this section, we give the concepts ofM -topological spaces andM -frames,
for a monoid M . These are intended to play the role of topological spaces
and frames in the topos of M -sets.
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2.1 M-topological spaces We first recall the concepts ofM -topologi-
cal spaces andM -continuous maps, also some facts about the category they
form, from [4].

Definition 2.1. (a) An M -topological space (M -space, for short) is an M -
set X with a topology on it such that its open subsets are sub M -sets of
X.

We call an open sub M -set of an M -topological space X, an M -open
subset.

(b) We call an action-preserving continuous map between M -topologi-
cal spaces, an M -continuous map.

We denote the category of M -topological spaces together with
M -continuous maps by M -Top.

Also, recall that for anyM -set X, {X,∅} and Sub(X), the set of all sub
M -sets, are the smallest and the largest M -topologies on X, respectively.

Further, by a base for anM -topology on anM -set X, we mean a base for
its related topology whose elements are sub M -sets. That is, a collection
B of sub M -sets of X such that (1)

⋃B = X; (2) for B1, B2 ∈ B and
x ∈ B1 ∩B2, there exists B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2.

As in the classical case, we obtained in [4] that

If B is a base for an M -set X, then the smallest M -topology on X
containing B exists.

Remark 2.2. [4] The category M -Top is a complete as well as a cocom-
plete category. In fact, the product of a family {Xi : i ∈ I} ofM -topological
spaces, is their productM -set

∏
i∈I Xi (with the pointwise actions) equipped

with the M -topology generated by the base

B = {
∏

i∈I
Ui : Ui ∈ O(Xi) and Ui = Xi for all but a finite number},

and with the classical projection maps. Also, the classical equalizers work
here with the subspace M -topology.

The coproduct of a given family {Xi : i ∈ I} is their disjoint union⊔
i∈I Xi with the action sx for s ∈ M and x ∈ Xi to be the same action

in Xi, and with the M -topology generated by the union of O(Xi), for all
i ∈ I. Finally, the coequalizers are computed as inM -Set with the quotient
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topology, that is, if q : Y ! Z is the coequalizer in M -Set, then one takes
the sub M -sets U of Z for which q−1(U) ∈ O(Y ) as M -open subsets of Z.

Finally, we recall from [4] that there exists anM -topological space which
classifiesM -open subsets. It is the counterpart of the Sierpinski space which
we call it the “Sierpinski M -space”.

Definition 2.3. We call theM -topological space S = (LM ; {LM , {M}, ∅}),
with the same action as Ω, the Sierpinski M -space.

Lemma 2.4. [4] S is the M -open subset classifier in M-Top, that is, for
each M -topological space X, there is a natural frame isomorphism

O(X) ∼= HomM−Top(X,S).

Recall that for each M -open subset U of an M -topological space X, the
classifying arrow χU : X ! S is given by x 7! χU (x) = {s ∈M : sx ∈ U}.

2.2 M-frames Here we study the notion of frames in the topos of M -
sets, namely M -frames. For more information about the notion of posets
and frames in a topos, we refer to [7].

Notice that an internal poset inM -Set, or simply anM -poset, is a poset
P which is also an M -set such that for each x, y ∈ P and s ∈ M we have
x ≤ y implies sx ≤ sy.

Also, it is known that for each M -set X, ΩX is an internal poset with
the componentwise order:

(Xs)s∈M ≤ (Ys)s∈M ⇔ Xs ⊆ Ys, ∀s ∈M.

Definition 2.5. AnM -frame is anM -set L which is also a frame such that
for all s ∈M and {ai : i ∈ I} ⊆ L,

s
∨

i∈I
ai =

∨

i∈I
sai, s(a ∧ b) = (sa) ∧ (sb), s0 = 0, s1 = 1.

An M -frame homomorphism between M -frames L1 and L2 is an action-
preserving map which is also a frame map.

We denote the category of M -frames and their homomorphisms by M-
Frm.
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Remark 2.6. For each M -set A, the M -poset ΩA is an M -frame, in which

∨

i∈I
Ui = (

⋃

i∈I
(Ui)s)s∈M , (Us)s∈M ∧ (Vs)s∈M = (Us ∩ Vs)s∈M ,

Also, 0 = (∅)s∈M , 1 = (X)s∈M .

Theorem 2.7. The category M -Frm is small complete.

Proof. It can be easily see that for a family {Li : i ∈ I} of M -frames, the
cartesian product

∏
i∈I Li with the componentwise operations and actions,

is the product of this family inM -Frm. Also, forM -frame homomorphisms
ϕ, ψ : L1 ! L2, their equalizer inM -Set is anM -frame which becomes also
the equalizer of ϕ, ψ in M -Frm.

3 M-frames versus M-topological spaces

In this section, we find the functors fromM -topological spaces toM -frames,
and vice versa.

3.1 M-frames related to M-topological spaces As we recalled in
the introduction, an important functorial relation from topological spaces
to frames, is the one which relates to a topological space X, the frame
O(X) of its open subsets. In the classical topology, it is also well-known
that HomTop(X,S) ∼= O(X), where S is the Sierpinski space. Although we
found the counterpart of this isomorphism in Lemma 2.4, but unfortunately
no natural actions were found to make the sides of the isomorphism into
M -frames. We solved this problem, by internalizing both of O(X) and
HomM−Top(X,S) in the topos of M -sets.

