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S-metrizability and the Wallman basis of
a frame

Cerene Rathilal

Dedicated to Themba Dube on the occasion of his 65th birthday

Abstract. The Wallman basis of a frame and the corresponding induced
compactification was first investigated by Baboolal [2]. In this paper, we pro-
vide an intrinsic characterisation of S-metrizability in terms of the Wallman
basis of a frame. Particularly, we show that a connected, locally connected
frame is S-metrizable if and only if it has a countable locally connected and
uniformly connected Wallman basis.

1 Introduction and Preliminaries

In [7], Garćıa-Máynez utilised the Wallman basis to construct locally con-
nected compactifications and characterise S-metrizable spaces. The pur-
pose of this paper is to generalise Garćıa-Máynez’s characterisation of S-
metrizable spaces. Thus we present a study of the Wallman basis of a frame,
which was introduced by Baboolal in [2], and the corresponding construc-
tion of the Wallman compactification of frame. We present an isomorphism
theorem for the Wallman compactification of dense metric sublocales of a
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metric frame. This together with Baboolal’s work on insular ideals of a
Wallman compactification (see [2]), leads to obtaining a generalization of
Garćıa-Máynez’s intrinsic characterisation of S-metrizability in terms of the
Wallman basis of a frame.

We will first recall relevant material which will be required. A frame L is a
complete lattice which satisfies the infinite distributive law:

x ∧
∨
S =

∨
{x ∧ s|s ∈ S},

for all x ∈ L, S ⊆ L, where
∨
S denotes

∨{s | s ∈ S}. The top element of
a frame L is denoted by 1L and the bottom element by 0L. If no ambiguity
is caused then we simply use 0 and 1. A map h : L −!M between frames
is called a frame homomorphism, if h preserves all finite meets, including
the top element, and all arbitrary joins, including the bottom element. h
is dense if whenever h(x) = 0M then x = 0L. h is an onto frame homo-
morphism if for every y ∈ L there is an x ∈ M such that h(x) = y, and
h is one-to-one if whenever h(a) = h(b), then a = b for a, b ∈ L. h is a
frame isomorphism if and only if h is onto, one-to-one. h has a right adjoint
h∗ : M −! L satisfying the property that for all x ∈ M and for all y ∈ L,
x ≤ h∗(y) iff h(x) ≤ y.

Given a topological space X, OX = {U ⊆ X| U is open} is a frame.
For any continuous map f : X −! Y , from the topological space X to a
topological space Y , we have a frame homomorphism,

O(f) : O(Y ) −! O(X),

U 7! f−1(U).

O : Top −! Frm is a contravariant functor, where Top denotes the cat-
egory of topological spaces and continuous maps, and Frm denotes the
category of frames and frame homomorphisms. The contravariant functor
is given by

Σ : Frm −! Top,

L 7! ΣL.
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ΣL, called the spectrum of L, is the space of all frame homomorphisms
ψ : L −! 2, where 2 denotes the two element frame {0, 1}. ΣL has open
sets Σa = {ψ ∈ ΣL | ψ(a) = 1}, for a ∈ L, and {Σa| a ∈ L} is a topology on
ΣL. For any frame homomorphism h : L −!M , we have Σh : ΣM −! ΣL
which is defined by composing a frame homomorphism from ΣM with h,
that is, Σh(ψ) = ψ · h, for ψ ∈ ΣM .

We now recall definitions of corresponding topological concepts for frames.
The pseudocomplement of a is denoted a∗ and is characterized by the fol-
lowing formula

a∗ =
∨

{x ∈ L | a ∧ x = 0}.

For elements a, b in a frame L, we say that a is rather below b, written
a ≺ b, if there exists an element c in L such that a∧ c = 0 and b∨ c = 1. A
frame L is said to be regular if

a =
∨

{x ∈ L | x ≺ a}, for every a in L.

