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A little more on ideals associated with
sublocales
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Abstract. As usual, let RL denote the ring of real-valued continuous
functions on a completely regular frame L. Let βL and λL denote the Stone-
Čech compactification of L and the Lindelöf coreflection of L, respectively.
There is a natural way of associating with each sublocale of βL two ideals
of RL, motivated by a similar situation in C(X). In [12], the authors go
one step further and associate with each sublocale of λL an ideal of RL in
a manner similar to one of the ways one does it for sublocales of βL. The
intent in this paper is to augment [12] by considering two other coreflections;
namely, the realcompact and the paracompact coreflections.
We show that M -ideals of RL indexed by sublocales of βL are precisely the
intersections of maximal ideals of RL. An M -ideal of RL is grounded in case
it is of the form MS for some sublocale S of L. A similar definition is given
for an O-ideal of RL. We characterise M -ideals of RL indexed by spatial
sublocales of βL, and O-ideals of RL indexed by closed sublocales of βL in
terms of grounded maximal ideals of RL.
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1 Introduction

The M - and O-ideals of C(X), the ring of real-valued continuous functions
on a Tychonoff space X, associated with subsets of βX were introduced in
[14] by Johnson and Mandelker. This is done with the aim of extending
the ideals Mp and Op for p ∈ βX, that were extensively studied in [13] by
Gillman and Jerison.

The author in [9] extended the concept of M - and O-ideals of C(X)
associated with subsets of βX to locales. In [11], Stephen, one of the authors
of the current manuscript, and Dube extended this idea to sublocales of λL,
the Lindelöf regular coreflection.

The current manuscript, amongst other things, studies these ideals in
terms of sublocales of υL and πL, the realcompact coreflection and the
paracompact coreflection, respectively.

The paper is laid out in the following order: Following the preliminar-
ies in Section 1, we show in Proposition 3.1 that the M -ideals of RL are
precisely the intersections of maximal ideals of RL. This we do in terms of
sublocales of βL. In Definition 2.1, grounded M -ideals of RL are defined,
and the groundedO-ideals ofRL are defined similarly. This definition paves
the way for the main results, Theorems 2.6, 2.10, and 2.13, characterising
M -ideals of RL indexed by spatial sublocales of L, characterising O-ideals
of RL indexed by closed sublocales of βL, and characterising when O-ideals
of RL indexed by closed sublocales of βL are grounded, respectively.

In Section 3, M - and O-ideals of RL are associated with sublocales
of the realcompact regular coreflection, denoted by υL, and sublocales of
the paracompact coreflection, denoted by πL. One major and useful in-
formation that is used in this section is the fact that both υL and πL are
sublocales (and not merely isomorphic to sublocales) of the Lindelöf regu-
lar coreflection, λL. If A is a sublocale of either of these, then A is also
a sublocale of λL. This information is extensively used in Proposition 4.2.
One of the main results in this section, Theorem 4.5, characterises when L
is pseudocompact in terms of O-ideals of RL indexed by sublocales of βL
and the other coreflections. Theorem 4.7 characterises the equivalence of
the realcompact coreflection and the Lindelöf regular coreflection in terms
of O-ideals of RL indexed by the respective sublocales.

In Section 4, we give a result which we have not seen in the literature
on the Lindelöf regular coreflection of L. We show in Proposition 5.1 that
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λL is the universal Lindelöfication of both υL and πL.

2 Preliminaries

We assume familiarity with frames and locales. Our references are [15]
and [17], and our notation will be of these references, by and large. All
frames in this paper are completely regular. We denote the category of
completely regular frames byCRFrm, and the category of regular frames by
RFrm. We refer to [4] for properties of the cozero part of a frame, and to [2]
for properties of the ring of real-valued continuous functions on a frame. By
a quotient map we will always mean an onto frame homomorphism.

2.1 The compact regular coreflection We view βL, the Stone-

Čech compactification of L as the frame of strongly regular ideals of Coz L.
To recall, an ideal I of Coz L is called strongly regular if for every u ∈ I
there exists v ∈ I such that u ≺≺ v. The mapping

jL : βL! L defined by jL(I) =
∨
I

is a dense quotient map, and is the coreflection map to L from compact
completely regular frames. We denote its right adjoint by rL, and recall
that, for any a ∈ L,

rL(a) = {c ∈ Coz L | c ≺≺ a}.

2.2 The Lindelöf regular coreflection An ideal of Coz L is called
a σ-ideal if it is closed under countable joins. The frame of σ-ideals of Coz
L is denoted by λL. It is a Lindelöf completely regular frame. The map
λL : λL ! L that sends a σ-ideal to its join in L is a dense quotient map,
and it is the coreflection map to L from Lindelöf completely regular frames
[16]. Its right adjoint is given by

(λL)∗(a) = {c ∈ Coz L | c ≤ a}.

Thus, if a ∈ Coz L, then (λL)∗(a) is the principal ideal of Coz L generated
by a. By a Lindelöfication of L is meant a Lindelöf frame M such that
there is a dense quotient map M ! L. For this reason, the frame λL is
sometimes styled the universal Lindelöfication of L.
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2.3 The realcompact regular coreflection See [5] for the defini-
tion and properties of realcompact frames. They form a coreflective sub-
category of CRFrm, and the coreflection is constructed as follows. For any
frame M , denote by Pt(M) the set of points of M . Since our frames are
completely regular the points are exactly the maximal elements.