To internalize HomM−Top(X,S), we applied a similar notion to inter-
nal homomorphisms between algebras in a topos (from [2]) for topological
spaces. More precisely, considering the notion of the internal homomor-
phism object [A,B] from an algebra A to an algebra B in the topos M -Set
(see [12]):

[A,B] = {(fs)s∈M ∈ BA : ∀s ∈M, fs is an algebra homomorphism},
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we define the internal continuous map object in the topos of M -sets from
an M -topological space X to an M -topological space Y as:

[X,Y ] = {(fs)s∈M ∈ Y X : ∀s ∈M, fs is a continuous map}.

Theorem 3.1. For M -topological spaces X,Y , [X,Y ] is the largest sub M -
set of Y X such that for every (fs)s∈M ∈ Y X , evXY ((fs)s∈M ,−) : X ! Y is
a continuous map.

Proof. First notice that [X,Y ] satisfies the stated condition, because for
each (fs)s∈M ∈ [X,Y ], evXY ((fs)s∈M ,−) = fe is a continuous map.

Let A be a subM -set of Y X satisfying the stated property. Then taking
(fs)s∈M ∈ A, we have evXY ((fs)s∈M ,−) = fe is a continuous map. Also, for
each t ∈ M , t(fs)s∈M ∈ A, and so ft = (t(fs))e is continuous. Therefore,
A ⊆ [X,Y ].

In the following, we compute [X,S], and borrowing the above mentioned
idea from the classical setting, we define “internal open subobjects”.

Lemma 3.2. For each M -topological space X, [X,S] is isomorphic (as M -
sets) to {(Us)s∈M ∈ ΩX : ∀s ∈ M Us is M-open in X}, which is a sub
M -set of ΩX .

Proof. Taking f = (fs)s∈M ∈ [X,S], with a direct calculation we get that
(f−1
s {M})s∈M belongs to ΩX and each of its components areM -open subset

of X. Conversely, given a family (Us)s∈M ∈ ΩX such that each Us is an M -
open subset ofX, it is straightforward to see that (gs)s∈M , where gs : X ! S

is defined as gs(x) = {t ∈ M : tx ∈ Uts}, is an internal continuous map.
This correspondence is clearly an M -set isomorphism.

Definition 3.3. Let X be an M -topological space. We define the object of
internal open subobjects as

O(X)
.
= {(Us)s∈M ∈ ΩX : ∀s ∈M, Us is M -open in X}.

We may call each element U = (Us)s∈M of O(X) an “internal open subob-
ject”.

Theorem 3.4. For an M -topological space X, O(X) ∼= ZO(X).
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Proof. Let (Us)s∈M be a member of ZO(X). Then for each t ∈ M , we
have (Ust)s∈M = t · (Us)s∈M = (Us)s∈M . Thus, for each t ∈ M , we have
Ut = Ue. Now, the assignment (Us)s∈M 7! Ue, gives the desired one-one
correspondence between O(X) and ZO(X).

Lemma 3.5. For any M -topological space X, O(X) is a sub M -frame of
ΩX .

Finally, we have the following functorial relation.

Theorem 3.6. The assignment X 7! O(X) from M -Top to (M -Frm)op

is functorial.

Proof. For an M -continuous map ϕ : X ! Y , we define O(ϕ) : O(Y ) !
O(X) as O(ϕ)((Vs)s∈M ) = (ϕ−1(Vs))s∈M , for each (Vs)s∈M ∈ O(Y ). First
notice that, since ϕ is continuous and action-preserving, ϕ−1(Vs) is and M -
open subset of X, for each s ∈ M . Also, for all t, s ∈ M , tϕ−1(Vs) ⊆
ϕ−1(Vts), since ϕ is action-preserving. Therefore, O(ϕ) is well-defined. The
fact that O(ϕ) is an M -frame map follows from the definition of the inverse
image.

In the following we see one of the useful properties of the functor O.

Theorem 3.7. The functor O : M -Top ! M -Frmop preserves finite col-
imits.

Proof. It is obvious that O(∅) is the one element M -frame, and so O pre-
serves initial objects. Next, we see that

O(X ⊔ Y ) ∼= O(X)×O(Y ).

In fact, it is straightforward to check that the map ψ : O(X ⊔ Y ) !
O(X) × O(Y ) given by ψ((Us)s∈M ) = ((Us ∩ X)s∈M , (Us ∩ Y )s∈M ) is an
M -frame isomorphism.

3.2 M-topological spaces related to M-frames As we mentioned
in the introduction, given a frame L, the set ΣL of “points” of L, that is,
frame homomorphisms from L to 2, can be made into a topological space
whose open subsets are the sets Σa = {f ∈ ΣL : f(a) = 1}, for a ∈ L.
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In this subsection, we introduce the internalization of ΣL in the topos
of M -sets. Similar to the former subsection, we do this by considering the
internal frame maps in M -Set instead of classical frame maps.

The following definition is the counterpart of the definition of internal
homomorphism object between algebras in a Grothendieck topos mentioned
in [2].

Definition 3.8. Let L1 and L2 be two M -frames. Then, we define the
internal frame maps object in the topos of M -sets from L1 to L2 as:

[L1, L2] = {(fs)s∈M ∈ LL1
2 : ∀s ∈M, fs is a frame homomorphism}.

In [2], it is shown that the internal homomorphism object between al-
gebras in a Grothendieck topos is the largest subobject of the exponential
which is in some sense compatible with the algebra operations (is locally
homomorphism).

In the following, we show that [L1, L2] is the largest sub M -set of LL1
2

all whose elements are families of frame homomorphisms.

Theorem 3.9. For M -frames L1, L2, [L1, L2] is the largest sub M -set of
LL2
1 such that for every (fs)s∈M ∈ [L1, L2], ev

L1
L2
((fs)s∈M ,−) : L1 ! L2 is

a frame homomorphism.