A frame L is compact if whenever
∨
S = 1, then there exists a finite

subset F of S such that
∨
F = 1. An element x in a frame L is said to be

connected if whenever x = b∨ c with b∧ c = 0 we have either b = 0 or c = 0.
Furthermore, a frame L is connected if its top element 1 is connected, and
it is said to be locally connected provided each element in the frame can be
written as the join of connected elements.
A compactification of a frame M is a compact regular frame L together
with a dense onto homomorphism h : L −! M , denoted by (L, h). A
compactification (L, h) is said to be perfect with respect to an element
u ∈M , if

h∗(u ∨ u∗) = h∗(u) ∨ h∗(u∗),
where h∗ : M −! L is the right adjoint of h. The compactification (L, h)
is said to be a perfect compactification of M , if it is perfect with respect to
every element u ∈M .
We recall the following from Banaschewski [4]. A strong inclusion on a
frame M is a binary relation ◀ on M such that:

1. if x ≤ a ◀ b ≤ y then x ◀ y,
2. ◀ is a sublattice of M ×M ,
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3. a ◀ b =⇒ a ≺ b,

4. a ◀ b =⇒ a ≺ c ≺ b, for some c ∈M ,

5. a ◀ b =⇒ b∗ ◀ a∗,
6. for each a ∈M , a =

∨{x ∈M | x ◀ a}.
Let S(M) be the set of all strong inclusions on M . Let K(M) be the set of
all compactifications of M , partially ordered by (L, h) ≤ (N, f) if and only
if there exists a frame homomorphism g : L −! N making the following
diagram commute.

L N

M M

g

h f

Banaschewski [4] showed that K(M) is isomorphic to S(M) by defining
maps K(M) −! S(M) and S(M) −! K(M), which are inverses of each
other and are order preserving. For the map S(M) −! K(M), let ◀ be any
strong inclusion onM . Let γM be the set of all strongly regular ideals ofM
(That is, the ideals J of M such that x ∈ J implies there exists y ∈ J with
x ◀ y). Then the join map

∨
: γM −! M is dense and onto and γM is a

regular subframe of the frame of ideals of M , I(M). Hence
∨

: γM −!M
is a compactification of M associated with the given ◀.
We will be concerned with metric frames [10], which are defined as follows:
A diameter on a frame L is a map d : L −! R+ (the non-negative reals
including ∞) such that:

(M1) d(0) = 0.
(M2) If a ≤ b then d(a) ≤ d(b).
(M3) If a ∧ b ̸= 0 then d(a ∨ b) ≤ d(a) + d(b).
(M4) For each ε > 0, Udε = {u ∈ L| d(u) < ε} is a cover.
A diameter d is called compatible if
(M5) For each a ∈ L, a =

∨{x ∈ L | x �d a}, where x �d a means there
exists Udε such that

Udε x =
∨{u ∈ Udε | u ∧ x ̸= 0} ≤ a.

A diameter d is called a metric diameter if
(M6) For each a ∈ L with d(a) < ∞, and ε > 0 there exist u, v ≤ a,
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d(u), d(v) < ε such that
d(a)− ε < d(u ∨ v).

A frame L with a specified compatible metric diameter d is called a metric
frame and is denoted by (L, d). (L, d) is said to be uniformly locally con-
nected (abbreviated ulc) if given any ε > 0, there exists δ > 0 such that if
d(a) < δ then there exists a connected c, a ≤ c and d(c) < ε.

2 The Wallman compactification and dense sublocales of
compact metric frames

Our first aim is to show that every compact metric frame is a Wallman
compactification of each of its dense sublocales. In order to do so, we will
generalise a result of Steiner [13]. The Wallman compactification for frames
was first introduced by Johnstone [8]. We begin by defining the Wallman
compactification of a frame M .

Definition 2.1. For any frame M , B ⊆ M is called a Wallman basis of
M if:

1. The bottom and top elements of M are in B, and a, b ∈ B implies
that a ∨ b ∈ B and a ∧ b ∈ B.

2. For every a ∈ M , a =
∨{b ∈ B | b ≺B a}, where b ≺B a means that

there exists c ∈ B such that b ∧ c = 0 and c ∨ a = 1.