The mapping ℓ : λL! λL defined by

ℓ(I) = (λL)∗
(∨

I
)
∧
∧

{Q ∈ Pt(λL) | I ≤ Q}

is a nucleus, and the frame υL = Fix(ℓ) is realcompact. The induced
quotient map is written ℓL : λL ! υL. The join map υL : υL ! L is a
dense quotient map, and it is the coreflection map to L from realcompact
completely regular frames. The right adjoint of υL is given by

(υL)∗(a) = {c ∈ Coz L | c ≤ a}.

2.4 The paracompact coreflection One way of describing the para-
compact coreflection of L, denoted πL, is given in [5, Proposition 6]. For
our purposes it suffices to recall that there is a nucleus p : λL ! λL such
that πL = Fix(p). As in the other cases, we write pL : λL ! πL for the
associated quotient map. The join map πL : πL ! L is a dense quotient
map, and it is the coreflection map to L from paracompact frames. We
describe its right adjoint in the next paragraph.

Summarizing what is mentioned above, let kL : βL ! λL be the map
given by J 7! ⟨J⟩σ, where ⟨J⟩σ designates the σ-ideal of Coz L generated
by J . Then kL is a dense quotient map. We therefore have the commutative
diagram

υL

υL

&&
βL

kL // λL

pL

&&

ℓL

88

λL // L

πL

πL

88

(‡)
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where each morphism is a dense quotient map. Since the composite of any
two dense homomorphisms is dense, the composite of any composable maps
in diagram (‡) is a dense quotient map. From the commutativity of the
lower triangle in this diagram, we deduce that

(λL)∗ = (pL)∗ ◦ (πL)∗.

Since pL arises from a nucleus, its right adjoint is the identical embedding
πL↣ λL. A consequence of this is that

(πL)∗ = (λL)∗ = (υL)∗.

2.5 Sublocales Throughout, we use the terminology and notation of
[17] regarding sublocales. We thus denote by S(L) the co-frame of sublocales
of L. Whenever we speak of a join of sublocales, the join will be meant in
this lattice. Let us highlight just a few matters that are of relevance for our
purposes in this paper.

The open (resp. closed, resp. Boolean) sublocale of L associated to an
element a of L is given by

oL(a) = {a! x | x ∈ L} = {x | x = a! x},

cL(a) = "a = {x ∈ L | x ≥ a} and bL(a) = {a! x | x ∈ L};

with the subscript dropped if the context is clear. Let us recall that b(a) is
the smallest sublocale of L containing a.

As usual, by a point of L we mean an element p ∈ L such that p < 1
and, for all x, y ∈ L,

x ∧ y ≤ p =⇒ x ≤ p or y ≤ p.

Equivalently, the inequalities above can be replaced with equalities. Points
are also called prime elements. The set of all points of L will be denoted by
Pt(L). A one-point sublocale of L is a sublocale of the form b(p) = {p, 1},
for p ∈ Pt(L).

A maximal element of L is an element which is maximal in the poset
L ∖ {1}. Maximal elements are points in any frame. In regular frames



180 O. Ighedo, G.W. Kivunga, D.N. Stephen

maximal elements are exactly the points of the frame. A consequence of
this is that, if L is a regular frame, then for any p ∈ Pt(L), b(p) = c(p).

We write S◦ for the interior of a sublocale S, and S for the closure of
S. We recall that, for any a ∈ L,

c(a)◦ = o(a∗) and o(a) = c(a∗).

A frame is called spatial if it is isomorphic to Ω(X), the frame of open
subsets of X, for some topological space X. An internal characterization is
that each element is a meet of points. To say a sublocale is spatial means
that it is spatial as a frame. Because of the way joins are calculated in S(L);
namely,

∨

i∈I
Si =

{∧
M |M ⊆

⋃

i∈I
Si

}
,

and because the points of a sublocale are exactly the points of the containing
frame that belong to the sublocale, that is, for any S ∈ S(L),

Pt(S) = S ∩ Pt(L),

it is easy to see that the join of spatial sublocales is a spatial sublocale.

2.6 The ring RL The ring RL has as its elements frame homomor-
phisms L(R) ! L, where L(R) denotes the frame of reals. We refer to [2]
concerning the ring RL, the cozero map coz: RL ! L, and the properties
of the cozero map. As in this reference, we will denote its elements with
lower case Greek letters. These rings are also discussed in Chapter XIV
of [17]. We recall, in particular, that a frame homomorphism h : M ! L
induces a ring homomorphism Rh : RM ! RL given by Rh(α) = h ◦ α,
and for which coz(Rh(α)) = h(coz α).

Concerning rings generally, our usage of the term “ideal” does not ex-
clude the entire ring. We write Idl(A) for the poset of ideals of a ring A
ordered by inclusion.

3 Ideals from sublocales

We now come to the main theme of this paper; namely, ideals of RL asso-
ciated with sublocales of βL. These ideals were introduced by Dube [9] as
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a generalization of similarly defined ideals of C(X). We recall how they are
defined.

For each sublocale S of βL, the ideals MS and OS of RL are defined
by

MS = {α ∈ RL | S ⊆ cβL(rL(coz α))}
and

OS = {α ∈ RL | S ⊆ int cβL(rL(coz α))}.
In light of the description of interiors of closed sublocales, and taking into
account the fact that rL commutes with pseudocomplementation, that is,
rL(a)

∗ = rL(a
∗) for all a ∈ L, we have the equality

OS = {α ∈ RL | S ⊆ oβL(rL(coz α)
∗)}.