Proof. First notice that [L1, L2] satisfies the stated property, because for
each (fs)s∈M ∈ [L1, L2], ev

L1
L2
((fs)s∈M ,−) = fe is a frame homomorphism.

Let A be a sub M -set of LL1
2 such that evL1

L2
((fs)s∈M ,−) : L1 ! L2, for

every (fs)s∈M ∈ A, is a frame homomorphism. Then taking (fs)s∈M ∈ A,
for each t ∈M , we have (fst)s∈M = t(fs)s∈M ∈ A, and so, by the hypothesis,
evL1
L2
((fst)s∈M ,−) is a frame homomorphism. But, evL1

L2
((fst)s∈M ,−) = ft,

and so each ft is a frame homomorphism. Therefore, A ⊆ [L1, L2], as
required.

Definition 3.10. Let L be an M -frame. We call [L,Ω], the object of inter-
nal points of L, and denote it by ΣL.

Also, we call each member of it an internal point of L.

Remark 3.11. (1) For any M -frame L, ZΣL ∼= HomM−Frm(L,Ω). This
is because,

(fs)s∈M ∈ ZΣL⇔ t(fs)s∈M = (fs)s∈M , ∀t ∈M ⇔ fst = fs,∀s, t ∈M,
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which means that, for any (fs)s∈M ∈ ZΣL, we have fs = fe for all s ∈M .
Then, the compatibility property of the constant family (fs)s∈M shows that
fe is equivariant.

(2) For any M -frame L, if ZΣL = ΣL then fs = fe, for all (fs)s∈M ∈
ΣL. This is implied by the proof of part (1) of this remark.

But, the converse is also true, if M is commutative. To see this, let
f = (fs)s∈M ∈ ΣL, a ∈ L, and t ∈ M . Then applying the hypothesis for
t(fs)s∈M = (fst)s∈M , we have

t ∈ fs(a) ⇔ tfs(a) =M ⇔ fst(ta) = fts(ta) =M ⇔ (tf)s(ta) =M

⇔ (tf)e(ta) =M ⇔ ft(ta) =M ⇔ tfe(a) =M ⇔ t ∈ fe(a).

Theorem 3.12. For anyM -frame L, ΣL can be made into anM -topological
space.

Proof. Let L be an M -frame, and for a ∈ L denote the set

{(fs)s∈M ∈ ΣL : ∀s ∈M fs(a) =M}

by Σa. Then we show that each Σa is a sub M -set of ΣL, and the set
{Σa : a ∈ L} is an M -topology on ΣL. First notice that given (fs)s∈M
in Σa and t ∈ M , since we have t(fs)s∈M = (fst)s∈M , we conclude that if
fs(a) = M for all s ∈ M then, in particular, fst(a) = M for all s, t ∈ M .
Therefore, Σa is a sub M -set of ΣL. Also, since for all s ∈M , fs is a frame
homomorphism, we have fs(1) = M , and so Σ1 = ΣL. One can also see
that for all a, b ∈ L we have Σa∧b = Σa ∩Σb. Therefore, {Σa : a ∈ L} is an
M -topology on ΣL.

Remark 3.13. For eachM -frame L and a ∈ L, Σa is the largest subM -set
of ΣL such that for all (fs)s∈M ∈ Σa, ev

L
Ω((fs)s∈M , a) =M .

This is because, if A is a sub M -set of ΣL with the mentioned property,
then for each (fs)s∈M ∈ A and t ∈M , we have tf ∈ A, and so

evLΩ(t(fs)s∈M , a) =M.

This means that ft(a) = (tf)e(a) =M , and hence A ⊆ ΣL.

Theorem 3.14. The assignment L 7! ΣL from (M -Frm)op to M -Top is
functorial.
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Proof. Let h : L1 ! L2 be an M -frame map. Define Σh : ΣL2 ! ΣL1 by

(Σh)(fs)s∈M = (fsh)s∈M ,

for every (fs)s∈M ∈ ΣL2. First note that for every (fs)s∈M ∈ ΣL2,
(fsh)s∈M ∈ Σ(L1).

We see that Σ(h) is anM -continuous map, since it is clearly equivariant,
also it is continuous, since for every a ∈ L2, (Σh)

−1(Σa) = Σh(a).

4 The relation between the functors O and Σ

In this section, we study the relations between O and Σ. To see whether
there exists an adjunction between them or not, we introduce and study the
intend to be “unit” and “counit” of the desired adjunction.

Definition 4.1. For any M -topological space X, define ϵX : X ! ΣO(X)
by

ϵX(x)s :O(X)! Ω

(Um)m∈M 7! {t ∈M : t(sx) ∈ Ut},

for x ∈ X and s ∈M .

In other words, ϵX(x) ∈ SSX is determined by evS ◦ (idM × Sρx), where
ρx :M ! X is given by ρx(s) = sx.

Notice that (ϵX(x)s)s∈M satisfies the compatibility property of the ele-
ments of ΣO(X). This is because, given (Um)m∈M ∈ O(X) and t ∈M , we
have (tϵX(x)s)(Um)m∈M = ϵX(x)ts(Umt)m∈M , since

n ∈ (tϵX(x)s)(Um)m∈M ⇔ (nt)(sx) ∈ Unt

⇔ n(tsx) ∈ Unt

⇔ n ∈ ϵX(x)ts(Umt)m∈M .