3. For a, b ∈ B such that a∨b = 1, there exist c, d ∈ B such that c∧d = 0
and a ∨ c = b ∨ d = 1.

Proposition 2.2 ([2]). Let M be a regular frame and B a Wallman basis
for M . Define a ◀B b in M by

a ◀B b iff there exists c ∈ B such that a ≺B c ≺B b.

Then ◀B is a strong inclusion on M .

From Proposition 2.2, the corresponding compactification associated
with this Wallman basis B, denoted by γBM , is called the Wallman com-
pactification of M . Here γBM consists of all strongly regular ideals of M
associated with ◀B and we have the join map

∨
: γBM −!M .
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Baboolal [2] also showed how using the Wallman basis of a frame, one could
obtain a Wallman basis for the corresponding Wallman compactification,
using the join map.

Proposition 2.3 ([2]). Let B be a Wallman basis ofM , then k(B) is a basis
for γBM where k :M −! γBM is the right adjoint of

∨
: γBM −!M .

We now recall a result of Steiner [13], in spaces. Before generalising
the result in frames, we also recall the statement of the Boolean Ultrafilter
Theorem which is required in the next proof we present.

Proposition 2.4 ([13]). If (X, d) is a compact metric space, then it has a
base B of open regular sets which satisfies the following: B1, B2 ∈ B implies
that B1 ∩ B2 ∈ B and B1 ∪ B2 ∈ B. We say that B is a ring consisting of
regular open sets.

Definition 2.5. An element a of a frame M is called regular if a = a∗∗.

Remark 2.6. We note the following:

1. If X is a topological space, then an open set U is said to be regular
open if U = int(U).

2. It can be shown that an open set U ∈ OX is regular open if and only
if U = U∗∗, where U∗ refers to the pseudocomplement of U in the
frame OX.
Thus an open set U is regular open if and only if U ∈ OX is a regular
element.

Definition 2.7. Let M be a frame and B ⊆ M . B is called a ring in M ,
if b1, b2 ∈ B implies that b1 ∧ b2 ∈ B and b1 ∨ b2 ∈ B.

Theorem 2.8 ([5], (Boolean ultrafilter theorem)). Every non trivial
Boolean algebra contains an ultrafilter (That is, a maximal proper filter).

Lemma 2.9 ([5]). The following are equivalent:

1. Every non trivial Boolean algebra contains an ultrafilter.

2. Every compact regular frame M is spatial.
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3. ΣM ̸= ∅, for every non-trivial, compact regular M .

In the next proposition we provide a generalisation Steiner’s result.

Proposition 2.10. If (M,d) is a compact metric frame, then M has a
base B of regular elements, and B is a ring.

Proof. If (M,d) is a compact metric frame then (M,d) is compact regular,
since every metric frame is regular. If we assume the Boolean ultrafilter
theorem, then by Lemma 2.9, M is spatial. Thus

η :M −! OΣM, given by η(a) = Σa = {ψ :M −! 2 | ψ(a) = 1},

for a ∈ M , is an isomorphism. From [6], (ΣM,ρ) is a metric space with
metric given by

ρ(ξ, η) = inf{d(a) | ξ(a) = 1 = η(a)}, for ξ, η ∈ ΣM,

and τρ (the topology on ΣM generated by ρ) is exactly OΣM. Furthermore,
since M is compact, OΣM is compact and therefore ΣM is compact. So
(ΣM,ρ) is a compact metric space and by Proposition 2.4, has a ring base
B consisting of regular open sets of ΣM . Each Σa ∈ B is regular open in
ΣM , so Σa ∈ OΣM is a regular element of the frame OΣM . Since η is an
isomorphism, η−1(B) = B is a ring base forM consisting of regular elements.
We can assume that 0M , 1M is also in B, without loss of generality, since
B ∪ {0M , 1M} is still a ring base for M .

The existence of a ring basis B of regular elements for a compact frame L,
is now guaranteed by Proposition 2.10. Utilizing this, we can show that for
any dense onto frame homomorphism h : L ! M where L is compact, the
image of B under h is a Wallman basis.

Proposition 2.11. Let h : L −!M be a dense onto frame homomorphism.
Suppose that L is compact and let B be a ring basis of regular elements of
L. Then h(B) is a Wallman basis of M .