In the event that S is a closed sublocale, say S = cβL(I) for some I ∈ βL,
then

M cβL(I) = {α ∈ RL | rL(coz α) ⊆ I}
and

OcβL(I) = {α ∈ RL | rL(coz α) ≺≺ I}.
If A is a sublocale of L (and hence rL[A] is a sublocale of βL), the ide-
als M rL[A] and OrL[A] are denoted by MA and OA, respectively, and, as
observed in [9], are expressible only in terms of L without invoking βL as
follows:

MA = {α ∈ RL | A ⊆ cL(coz α)} and OA = {α ∈ RL | A ⊆ oL((coz α)
∗)}.

As above, if A is a closed sublocale of L, say A = cL(a) for some a ∈ L,
then

M cL(a) = {α ∈ RL | coz α ≤ a} and OcL(a) = {α ∈ RL | coz α ≺ a}.

It is clear that for any sublocale S of βL,

OS ⊆ MS = MS .

Equally clear is that for any two sublocales S ⊆ T of βL,

OT ⊆ OS and MT ⊆ MS .
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For use below, let us recall from [12, Proposition 3.4(b)] that if A and
B are sublocales of βL with OA ⊆ MB, then B ⊆ A. A consequence of
this is that if A and B are closed sublocales of βL, with MA ⊆ MB, then
B ⊆ A. Hence, for closed sublocales A and B of βL,

MA = MB iff A = B.

Let us introduce the following notation of convenience. For any frame
L, we set

IdlM (RL) = {MA | A ∈ S(βL)} and IdlO(RL) = {OA | A ∈ S(βL)}.

Since MA = MA for any sublocale A of βL, we see that

IdlM (RL) = {MF | F is a closed sublocale of βL}.

3.1 M -ideals as intersections of maximal ideals It is known
that in spaces the M -ideals of C(X) are precisely the intersections of max-
imal ideals of C(X). This is so because, for any A ⊆ β(X)

MA =
⋂

p∈A
Mp,

and the set of maximal ideals of C(X) is

Max(C(X)) = {Mp | p ∈ βX}.

Regarding pointfree function rings, it is nowhere recorded anywhere in
the literature (so far as we are aware) whether or not the M -ideals of RL
are also exactly the intersections of maximal ideals. One of our main goals
in this section is to show that they are. We will also show that every M -
ideal indexed by a spatial sublocale is contained in a maximal M -ideal. The
latter we will show by first characterizing the maximal M -ideals.

To get started, let us recall from [10] that the set of maximal ideals of
RL is given by

Max(RL) = {M cβL(p) | p ∈ Pt(βL)} = {M bβL(p) | p ∈ Pt(βL)}.

We also need to recall that for any sublocale A ⊆ βL, MA = MA.
Therefore there is no loss of generality in considering the ideals MA only
for the closed sublocales A of βL.
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Proposition 3.1. The M -ideals of RL are precisely the intersections of
maximal ideals of RL.
Proof. Let A be a closed sublocale of βL. Since every complemented sublo-
cale of a spatial frame is spatial, A =

∨{bβL(p) | p ∈ Pt(A)}.
Therefore

MA = M
∨{bβL(p)|p∈Pt(A)} =

⋂

p∈Pt(A)
M bβL(p),

showing that every M -ideal is an intersection of maximal ideals.
The other inclusion follows from the fact that for any collection {Si} of

sublocales, we have the equality
⋂
iM

Si = MT , where T =
∨
iSi.

Strictly speaking, L is not a sublocale of βL, but can be viewed as a
sublocale of βL by identifying it with the sublocale rL[L] of βL, via the
localic isomorphism

a 7! rL(a) : L! rL[L].

Thus viewed, we can then say among the M -ideals of RL are those which
are indexed by sublocales of L. More precisely, as was recalled above, they
are the M -ideals of RL of the form M rL[S], for S ∈ S(L). Our abridged
notation and description for them (again as recalled above) is

MS = M rL[S] = {α ∈ RL | S ⊆ cL(coz α)}.

Collectively, we give them the following name.

Definition 3.2. We say an M -ideal of RL is grounded in case it is of the
form MS for some sublocale S of L. We denote by IdlgM (RL) the set of
grounded M -ideals of RL.

We wish to explore some properties of grounded M -ideals. We shall
start by showing that if Pt(L) ̸= ∅, then among the maximal ideals of RL
there are grounded ones, and they are precisely those indexed by the one-
point sublocales of L. Intuitively, this should be so because (viewing L as
a sublocale of βL) the points of L are exactly the points of βL that belong
to L. A rigorous proof is however needed. To present it, we need some
preliminary observations, which we record in the following lemma. They
might very well be known, but we shall present proofs since we do not have
a reference for them.
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Lemma 3.3. Let f : L!M be a localic map. Then:

(a) For any S ∈ S(L),
f [S] = cM

(
f
(∧

S
))
.

(b) If f is one-one and a ∈ L is such that f(a) ∈ Pt(M), then a ∈ Pt(L).