Lemma 4.2. For every x ∈ X and s ∈ M , (ϵX(x))s is a frame homomor-
phism.
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Proof. Let x ∈ X and s ∈ M . Then (ϵX(x))s is well-defined, because for
each (Um)m∈M ∈ O(X), the set {t ∈ M : t ∈ χUt (sx)} is a left ideal of
M . Take t ∈ M with t ∈ χUt (sx) and r ∈ M . Then (ts)x = t(sx) ∈ Ut,
and so (rt)(sx) = r((ts)x) ∈ Urt which means rt ∈ χUrt (sx). Also, apply-
ing the definition of the classifying arrow, we get that (ϵX(x))s preserves
zero and unit, also since χU∩V (x) = χU (x)∩χV (x), we obtain that (ϵX(x))s
preserves binary meets and arbitrary joins, and therefore it is a frame homo-
morphism. Finally, we show that (ϵX(x))s is action-preserving. Let r ∈ M
and (Um)m∈M ∈ O(X). Then

t ∈ r(ϵX(x)s)((Um)m∈M ) ⇔ tr ∈ ϵX(x)s((Um)m∈M )

⇔ tr ∈ χUtr (sx)

⇔ trsx ∈ Utr

⇔ t ∈ χUtr (tsx)

⇔ t ∈ (ϵX(x)rs)((Umr)m∈M ),

and so
r(ϵX(x)s)((Um)m∈M ) = (ϵX(x)rs)((Umr)m∈M ).

Theorem 4.3. For any M -topological space X, ϵX is an M -continuous
map.

Proof. First notice that ϵX is action-preserving. Let s ∈ M and x ∈ X.
Then, for every m ∈M , we have

(sϵX(x))m = (ϵX(x))ms.

This is because, for every t ∈M and (Ur)r∈M ∈ O(X), we get

t ∈ (ϵX(x)ms)((Ur)r∈M ) ⇔ t ∈ χUt (msx) ⇔ t ∈ (ϵX(sx))m((Ur)r∈M ),

and so (ϵX(x))ms((Ur)r∈M ) = (ϵX(sx))((Ur)r∈M ).
Also, ϵX is continuous, since for (Um)m∈M ∈ O(X), we have

ϵ−1
X (Σ(Um)m∈M ) = {x ∈ X : ϵX(x) ∈ Σ(Um)m∈M }

= {x ∈ X : ∀s ∈M (ϵX(x))s((Um)m∈M ) =M}
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= {x ∈ X : ∀s ∈M {t ∈M : t ∈ χUt (sx) =M}}
= {x ∈ X : ∀s ∈M χUe (sx) =M}
= {x ∈ X : ∀s ∈M s ∈ χUe (X)}
= {x ∈ X : χUe (x) =M}
= {x ∈ X : x ∈ Ue}
= Ue.

Proposition 4.4. ϵ = (ϵX)X∈M−Top : id
M−Top ! ΣO is a natural transfor-

mation.

Proof. We have to prove that for an M -continuous map f : X ! Y , the
following square is commutative:

X

f

��

ϵX // ΣO(X)

ΣO(f)
��

Y
ϵY // ΣO(Y )

By definitions, for every x ∈ X, we have

(ΣO(f))(ϵX(x)s)s ∈M) = (ϵX(x)sO(f))s∈M ∈ [O(Y ),Ω].

Now, for every (Vm)m∈M ∈ O(Y ), we have

(ϵX(x)sO(f))s∈M ((Vm)m∈M ) = (ϵX(x)s(f
−1(Vm)m∈M )

= ({t ∈M : tsx ∈ f−1(Vt)})s∈M
= ({t ∈M : f(tsx) ∈ Vt})s∈M
= ({t ∈M : ts · f(x) ∈ Vt})s∈M
= (ϵY f(x)s)s∈M ((Vm)m∈M ).

In the classical case, as we mentioned before, Σ and O form an ad-
junction between the categories of frames and topological spaces, and ε =
(εX)X∈Top : idTop ! ΣO, where εX : x 7! Σx, is the unit of the adjunction.
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We will see that this does not happen in the topos of M -sets for a general
monoid M . Let first assume that this happens! Then we have the following
remark.

Remark 4.5. Assume that the functor Σ is the right adjoint to the functor
O, and ϵ is the unit of this adjunction. Then for each M -continuous map
f : X ! ΣL there exists a unique M -frame homomorphism f̂ : L! O(X)
such that

Σ(f̂)ϵX(x) = f(x), ∀x ∈ X.

This means that for each x ∈ X, s ∈M , and a ∈ L, we have

ϵX(x)sf̂(a) = f(x)s(a).

In particular, for each x ∈ X and a ∈ L, taking s
.
= e, we should have

ϵX(x)ef̂(a) = f(x)e(a).

This implies that
x ∈ f̂(a)e ⇔ f(x)e(a) =M.

This is because, if x ∈ f̂(a)e, then for each t ∈M we have tx ∈ f̂(a)t, and
hence ϵX(x)ef̂(a) =M , which means f(x)e(a) =M . The converse is clear.
Now, since f̂ is action-preserving, we get

x ∈ f̂(a)m ⇔ x ∈ f̂(ma)e ⇔ f(x)e(ma) =M.

for every m ∈M .
Therefore, assuming that Σ and O form an adjunction with the unit

ϵ, then f̂ : L ! O(X) , the adjoint transpose of an M -continuous map
f : X ! ΣL, is defined as

f̂(a)m = {x ∈ X : f(x)e(ma) =M}.

In the following, we will see that the above defined f̂ is not generally
well-defined, although it preserves the action and is a frame map (if it is
well-defined).

Lemma 4.6. If f : X ! ΣL is an M -continuous map, then for each m ∈
M , (f̂(a))m is an M -open subset of X if and only if f̂(a)m = f−1(Σma).
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Proof. If f̂(a)m is an M -open subset, then being a sub M -set, it is closed
under the action, and so if x ∈ f̂(a)m then also sx ∈ f̂(a)m, for all s ∈ M ,
that is, f(x)s(ma) = (sf(x))e(ma) = f(sx)e(ma) =M . Therefore,

(f̂(a))m = {x ∈ X : ∀s ∈M, f(x)s(ma) =M}
= {x ∈ X : f(x) ∈ Σma}
= f−1(Σma).