Proof. (1): Take any h(b1), h(b2) ∈ h(B), for b1, b2 ∈ B. Then h(b1) ∧
h(b2) = h(b1 ∧ b2), and since B is a ring, h(b1 ∧ b2) ∈ h(B). Now h(b1) ∨
h(b2) = h(b1 ∨ b2) ∈ h(B), since B is a ring. Also, 0M = h(0L) ∈ h(B) and
1M = h(1L) ∈ h(B).
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(2): Take any w ∈ M . We will show that w =
∨{h(b) | b ∈ B, h(b) ≺h(B)

w}. Now w = h(a), for some a ∈ L since h is onto, and
a =

∨{b | b ∈ B, b ≺ a}, since L is regular and B is a basis of L.

Claim 1: b ≺ a⇐⇒ b ≺B a. (2.1)
For b ≺ a, we have b∗ ∨ a = 1L. Now b∗ =

∨{c | c ∈ B, c ≤ b∗}, so
by the compactness of L, we have c1 ∨ c2 ∨ ... ∨ cn ∨ a = 1L, for suitable
ci ≤ b∗ and ci ∈ B for i = 1, ..., n. Since B is closed under finite joins, then
c = c1 ∨ c2 ∨ ... ∨ cn ∈ B, and so c ∨ a = 1L with c ∈ B and c ≤ b∗. Hence
c∧ b = 0L. Thus for b ≺ a, we have shown that there exists c ∈ B such that
b ∧ c = 0L and c ∨ a = 1L. Hence b ≺B a.
Now b ≺B a implies b ≺ a is immediate, hence b ≺ a if and only if b ≺B a.

We also note that b ≺B a implies h(b) ≺h(B) h(a), since for c ∈ B such that
b ∧ c = 0L and c ∨ a = 1L, we have h(b) ∧ h(c) = 0M , h(c) ∨ h(a) = 1M and
h(c) ∈ h(B). Thus

w = h(a) = h(
∨

{b ∈ B | b ≺ a})

= h(
∨

{b ∈ B | b ≺B a})

=
∨

{h(b) | b ∈ B, b ≺B a}

≤
∨

{h(b) | b ∈ B, h(b) ≺h(B) h(a)}

=
∨

{h(b) | b ∈ B, h(b) ≺h(B) w}
≤ w.

So w =
∨{h(b) | b ∈ B, h(b) ≺h(B) w}, as required.

(3): Take any h(a), h(b) ∈ h(B) with a, b ∈ B, such that h(a) ∨ h(b) = 1M .
Then h(a ∨ b) = 1M . We have to show that there exist h(c), h(d) ∈ h(B)
such that h(c) ∧ h(d) = 0M and h(c) ∨ h(a) = 1M = h(d) ∨ h(b). Now
a ∨ b ∈ B, so a ∨ b is regular.
Claim 2: If x ∈ L is regular and h(x) = 1M , then x = 1L. (2.2)
Assume that h(x) = 1M where x is regular. Then,

(h(x))∗ = 0M

=⇒ h(x∗) = 0M
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=⇒ x∗ = 0L (since h is dense)

=⇒ x∗∗ = 1L.

Since x is regular, x = 1L, as claimed.

Hence h(a ∨ b) = 1M implies a ∨ b = 1L. Now a =
∨{x | x ∈ B, x ≺B a},

and b =
∨{y | y ∈ B, y ≺B b}, therefore
∨

{x | x ∈ B, x ≺B a} ∨
∨

{y | y ∈ B, y ≺B b} = 1L.

SinceM is compact, there exists x ∈ B with x ≺B a, and there exists y ∈ B
with y ≺B b such that x ∨ y = 1L. x ≺B a implies that there exists c ∈ B,
such that x ∧ c = 0L and c ∨ a = 1L, and y ≺B b implies that there exists
d ∈ B such that y ∧ d = 0L and d∨ b = 1L. Now, c∧ d = (c∧ d)∧ (x∨ y) =
(c∧d∧x)∨(c∧d∧y) = 0L. Hence h(c)∧h(d) = h(c∧d) = 0M . Furthermore,
h(c) ∨ h(a) = 1M , since c ∨ a = 1L and h(d) ∨ h(b) = 1M , since d ∨ b = 1L.
Hence condition (3) is satisfied.