Proof. (a) Using the formula for calculating the closure of a sublocale, and
using the fact that a localic map preserves meets, we see that

f [S] = cM

(∧
f [S]

)
= cM

(
f
(∧

S
))

;

as claimed.

(b) Consider any x, y ∈ L with x ∧ y ≤ a. Then, f(x) ∧ f(y) ≤ f(a).
Since f(a) is a point, we have f(x) ≤ f(a) or f(y) ≤ f(a), which implies
x ≤ a or y ≤ a since f is one-one. Therefore a is a point in L.

The result in part (a) of this lemma enables us to give an alternative
description of the grounded M -ideals of RL.

Corollary 3.4. For any L, IdlgM (RL) =
{
M cβL(rL(a)) | a ∈ L

}
.

Proof. This is so because for any S ∈ S(L), MS = MS , and for any x ∈ L,

M cL(x) = M rL[cL(x)] = M rL[cL(x)] = M cβL(rL(x));

the last equality holding in view of Lemma 3.3(a).

Recall the description of maximal ideals of RL that is recited in the
displayed equalities just before the statement of Proposition 3.1.

Theorem 3.5. If L has points, then among the maximal ideals of RL there
are grounded ones. Furthermore, they are precisely those indexed by the
one-point sublocales of L.

Proof. For any q ∈ Pt(L),

M cL(q) = M rL[cL(q)] = M rL[cL(q)] = M cβL(rL(q));
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the last equality holding in view of Lemma 3.3(a) since
∧
cL(q) = q. There-

fore M cL(q) is a maximal ideal because rL(q) is a point of βL. This proves
the first assertion in the statement of the theorem.

To prove the second assertion, we must show that any grounded maximal
ideal is indexed by a one-point sublocale of L. Suppose, then, that J is a
grounded maximal ideal of RL. Then there exists a point p ∈ βL and a
sublocale S of L such that

J = M cβL(p) = MS .

Thus,

M cβL(p) = M rL[S] = M rL[S] = M cβL(rL(
∧
S));

the last equality in light of Lemma 3.3(a). Since cβL(p) and cβL(rL(
∧
S)) are

closed sublocales, they coincide, and hence rL(
∧
S) = p, which implies that∧

S is point in L by Lemma 3.3(b) since rL is one-one. Now, a calculation
as in the displayed string of equalities in the first sentence of the proof of
the first part shows that J = M cL(

∧
S), which is a grounded maximal ideal

indexed by the one-point sublocale cL(
∧
S) of L.

We denote by Maxg(RL) the set of all grounded maximal ideals of RL.
Thus,

Maxg(RL) = {M cL(q) | q ∈ Pt(L)}.
Since a sublocale of L may fail to have any point (for instance if L =

B(OR)), we see that a grounded M -ideal need not be a non-void intersec-
tion of grounded maximal ideals. Naturally, one asks if for S ⊆ L spatial,
MS is an intersection of grounded maximal ideals. This is indeed the case,
and more, as we show in the following theorem.

Theorem 3.6. The M -ideals of RL indexed by the spatial sublocales of L
are precisely the intersections of grounded maximal ideals of RL.

Proof. Suppose, first, that S is a spatial sublocale of L. Then S is a join of
its one-point sublocales. That is,

S =
∨

{b(q) | q ∈ Pt(S)}.

Therefore,
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MS =
⋂

{M bL(q) | q ∈ Pt(S)}

=
⋂

{M rL[bL(q)] | q ∈ Pt(S)}

=
⋂

{M rL[bL(q)] | q ∈ Pt(S)}

=
⋂

{M cβL(rL(q)) | q ∈ Pt(S)} since
∧

bL(q) = q

=
⋂

{M cL(q) | q ∈ Pt(S)}.

This shows that MS is an intersection of grounded maximal ideals.
On the other hand, let {qi | i ∈ I} be a collection of points of L, and

consider the intersection
⋂
i∈I M cL(qi) of grounded maximal ideals. We have

the equalities
⋂

i∈I
M cL(qi) =

⋂

i∈I
M bL(qi) = M∨

i∈I bL(qi)
.

So it suffices to show that the sublocale
∨
i∈IbL(qi) of L is spatial. Since

each bL(qi) = {1, qi}, if x ∈ ∨ bL(qi) and x ̸= 1, there is a subset K ⊆ I
and indices ik, for k ∈ K, such that for each k, qik ̸= 1 and x =

∧
kqik .

This shows that x is a meet of points of L, and hence points of
∨
i∈IbL(qi).

Therefore
∨
i∈IbL(qi) is spatial, as required.

Remark 3.7. In the last part of the proof, that
∨
i∈IbL(qi) is a spatial

sublocale could also have been deduced from the fact that the join of any
family of spatial sublocales is spatial, and that, in a regular frame, each
one-point sublocale is the two-element chain, and hence spatial.

Since the mapping

a 7! cβL(rL(a)) : L! S(βL)

is one-one (because both rL and cβL(−) are one-one), we see from Corol-
lary 3.4 that the grounded M -ideals of RL are in a bijective correspondence
with the elements of L. Since the M -ideals are exactly the ideals MF , for
F a closed sublocale of βL, it follows from Corollary 3.4 that every M -ideal
is grounded if and only if

(∀I ∈ βL)(∃a ∈ L) such that M cβL(I) = M cβL(rL(a)).
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This, in turn, holds if and only if every element of βL equals rL(x) for some
x ∈ L. This says the localic map rL : L ! βL must be onto. Since it is
always one-one, this says it must be an isomorphism in Loc. In all, then,
we deduce the following.