The converse is true because f is M -continuous and Σma is an M -open
subset of ΣL.

As an immediate consequence of the above lemma, we have

Corollary 4.7. If f : X ! ΣL is an M -continuous map, then f̂ is well-
defined if and only if f̂(a)m = f−1(Σma), for all a ∈ L and m ∈M .

Lemma 4.8. If f : X ! ΣL is anM -continuous map and f̂ is well-defined,
then it is an M -frame homomorphism.

Proof. First we see that f̂ preserves zero and unit, since for each x ∈ X,
f(x)e is a frame homomorphism. From the same reason and the fact that for
any I, J ∈ Ω, I ∩ J =M if and only if I = J =M , we get that f̂ preserves
binary meets. Finally, since for any family {Iγ : γ ∈ Γ} of elements of Ω,
we have

⋃
γ∈Γ Iγ = M if and only if Iγ = M , for some γ ∈ Γ, and f(x)e is

a frame homomorphism, we conclude that f̂ preserves arbitrary joins.

As a corollary of the above lemma and Remark 4.5, we have

Theorem 4.9. The functors O and Σ form an adjoint pair with ϵ as the
unit if and only if for each M -continuous map f : X ! ΣL, a ∈ L, and
m ∈M , f̂(a)m = f−1(Σma).

The following example, shows that f̂ is not generally well-defined, and
so we do not generally have adjoint relation between Σ and O.

Example 4.10. Consider the monoid M
.
= M2

.
= {e, a} with a.a = a.

Take L
.
= Ω, and notice that Ω = {∅, {a},M2}. Put f

.
= idΣL . Then

f is an M -continuous map for which f̂ is not well-defined. To see this,
applying Corollary 4.7, we show that f̂({a})e ̸= f−1(Σe{a}). Define g ∈ ΣL
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as g = (ge, ga), where ge, ga : L ! Ω are given as ge(∅) = ga(∅) = ∅,
ge({a}) = ge(M) =M , and ga = idΩ. Then

g ∈ f̂({a})e = {h ∈ ΣL : f(h)e(e{a}) =M} = {h ∈ ΣL : he({a}) =M}

while g ̸∈ f−1(Σ{a}), since

g = f(g) ̸∈ Σ{a} = {h ∈ ΣL : hs({a}) =M, ∀s ∈M}.

Theorem 4.11. If ZΣL = ΣL, then the functors O and Σ form an adjoint
pair with ϵ as the unit.

Proof. Applying Corollary 4.7, we show that for each M -continuous map
f : X ! ΣL, f̂ : L! O(X) given by

f̂(a) = ({x ∈ X : f(x)e(sa) =M})s∈M ,

is well-defined. Then it will be the unique M -frame homomorphism such
that Σ(f̂)ϵX = f . Since ZΣL = ΣL, by the proof of Remark 3.11(1),
for each x ∈ X, f(x) is completely determined by the equivariant map
f(x)e : L! Ω, and so

x ∈ f̂(a)s = f(x)e(sa) =M ⇔ f(x)m(sa) =M, ∀m ∈M ⇔ x ∈ f−1(Σsa).

This means that for all s ∈M , f̂(a)s = f−1(Σsa), as required.

Although we do not have adjoint relation between Σ and O, we have a
retraction between Σ and ΣOΣ in some cases. The cases we consider are
when X = S, the Sierpinski M -space, and when X = ΣL, where L has the
trivial action.

Theorem 4.12. The Sierpinski M -space S is a retract of ΣO(S) in M -
Top.

Proof. Define η : ΣO(S) ! S by η((fs)s∈M ) = fe(({M})m∈M ). It is clear
that η is an action-preserving map. It is also continuous, becasue

η−1({M}) = {(fs)s∈M ∈ ΣO(S) : fe(({M})m∈M ) =M}
= {(fs)s∈M ∈ ΣO(S) : fs({M})m∈M ) =M, ∀s ∈M}
= Σ({M})m∈M .

Also, we have ηϵS = idS.
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Remark 4.13. If L is an M -frame with the trivial action, then

ΣL ∼= HomFrm(L,Ω).

This is because, in this case, any (fs)s∈M ∈ [L,Ω] is completely determined
by fe. In fact, for each s ∈M , fs = sfe, where sfe is defined as (sfe)(a) =
sfe(a).

Notice that under the above isomorphism, the M -topology on ΣL cor-
responds to an M -topology on HomFrm(L,Ω) whose M -open subsets are
of the form Ua = {g ∈ HomFrm(L,Ω) : g(a) =M}, for a ∈ L.

Lemma 4.14. If L is an M -frame with the trivial action then ϵΣL is one-
one.

Proof. Recalling the definition of ϵΣL, and applying the above lemma, we
consider

ϵΣL : HomFrm(L,Ω)! ΣO(HomFrm(L,Ω))

which takes g ∈ HomFrm(L,Ω) to (ϵX(g)s)s∈M , where for s ∈M ,

ϵX(g)s :O(HomFrm(L,Ω))! Ω

(Uam)m∈M 7! {t ∈M : t(sg) ∈ Uat} = {t ∈M : tsg(at) =M}.