We have shown that h(B) is a Wallman basis of M .

We briefly discuss an application of Proposition 2.11 to dense metric
sublocales to guarantee the existence of a Wallman basis for all dense metric
sublocales of compact frames. We recall the definition of a metric sublocale
[9].

Definition 2.12 ([9]). Let (L, ρ) be a metric frame and h : L −! M be
an onto frame homomorphism. For a ∈M , let

d(a) = inf{ρ(x) | a ≤ h(x), x ∈ L},

then d is a compatible metric diameter on M , and (M,d) is called a metric
sublocale of (L, ρ). Additionally, if h is a dense map, then we call (M,d) a
dense metric sublocale of (L, ρ).

Corollary 2.13. Let (M,d) be a dense metric sublocale of (L, ρ), with a
dense onto homomorphism h : L −!M. Suppose that L is compact and let
B be a ring basis of regular elements of L. Then h(B) is a Wallman basis
of M .
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Proof. Follows immediately from Proposition 2.11.

We now recall a result that follows directly from the work of Banaschewski
in [4].

Theorem 2.14 ([4]). Let M be a frame. Let (L, h) be a compactification of
M associated with strong inclusion ◀1, and let (N, f) be a compactification
of M associated with strong inclusion ◀2. If ◀1=◀2, then L ∼= N .

It is well-known in the literature that rather below relation, ≺, inter-
polates in a compact regular frame. We recall this fact below and then
present an isomorphism theorem for the Wallman compactification of dense
sublocales of a frame.

Proposition 2.15 ([5]). Let L be a compact regular frame. Then for any
a, b ∈ L, a ≺ b implies that there exists c ∈ L such that a ≺ c ≺ b. We say
that ≺ interpolates in a compact regular frame.

Theorem 2.16. With the conditions as in Proposition 2.13, the Wallman
compactification γh(B)M of M is isomorphic to L (as frames).

Proof. By Proposition 2.2, h(B) determines a strong inclusion on M given
by: x ◀ y for x, y ∈ M if and only if there exists h(b) for b ∈ B, such that
x ≺h(B) h(b) ≺h(B) y. Thus, γh(B)M = {J | J is a strongly regular ideal},
where J is said to be strong regular if x ∈ J implies there exists y ∈ J such
that x ◀ y. γh(B)M is a compact regular frame and the join map

∨
: γh(B)M −!M

J 7!
∨
J

makes γh(B)M a compactification of M . We will show that γh(B)M ∼=
L. Let h∗ be the right adjoint of h. We note that h : L −! M is a
compactification ofM (since L is a compact regular frame), and this induces
a strong inclusion ◀1 on M given by

x ◀1 y ⇐⇒ h∗(x) ≺ h∗(y).
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It suffices to show that ◀ = ◀1, for then by Theorem 2.14, γh(B)M ∼= L. So
suppose that x ◀1 y, for x, y ∈M . Then h∗(x) ≺ h∗(y) and therefore there
exists z ∈ L such that h∗(x) ≺ z ≺ h∗(y), since ≺ interpolates in compact
regular frames by Proposition 2.15. Now h∗(x) ≺ z implies h∗(x)∗∨ z = 1L,
and so h∗(x)∗ ∨

∨{b ∈ B | b ≤ z} = 1L. Since L is compact and B is closed
under finite joins, it follows that h∗(x)∗∨b = 1L, for some b ∈ B with b ≤ z.
Now,

h∗(x) ≺ b ≤ z ≺ h∗(y)

=⇒ h∗(x) ≺ b ≺ h∗(y) (b ∈ B)

=⇒ h∗(x) ≺B b ≺B h∗(y) (by equation (2.1))

=⇒ hh∗(x) ≺h(B) h(b) ≺h(B) hh∗(y)

=⇒ x ≺h(B) h(b) ≺h(B) y

=⇒ x ◀ y.