Corollary 3.8. Every M -ideal of RL is grounded iff L is compact.

Up to this point in this section we have so far spoken only about the
M -ideals. We shall now address the O-ideals. To set the tone, we recall
from [11, Lemma 2.1] that, for any closed sublocale A of βL, OA = mMA.
That is, the O-ideals indexed by the closed sublocales of βL are precisely
the pure parts of the M -ideals. Having observed that the M -ideals are
precisely the intersections of the maximal ideals, it is reasonable to expect
the O-ideals to be exactly the intersections of the pure parts of the maximal
ideals. We shall show that this is indeed the case.

For use in the upcoming proof, let us state as a lemma the following
result which is proved in [10, page 12].

Lemma 3.9. Let I be an element of βL. Then

OcβL(I) =
⋂

{OcβL(p) | p ∈ Pt(βL) and p ≥ I}.

Here is the theorem we have been aiming for.

Theorem 3.10. The O-ideals of RL indexed by the closed sublocales of βL
are precisely the intersections of the pure parts of the maximal ideals of RL.
Proof. Let A be a closed sublocale of βL. Then A = cβL(I) for some

I ∈ βL. Since, for any p ∈ Pt(βL), OcβL(p) is the pure part of the maximal
ideal M cβL(p), it follows from Lemma 3.9 that OA is the intersection of the
pure parts of some maximal ideals of RL.

Conversely, let {pi | i ∈ J} be a collection of points of βL, and set
I =

∧
pi. Observe that the set {pi | i ∈ I} is exactly the set of all the points

of βL that are above I, because if q is any point of βL with q ≥ I, then
for any i ∈ J , q ≥ pj , which implies q = pj since pj is a maximal element.
Therefore Lemma 3.9 yields

⋂

i∈I
OcβL(pi) = OcβL(I);

and this completes the proof.
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When we were dealing with M -ideals above, we used extensively the
fact that it sufficed to limit to closed sublocales of βL. This is not the case
with O-ideals, for the following reasons. Recall that a frame L is called
basically disconnected if c∗ ∨ c∗∗ = 1 for every c ∈ Coz L.

(a) The pure ideals of RL are precisely the ideals OF for F a closed
sublocale of L (see [7, Proposition 4.3]).

(b) Every O-ideal of RL is pure if and only if L is basically disconnected
(see [11, Theorem 3.1]).

We will prove the result concerning groundedness of the O-ideals asso-
ciated with closed sublocales of βL. For that we will need the following
preliminary results.

Lemma 3.11. For any sublocale A of βL, OA is pure iff OA = OA.

We also need the following lemma which, incidentally, will also be use-
ful later on. We recall from [12, Proposition 3.4(b)] that if A and B are
sublocales of βL with OA ⊆ MB, then B ⊆ A.

Lemma 3.12. For any sublocales A and B of βL, if OA = OB, then
A = B. In particular, if A and B are closed, then A = B.

Proof. Since OA = OB ⊆ MB, the result cited above from [12] yields
B ⊆ A. By symmetry, we also have the reverse inclusion, hence the claimed
equality.

Definition 3.13. An O-ideal of RL is grounded if it is of the form OS

for some S ∈ S(L). We denote the set of all grounded O-ideals of RL by
IdlgO(RL).

Lemma 3.14. For any L, IdlgO(RL) =
{
OcβL(rL(a)) | a ∈ L

}
.

Proof. Let P be a grounded O-ideal of RL. Then there exists I ∈ βL and
a sublocale S of L such that

P = OcβL(I) = OS .

Thus
OcβL(I) = OrL(S) = OrL[S] = OcβL(rL(

∧
S)).
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The middle equalities are obtained using Lemma 3.11, and since cβL(I) and
cβL(rL(

∧
S)) are closed sublocales of βL, Lemma 3.12 implies that they are

equal. Now, for any J ∈ βL with

OcβL(I) = OcβL(J),

there is some sublocale T of L such that

OcβL(rL(
∧
S)) = OcβL(rL(

∧
T )).

This, in turn, implies that

I = rL(
∧
S) = rL(

∧
T ) = J.

Since rL is one-to-one,
∧
S =

∧
T must be an element of L. So that

OcβL(rL(
∧
S)) = OcβL(rL(a)) for some a ∈ L.

3.2 A word on maximality Given a sublocale A of βL, we say OA

is a maximal O-ideal if, for any sublocale B of βL, the containments OA ⊆
OB ⊂ RL imply that OA = OB. A maximal M -ideal is defined similarly.
Thus, an O-ideal is a maximal O-ideal if it is a maximal element in the
poset of O-ideals which are proper ideals, ordered by inclusion.

Let us recall from [12, Proposition 3.4(b)] that if A and B are sublocales
of βL with OA ⊆ MB, then B ⊆ A. Consequently, if OA ⊆ OB, then also
B ⊆ A because of the containments OA ⊆ OB ⊆ MB.

Since the maximal ideals of RL are precisely the M -ideals associated
to one-point sublocales of βL, every M -ideal is contained in a maximal M -
ideal. It is thus natural to ask if every O-ideal is contained in a maximal
O-ideal. We show below that each O-ideal associated to a sublocale that
has points is contained in a maximal O-ideal.