Now ϵΣL is one-one, for, if g1, g2 ∈ HomFrm(L,Ω) are such that ϵΣL(g1) =
ϵΣL(g2), then for each s ∈ M , ϵΣL(g1)s = ϵΣL(g2)s and, in particular,
ϵΣL(g1)e = ϵΣL(g2)e, which gives ϵΣL(g1)e(Uma)m∈M = ϵΣL(g2)e(Uma)m∈M ,
for every a ∈ L, that is

{t ∈M : tg1(a) =M} = {t ∈M : tg2(a) =M},

since A has trivial action. Therefore, g1(a) = g2(a), for every a ∈ L.

Theorem 4.15. If L is anM -frame with trivial action, then ΣL is a retract
of ΣOΣL as M -topological spaces.

Proof. Consider ˆidΣL : L ! OΣL. Its definition in this case turns to
( ˆidΣ(L)(a))m = Σa, for all m ∈ M , and so ˆidΣL is well-defined. Also, it is

clearly anM -frame map, by Lemma 4.8. Now, Σ( ˆidΣL) is anM -continuous
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map which makes the following triangle commutative and hence is a left
inverse of ϵΣL:

ΣL

ϵΣL
��

idΣL // ΣL

ΣOΣL
Σ( ˆidΣL)

::

5 M-sober topological spaces

In this section, we study the counterpart of the notion of sober spaces for
M -topological spaces.

Definition 5.1. We say that an M -topological space X is M -sober if ϵX is
an isomorphism in M -Top.

Lemma 5.2. For any M -topological space X, ϵX is an M -topological iso-
morphism if and only if it is an isomorphism of M -sets.

Proof. To prove the not clear part, assume tha ϵX is an isomorphism of
M -sets. By Theorem 4.3, ϵX is M -continuous. To prove that ϵ−1

X is M -
continuous, it is enough to show that

ϵX(U) = Σ(U)m∈M , ∀U ∈ O(X).

Let ϵX(x) be a member of ϵX(U), where x ∈ U . Then, for each s ∈ M we
have

(ϵX(x))s : ((U)m∈M )⇝ {t ∈M : tsx ∈ U} =M.

Therefore, ϵX(x) is a member of Σ(U)m∈M . Conversely, taking (fs)s∈M ∈
Σ(U)m∈M , since ϵX : X ! ΣO(X) is a bijection, there exists a unique x ∈ X
such that (fs)s∈M = ϵX(x). Therefore,

{t ∈M : tx ∈ U} = (ϵX(x)e)((U)m∈M ) = fe((U)m∈M ) =M,

and so x ∈ U , and (fs)s∈M ∈ ϵX(U).

Corollary 5.3. An M -topological space X is M -sober if and only if ϵX is
a bijection.
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Recall that in the classical frame theory there is a one to one corre-
spondence between frame homomorphisms f : L! 2 and completely prime
filters of L. Then, applying this correspondence, it is obtained that X is a
sober space if and only if for every completely prime filter P of O(X), there
exists a unique x ∈ X such that P = {U ∈ O(X) : x ∈ U}.

In the following, we consider the counterpart of the above result for
M -frames. First, we define the notion of a completely prime filter for an
M -frame.

Recall that, a completely prime filter of a frame L is a non-empty subset
F of L which is upward closed and also closed under binary meets. Also if∨
i∈I ai ∈ F then there exists i ∈ I such that ai ∈ F .

Definition 5.4. Let L be an M -frame. By a completely prime internal
filter of L, we mean a member (Fs)s∈M of the power object ΩL such that
each Fs is a completely prime filter of L.

Lemma 5.5. There is a one-one correspondence between [L,Ω] and com-
pletely prime internal filters of L.

Proof. Taking (fs)s∈M ∈ [L,Ω], we see that (f−1
s {M})s∈M is a completely

prime internal filter of L. This is proved similar to the case of frames.

Now, applying the above lemma and the fact that (ϵX(x)s)s∈M ∈ [O(X),Ω],
we get the following fact.

Lemma 5.6. For eachM -topological space X and x ∈ X, ((ϵX(x)s)
−1{M})s∈M

is a completely prime internal filter of O(X).

Theorem 5.7. An M -topological space X is M -sober if and only if the
completely prime internal filters of O(X) are of the form (Fs)s∈M , where
for each s ∈M , Fs = (ϵX(x)s)

−1{M}, for a unique x ∈ X.

Proof. Let X be an M -sober M -topological space, and (Fs)s∈M be a com-
pletely prime internal filter ofO(X). Define (gs)s∈M ∈ Σ(O(X)) = [O(X),Ω]
by gs((Um)m∈M ) = {t ∈ M : t(Um)m∈M ∈ Fts}, for each s ∈ M . It is eas-
ily seen that (gs)s∈M ∈ ΩO(X). Also, it is straightforward to show that
each gs : O(X) ! Ω is a frame homomorphism. Now, since X is M -sober,
ϵX : X ! ΣO(X) is a bijection, and hence there exists a unique x ∈ X
such that ϵX(x) = (gs)s∈M . So, for each s ∈M ,

(ϵX(x)s)
−1({M}) = g−1

s {M} = {(Um)m∈M ∈ O(X) : (Um)m∈M ∈ Fs} = Fs.
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Conversely, applying Corollary 5.3, we prove that if the completely prime
M -filters of an M -topological space X are of the above form, then ϵX is a
bijection. It is one-one, for, if x, y ∈ X are such that ϵX(x) = ϵX(y),
then for each s ∈ M , (ϵX(x)s)

−1{M} = (ϵX(y)s)
−1{M}. But, ϵX(x) is

a completely prime M -filter of O(X), and so by the hypothesis, x should
be equal to y. Also, ϵX is surjective, for, if (Fs)s∈M ∈ ΣO(X), then for
each s ∈ M , (Fs)

−1{M} is a completely prime M -filter of O(X), and so,
by the assumption, there exists x ∈ X such that ϵX(x)s = Fs. Therefore,
ϵX(x) = (Fs)s∈M .