A straightforward calculation shows that, for any sublocale A ⊆ βL,

OA = RL iff MA = RL iff A = O.

We shall use this fact below.

Theorem 3.15. If A ∈ S(βL) has at least one point, then OA is contained
in a maximal O-ideal.
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Proof. Let us show first that if S is a one-point sublocale of βL, then OS

is a maximal O-ideal of RL. Pick a p ∈ Pt(βL) such that S = cβL(p).
Consider any T ∈ S(βL) with OS ⊆ OT ⊂ RL. Then T ̸= O. By what we
observed above, T ⊆ S = S, which implies that T ⊆ S. Since T is not the
void-sublocale and S is a one-point sublocale, it follows that T = S, whence
OS = OT . Therefore OS is a maximal O-ideal.

Now, given that A has at least one point, let p be a point of βL belonging
to A. Then cβL(p) ⊆ A, and so OA is contained in the maximal O-ideal

OcβL(p).

Call a pure ideal of a ring maximal pure if it is maximal among pure
ideals that are proper ideals. Since the pure ideals of RL are exactly the
O-ideals associated with closed sublocales of βL, and since complemented
(and hence closed) sublocales of a spatial frame are spatial (and hence have
points if they are non-void), we deduce from Theorem 3.15 the following
result.

Corollary 3.16. Every proper pure ideal of RL is contained in a maximal
pure ideal.

We apply this to C(X). Recall that for any Tychonoff space X, the
rings C(X) and R(Ω(X)) are isomorphic. Every ring isomorphism preserves
(under direct image) purity; so

Every proper pure ideal of C(X) is contained in a maximal pure
ideal.

4 Ideals associated with sublocales of λL

In [12], the authors considered one of these types of ideals (the O-ideals)
associated with sublocales of λL. The reason for concentrating only on just
the one type of ideals, and only for λL, is apparent when one reads the
mentioned paper. To recall, for any sublocale A of λL, the ideal NA of RL
(as defined in [12]) is the set

NA = {α ∈ RL | A ⊆ oλL(ϱL(coz α)
∗)}.

Without introducing too many symbols, we wish to have a uniform no-
tation that will enable us to define most economically O- and M -ideals of
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RL indexed by sublocales of λL, υL, and πL, respectively. So let γ denote
any of the coreflectors above; that is, let γ ∈ {β, λ, υ, π}. Then γL has the
obvious meaning. Since each of the coreflection maps γL! L is a join map,
we shall denote each by jγ : γL ! L, and the right adjoint by rγ . Recall
from the previous section that rλ = rυ = rπ.

Definition 4.1. For any sublocale A of γL, the ideals OA
γ and MA

γ are
defined by

OA
γ = {α ∈ RL | A ⊆ oγL(rγ(coz α)

∗)}
and

MA
γ = {α ∈ RL | A ⊆ cγL(rγ(coz α))}.

That each of these sets is indeed an ideal of RL is verified routinely
using the properties of the cozero map coz: RL ! L. A few comments
before we proceed are in order.

(a) For any a ∈ L, write [a] for the set {c ∈ Coz L | c ≤ a} – a notation
which is sometimes used in the context of λL. Then, recalling that all
the rγ coincide (except for γ = β), we observe that, for any α ∈ RL,

α ∈ OA
γ ⇐⇒ A ⊆ oγL([(coz α)

∗]),

and similarly for MA
γ .

(b) Unadorned, OA andMA will have the meanings we have recited above
from [9].

(c) Although the descriptions in Definition 4.1 indicate that the ring
whose ideal is under consideration is RL, our notation suppresses
the role of L, and may thus be ambiguous if there are two or more
function rings under consideration. In such instances, we shall write,
for instance, OA

(L,γ) and MA
(L,γ).

We now want to find some relations between these ideals. Since both
υL and πL are sublocales (and not merely isomorphic to sublocales) of λL,
if A is a sublocale of either of these, then A is also a sublocale of λL. Recall
that if A is a sublocale of L and a ∈ A, then for the open sublocale oA(a)
of A we have

oA(a) = A ∩ oL(a),

and similarly for the closed sublocale because the associated quotient map
νA : L! A fixes elements of A.
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Proposition 4.2. For any completely regular frame L we have the follow-
ing.

(a) For any sublocale A of υL, OA
υ = OA

λ and MA
υ = MA

λ .

(b) For any sublocale B of πL, OB
π = OB

λ and MB
π = MB

λ .

Proof. (a) We prove the result only for the O-ideals as the other result
can be proved similarly. Let α ∈ OA

υ . Since υL is a dense sublocale of
λL, the pseudocomplement of any element of υL taken in υL is exactly
its pseudocomplement taken in λL. Consequently, in view of the fact that
rλ = rυ, the relation α ∈ OA

υ implies that

A ⊆ oυL(rυ(coz α)
∗) = υL ∩ oλL(rλ(coz α)

∗) ⊆ oλL(rλ(coz α)
∗),

showing that α ∈ OA
λ , whence OA

υ ⊆ OA
λ .

To reverse the inclusion, let α ∈ OA
λ . Then A ⊆ oλL(rλ(coz α)

∗), which
implies

A = υL ∩A ⊆ υL ∩ oλL(rλ(coz α)
∗) = υL ∩ oλL(rυ(coz α)

∗)

= oυL(rυ(coz α)
∗).

Therefore α ∈ OA
υ , as desired.

(b) The proof is similar to the one above.

Remark 4.3. We deliberately elected to give a direct proof for this result.
We could also have proved it using [12, Lemma 5.1], which states that:

If h : M ! L is a surjective frame homomorphism, A is a sublo-
cale of L, and a ∈ L, then A ⊆ oL(a) iff h∗[A] ⊆ oM (h∗(a)).

Applying this lemma to the homomorphism ℓL : λL! υL, for any sublocale
A of υL and any a ∈ υL, we have

A ⊆ oυL(a) iff (ℓL)∗[A] ⊆ oλL((ℓL)∗(a)) iff A ⊆ oλL(a)

because (ℓL)∗ is the identical embedding υL↣ λL. The proposition would
then follow from this.
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In [12, Proposition 5.2], it is shown that (in our notation), for any sublo-
cale A of λL, OA

λ = O(kL)∗[A]. The argument hinges on the lemma from [12]
that we recited in Remark 4.3 and the fact that kL ◦ rL = (λL)∗. The latter
holds simply because kL is onto.

Now, since ℓL ◦ kL and pL ◦ kL are onto, we have

(ℓL ◦ kL) ◦ rL = (υL)∗ and (ℓL ◦ pL) ◦ rL = (πL)∗,

and a calculation identical to that in the proof of [12, Proposition 5.2] yields
the following result.

Proposition 4.4. Let L be a completely regular frame.

(a) For any sublocale A of υL, OA
υ = O(kL)∗[A].

(b) For any sublocale B of πL, OB
π = O(kL)∗[B].

In [12, Theorem 5.3], the authors prove that L is pseudocompact if and
only if, in our notation,

{OA | A ∈ S(βL)} = {OB
λ | B ∈ S(λL)}.

The proof uses the fact that a frame is pseudocompact precisely when λL
is compact. Now, we also have that:

A frame L is pseudocompact iff υL is compact ([5, Proposition
4]) iff πL is compact ([6, Proposition 3]).

Minor modifications to the proof of [12, Theorem 5.3] yield the following
characterizations. We include the one from [12].

Theorem 4.5. The following are equivalent for a completely regular frame
L.

(1) L is pseudocompact.

(2) {OA | A ∈ S(βL)} = {OB
λ | B ∈ S(λL)}.

(3) {OA | A ∈ S(βL)} = {OB
υ | B ∈ S(υL)}.

(4) {OA | A ∈ S(βL)} = {OB
π | B ∈ S(πL)}.
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A little care is needed in reading this theorem. For instance, looking at
conditions (2) and (3), one may erroneously say from it we can deduce that
L is pseudocompact if and only if {OB

λ | B ∈ S(λL)} = {OB
υ | B ∈ S(υL)}.

That, however, is not the case. We shall see that the coincidence of these
two sets characterizes different types of frames. Of course we always have
the containment

{OB
υ | B ∈ S(υL)} ⊆ {OB

λ | B ∈ S(λL)}

in view of Proposition 4.2(a).
We shall need a lemma to prove the theorem that we are aiming for.

We recall from [12, Proposition 3.4(b)] that if A and B are sublocales of βL
with OA ⊆ MB, then B ⊆ A.

Lemma 4.6. For any sublocales A and B of βL, if OA = OB, then A = B.

Proof. Since OA = OB ⊆ MB, the result cited above yields B ⊆ A. By
symmetry, we also have the reverse inclusion, hence the claimed equality.

Although the elements of λL and υL are ideals (and hence sets) we
shall write them as lower case letters in the following proof. Recall that in
CRFrm a homomorphism is one-one if and only if it is codense, meaning
that it is only the top element that it sends to the top element. As is well
known, this holds already in RFrm. Let us also remind the reader that,
as observed in [12], if A and B are closed sublocales of βL and OA = OB,
then A = B.

Theorem 4.7. The following are equivalent for a completely regular frame
L.

(1) {OB
λ | B ∈ S(λL)} = {OA

υ | A ∈ S(υL)}.
(2) {OB

λ | B ∈ S(λL) and B is closed} = {OA
υ | A ∈ S(υL)}.

(3) υL = λL.

Proof. That condition (1) implies (2) is trivial, and it should be obvious
that condition (3) implies (1). So, to be done, we must show that condition
(2) implies (3). Suppose, then, that condition (2) holds. We prove (3) by
showing that ℓL is codense, which will make it one-one, whence the result
will follow. Suppose, then, that a is an element of λL with ℓL(a) = 1υL.
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By the hypothesis in condition (2), for the closed sublocale cλL(a), there is

a sublocale A of υL such that O
cλL(a)
λ = OA

υ . In light of Proposition 4.2
above and [12, Proposition 5.2], this implies

O(kL)∗[cλL(a)] = O(kL)∗[A],

and hence, with the closure taken in βL,

O(kL)∗[cλL(a)] = O(kL)∗[A],

by virtue of Lemma 4.6. Therefore (kL)∗[cλL(a)] = (kL)∗[A]. Calculating
these closures, keeping in mind the fact that localic maps preserve meets
and that (kL)∗ is one-one, we obtain

∧
(kL)∗[cλL(a)] =

∧
(kL)∗[A] =⇒ (kL)∗

(∧
cλL(a)

)
= (kL)∗

(∧
A
)

=⇒ (kL)∗(a) = (kL)∗
(∧

A
)

=⇒ a =
∧
A.