Recall that in the classical case, considering 2 as the two element frame,
Σ2 is the one element topological space 1. In the following, we consider the
case when ΣΩ is the one element M -topological space 1.

Lemma 5.8. For any monoid M , ΣLM = 1 if and only if 1 is an M -sober
space.

Proof. Since O(1) = Ω = LM , we get that ΣO(1) = ΣLM . Therefore,
ΣLM = 1 if and only if ΣO(1) = 1 if and only if 1 is M -sober.

Theorem 5.9. ZΣLM = ΣLM if and only if ΣLM = 1 if and only if 1 is
M -sober.

Proof. First, we notice that if F is a completely prime filter of LM , then
(Cs)s∈M defined by

Cs =

{
F s ∈ I

{M} otherwise,

where I is an arbitrary left ideal ofM , is a completely prime internal filter of
LM . Therefore, LM is non-trivial if and only if ΣLM has elements with non-
equal components if and only if ZΣLM = ΣLM . The second equivalence in
the theorem is true by the above lemma.

6 M-spatial frames

In this section, we study the counterpart of the notion of spatial frame
for M -frames. Recall that a frame L is called spatial if the unit of the
adjunction between Σ and O is a frame isomorphism. But, as we saw in
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the last section, for the case of frames and topological spaces in M -Set, the
adjunction does not necessarily exist. Therefore, we consider this notion
for the case that Σ and O form an adjoint pair with ϵ as the unit. Let us
study the counit of this adjunction. Then the counit ηL : L! OΣL, for an
M -frame L, makes the following triangle commutative:

ΣL
ϵΣL //

idΣL $$

ΣOΣL

ΣηL
��

ΣL

So, by recalling Remark 4.5, we get

( ˆidΣL)m = (ηL(a))m = {f ∈ ΣL : fe(ma) =M} = Σma.

for each a ∈ L and m ∈M .

Theorem 6.1. If ZΣL = ΣL, then ηL is well-defined.

Proof. Assume that ZΣL = ΣL. To see that ηL is well-defined, we have to
prove that the family (Σsa)s∈M is a member of OΣL. First, we note that,
by the definition of the M -topology on ΣL, Σsa is an M -open subset, for
each s ∈ M . Secondly, for each a ∈ L and s, t ∈ M we have tΣsa ⊆ Σtsa.
This is because, for each f ∈ Σsa, we have fe(sa) =M and so (tf)e(tsa) =
ft(tsa) = tfe(sa) = M . Since the action on ΣL is trivial, the latter gives
(tf)m(tsa) =M , for all m ∈M , as required.

Theorem 6.2. If M is a commutative monoid, then ηL is well-defined.

Proof. To see that ηL is well-defined, we should prove that for each a ∈ L
and s, t ∈ M , tΣsa ⊆ Σtsa. Let f ∈ Σsa. Then for each m ∈ M , we have
fm(sa) =M , and so

(tf)m(tsa) = fmt(tsa) = ftm(tsa) = tfm(sa) = tM =M.

Remark 6.3. The converse of the above theorem is not necessarily true. In
fact, the monoid M2 is an example of a commutative monoid for which the
adjunction does not hold (see Example 4.10) while, by the above lemma, ηL
for all M2-frames L is well-defined and action-preserving.
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Definition 6.4. We say that anM -frame L isM -spatial if ηL is anM -frame
isomorphism.

Lemma 6.5. If L is an M -spatial frame, then there exists a ∈ L such that
for each s ∈M ,

Σsa = ΣL or Σsa = ∅.

Proof. First notice for any ideal I of M , the family (Us)s∈M defined by
Us = ΣL for s ∈ I, and Us = ∅, for s ∈ M \ I, is a member of OΣL. This
is because, for each s ∈ M , Us is an open sub M -set of ΣL. Also, for each
s, t ∈M , if s ∈ I, then

tUs = tΣL ⊆ ΣL = Uts.

If s /∈ I, then
tUs = ∅ ⊆ Uts.

Now, if L is an M -spatial frame, then taking any ideal I of M , since
ηL is a bijection, there exists (a unique) a ∈ L such that for each s ∈ M ,
Σsa = Us, and so Σsa = ΣL or Σsa = ∅, as required.

7 G-topological spaces and G-frames

In this section, we study the results of the paper for the case where M is a
group, and through out this section we denote M by G.

Theorem 7.1. For any G-topological space X, O(X) is isomorphic to O(X)
as frames.

Proof. Recall from [3] that, since G is a group, each (Us)s∈M ∈ ΩX is com-
pletely determined by Ue (Us = sUe), and ΩX ∼= P(X) with the assignment
(Us)s∈M 7! Ue. This isomorphism is in fact a frame isomorphism, and the
restriction of it gives the required frame isomorphism O(X) ∼= O(X).

Remark 7.2. Let X be a G-topological space. Then the action on O(X),
as a sub G-set of ΩX , is trivial. This is because, as the proof of the above
lemma shows, every (Um)m∈M ∈ O(X) is completely determined by Ue,
in fact Us = sUe for all s ∈ M . But, Ue is a sub M -set of X and so
s−1Ue ⊆ Ue, which gives Ue = ss−1Ue ⊆ sUe ⊆ Ue, for all s ∈ M , and
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hence Us = Ue. Therefore, for every s ∈ M , s(Um)m∈M = s(Ue)m∈M =
(Us)m∈M = (Ue)m∈M = (Um)m∈M .

Theorem 7.3. Let L be a G-frame. Then ΣL is isomorphic to ΣL as sets
(not necessarily as topological spaces).