Consequently, a ∈ A, and so a ∈ υL since A ⊆ υL. But ℓL fixes elements
of υL because υL = Fix(ℓ), so we deduce that a = 1λL, which proves the
result.

It is proper that we point the reader to the article [8] where other char-
acterizations of the frames L with λL = υL are presented. Since πL is a
sublocale of λL whose elements are those fixed by the nucleus p : λL! λL
alluded to in Subsection 2.4, exactly the proof we have presented (with
obvious modifications) yields the following result.

Proposition 4.8. The following are equivalent for a completely regular
frame L.

(1) {OB
λ | B ∈ S(λL)} = {OB

π | B ∈ S(πL)}.
(2) {OB

λ | B ∈ S(λL) and B is closed} = {OB
π | B ∈ S(πL)}.

(3) πL = λL.

We close this section with the following two remarks.
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Remark 4.9. All the results in the theorems and propositions presented
above hold with the “operator” O(−) replaced by M (−), with exactly the
same proofs.

Remark 4.10. In Lemma 4.6 we saw that if two sublocales of βL index
the same O-ideal, then they have the same closure. This actually also holds
for the other coreflectors discussed here. We show it for υ. Suppose that
OA
υ = OB

υ for some sublocales A and B of υL. Then, by Proposition 4.4,

O(kL)∗[A] = O(kL)∗[B], and so, by Lemma 4.6, O(kL)∗[A] = O(kL)∗[B], so
that (kL)∗[A] = (kL)∗[B], and hence, by a calculation as in the proof of
Theorem 4.7,

∧
A =

∧
B, which implies clυLA = clυLB, as claimed.

5 Appendix: A little more on λL

In this appendix we aim to record a result about λL that does not seem to
have hitherto been mentioned in the literature, so far as we have been able
to determine. This is what has prompted us to pursue this matter.

In light of [7, Lemma 2.12], it turns out that (up to isomorphism), βL
is the Stone-Čech compactification of λL, of υL, and of πL. A glance at
diagram (‡) suggests that (up to isomorphism) λL is the universal Lin-
delöfication of both υL and πL. We prove that this is indeed the case.
Our proof mirrors that of the proof of [7, Lemma 2.12]. Let us set up the
ingredients.

Recall that if h : L!M is a dense frame homomorphism, then h∗(h(x)) ≤
y whenever x ≺ y (see, for instance, the proof of [17, Lemma V.6.6.1]). Next,
from [3, Proposition 4] we recall that every countable cover of a frame by
cozero elements has a shrinking. That is, if

∨
n∈Ncn = 1 for some sequence

(c)n∈N in Coz L, then there exists, for each n, an element bn ∈ Coz L such
that bn ≺≺ cn and

∨
n∈Nbn = 1. Finally, we recall from [1, Corollary 8.2.13]

that λL is the unique (up to isomorphism) Lindelöfication of h : M ! L of
L such that h∗ takes countable cozero covers to covers.

Proposition 5.1. Suppose that the homomorphism λL : λL! L factorizes
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as

λL

h

  

λL // L

M

g

>>

with h onto. Then h : λL ! M is, up to isomorphism, the universal Lin-
delöfication of M .

Proof. Simple calculation reveals that h is dense, so that h : λL ! M is
a Lindelöfication of M . To show that it is the universal one, consider a
sequence (cn)n∈N in Coz M with

∨
n∈Ncn = 1M . Let (dn)N be a shrinking of

(cn)n∈N. Then
∨
n∈Ng(dn) = 1L, and since each g(dn) is a cozero element of

L and (λL)∗ = h∗◦g∗, we have
∨
n∈Nh∗(g∗(g(dn))) = 1λL. Since g∗(g(dn)) ≤

cn for every n, it follows that
∨
n∈Nh∗(cn) = 1M , thus proving the result

by [1, Corollary 8.2.13].

As an immediate corollary we have the following results, one of which
can also be deduced from the fact that Coz(υL) = Coz(λL).

Corollary 5.2. For any completely regular frame L, ℓL : λL ! υL is the
universal Lindelöfication of υL and pL : λL ! πL is the universal Lin-
delöfication of πL.

Let us take a closer look at the result that pL : λL! πL is the universal
Lindelöfication of πL and see what further information can be extracted
from it. The first one is about R(πL). It is well documented that the rings
RL, R(υL) and R(λL) are all isomorphic. In light of Corollary 5.2, we
therefore have the ring isomorphisms

RL ∼= R(λL) ∼= R(υL) ∼= R(πL).

Next, in the language of [1], every frame is a dense C-quotient of its
universal Lindelöfication. Therefore, in light of [1, Theorem 8.2.12], we
have the σ-frame isomorphisms (including the ones that are already well
known)

Coz L ∼= Coz(λL) ∼= Coz(υL) ∼= Coz(πL).
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In [1], Ball and Walters-Wayland initiated the study of “disconnectivity”
properties in frames. These include being extremally disconnected, basically
disconnected, a P -frame, an almost P -frame, an F -frame, a quasi-F -frame.
Each of these frames has been characterized ring-theoretically by a number
of authors. Virtually everywhere where this has been done, it has been
mentioned that L satisfies one or the other disconnectivity property if and
only if λL does if and only if υL does. Now πL can also be added to these
lists.
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