Proof. Let L be a G-frame. We show that ΣL ∼= HomFrm(L, 2). Recall
from [3] that, since G is a group, each (fs)s∈M ∈ ΩL is completely deter-
mined by fe (in fact fs(a) = sfe(s

−1a)), and ΩL ∼= HomSet(L,Ω) with the
assignment (fs)s∈M 7! fe. The restriction of this isomorphism gives the
required isomorphism [L,Ω] ∼= HomFrm(L,Ω).

Notice that under this isomorphism, an M -open subsets Σa, for a ∈ L,
correspond to the sets of the form

{f ∈ ΣL : f(sa) = G, ∀s ∈ G}

which are not necessarily of the form Σa (or even open), unless L has the
trivial action.

It may be interesting to notice that applying the above bijection, and
using the action on [L,Ω], the following action arises on ΣL: (sg)(a) =
g(s−1a), for g ∈ ΣL, a ∈ L, s ∈M .

Remark 7.4. If L is a G-frame with the trivial action then, by Remark
4.13, for each (fs)s∈M , we have fs = sfe, for all s ∈ M . But, since Ω = 2
has the trivial action, we also get that sfe = fe and so fs = fe. Therefore,
ΣL = ZΣL.

By the above remark and as a corollary of Theorem 4.11, we have:

Theorem 7.5. O(−) : G−Top! G−Frmop is a left adjoint to the functor
ZΣ(−) : G− Frmop ! G−Top.

In the following, we study G-sober space and G-spatial frames.

Remark 7.6. Notice that, if X is a G-sober space then X has the trivial
action. This is because, if X is a G-sober space then ϵX : X ! ΣOX is an
isomorphism in M -Top. But, applying Remarks 7.2 and 7.4, the action on
ΣO(X) is also trivial, and so X has the trivial action, as well.
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Theorem 7.7. A G-space X is G-sober if and only if X is a sober topolog-
ical space.

Proof. By Remark 7.2, the action on ΣO(X) is trivial. So, by Remark
7.4, we have ΣO(X) ∼= ΣO(X). This isomorphism is in fact given by
ϕ : (fs)s∈M 7! fe, and it commutates the following diagram

X

idX
��

ϵX // ΣOX
ϕ
��

X
(ϵX(−))e

// ΣOX.

Thus, ϵX is an isomorphism of sets if and only if (ϵX(−))e is an isomorphism
of sets. Therefore, by Corollary 5.3 and its counter part for classical sober
spaces, we have X is a G-sober space if and only if X is a sober space.

Corollary 7.8. If L is a G-frame, then ΣL is a G-sober space.

Theorem 7.9. A G-frame L is G-spatial if and only if L is spatial as a
frame.

Proof. Applying Theorems 7.1 and 7.3, for anyM -frame L we have OΣL ∼=
OΣL, with the assignment ψ : (Us)s∈M 7! Ue. This isomorphism also
commutes the following diagram

L

idL
��

ηL // OΣL

ψ
��

L
(ηL(−))e

// OΣL.

Therefore, ηL is a frame isomorphism if and only if so is (ηL(−))e. This
means that L is spatial if and only if L is G-spatial.

Remark 7.10. A G-spatial G-frame L has just the trivial action. This is
because, if L is G-spatial then, since L ∼= OΣL and by Remark 7.2, the
action on L is trivial.

Corollary 7.11. If X is a G-topological space, then O(X) is a G-spatial
frame.
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As a consequence of the above results, we have

Proposition 7.12. The restriction of the adjoint pair and O and Σ pro-
vides a dual isomorphism between the categories of G-sober spaces and G-
spatial frames.

We close the paper by finding some conditions related to soberity of 1,
and spatiality of O(1) which make a monoid into a group.

Theorem 7.13. A commutative monoid M is a group if and only if 1 is
an M -sober space.

Proof. Let M be a commutative monoid. Then for each s ∈M , the family
("Ms)s∈M , where

"Ms = {I ∈ LM : I ⊇Ms},
is a completely prime internal filter of LM . Now, applying Lemma 5.8, if 1
is an M -sober space then ΣLM = 1, and hence ("Ms)s∈M should be equal
to the constant family (M)s∈M . This means that Ms = M , for all s ∈ M ,
and so M is a group.

Conversely, if M is a group then LM = 2, and hence ΣLM = 1. Now,
by Lemma 5.8, 1 is an M -sober space.

Theorem 7.14. A monoid M is a group if and only if there exists an
M -topological space X such that O(X) has the trivial action.

Proof. By Remark 7.2, if M is a group then for each M -topological space
X, O(X) has the trivial action.

To prove the converse, let X be an M -topological space such that O(X)
has the trivial action. Take f : X ! 1 to be the unique M -continuous
(constant) map. By Theorem 3.7, the functor O :M −Top!M −Frmop

preserves finite colimits, so it takes the epimorphism f to the monomorphism
O(f) : O(1)! O(X). But, O(1) ∼= Ω = LM , and so LM , being isomorphic
to a sub of O(X), has the trivial action. This implies that M is a group,
because for each ideal I and s ∈M , sI =M if and only if s ∈ I.

Corollary 7.15. If any M -frame L with the trivial action is M -spatial
frame, then M is a group.

Corollary 7.16. A monoid M is a group if and only if 2 is a spatial M -
frame.
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Proof. An element of Σ2 is of the form (fs)s∈M , where each fs : 2! 2 is a
frame homomorphism. But there is only one frame homomorphism from 2
to 2. Hence Σ2 has only one element. So OΣ2 is isomorphic to 2, and so
η2 is clearly an isomorphism.
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