Now suppose x ◀ y, for x, y ∈M . Then there exists b1 ∈ B such that

x ≺h(B) h(b1) ≺h(B) y.

x ≺h(B) h(b1) implies there exists c1 ∈ B such that x ∧ h(c1) = 0M and
h(c1) ∨ h(b1) = 1M . Now h(h∗(x) ∧ c1) = hh∗(x) ∧ h(c1) = x ∧ h(c1) = 0M .
So, h∗(x)∧ c1 = 0L, since h is a dense map. Furthermore, c1∨ b1 ∈ B and is
therefore regular, so by equation (5.2), since h(c1∨b1) = h(c1)∨h(b1) = 1M ,
we must have c1 ∨ b1 = 1L. Hence we have shown that h∗(x) ≺ b1. Now, we
observe that

h(b1) ≤ y

=⇒ b1 ≤ h∗(y)

=⇒ h∗(x) ≺ b1 ≺ h∗(y)

=⇒ h∗(x) ≺ h∗(y)

=⇒ x ◀1 y.

Hence, we have shown that γh(B)M ∼= L.
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3 S-metrizability and the Wallman basis

The purpose of this section is to provide one of the main results of this
paper. We present a characterisation of S-metrizability in terms of the
Wallman basis of a frame. S-metrizabilty of a frame is defined in terms of a
connectedness property, called Property S, which is attributed to Sierpinski
[12].

Definition 3.1. Let (L, d) be a metric frame. L is said to have Property S
if, given any ε > 0, there exist a1, a2, ..., an such that

∨n
i=1 ai = 1, where ai

is connected and d(ai) < ε for each i.

Definition 3.2. Let (L, d) be a metric frame. Then (L, d) is S-metrizable
if L admits a metric diameter that has Property S.

In what remains, we will let M be a locally connected frame. We briefly
state required theory from [2].

Definition 3.3. An element 0 ̸= c ∈ M is a component of an element
u ∈M if:

1. c is connected and c ≤ u,

2. c is maximally connected in u (that is, whenever c ≤ x ≤ u and x is
connected in M , then c = x).

Remark 3.4. We note that if cα and cβ are components of u ∈ M , and
cα ̸= cβ, then cα ∧ cβ = 0

Definition 3.5. Let B ⊆ M be a Wallman basis. Then B is locally con-
nected if each component of each element of B is also in B.

Definition 3.6. A basis B of M is uniformly connected if whenever A is
finite,

∨
A = 1 and A ⊆ B, then there exists finite cover C ⊆ B, such that

every c ∈ C is connected and C is a refinement of A, denoted by C ≤ A.

Definition 3.7. Let γBM be the Wallman compactification associated with
a Wallman basis B. An ideal J ∈ γBM is said to be insular if whenever
x ∈ J , there exists y ∈ J having finitely many components, such that y ∈ B
and x ◀ y.
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In [2], Baboolal obtained the following characterisation for insular ideals
of the Wallman compactification associated with a locally connect Wallman
basis on a locally connected frame. This result plays an important role in
the main result of this paper.

Theorem 3.8 ([2]). Let B be a locally connected Wallman basis for the
locally connected frame M . Then the following are equivalent:

1.
∨

: γBM −!M is a perfect locally connected compactification of M .

2. B is uniformly connected.

3. Every ideal J in γBM is insular.

Although the following Lemma is known, it is difficult to find in the litera-
ture. We therefore, provide a proof for completeness.

Lemma 3.9. Let M be a locally connected frame and c be a component of
v ∈M . Then v ≤ c ∨ c∗.
Proof. By the local connectedness of M , v =

∨
α∈I cα, where cα are the

components of v. Now c = cα, for some α ∈ I. For β ̸= α, cβ ∧ cα = 0M ,
so cβ ≤ c∗. This implies that

∨
β ̸=α cβ ≤ c∗, therefore v = c ∨ (

∨
β ̸=α cβ) ≤

c ∨ c∗.

Next we shall show that S-metrizability of a locally connected frame en-
sures the existence of a countable locally connected and uniformly connected
Wallman basis. Before doing this, we need the following two propositions
on countability.

Proposition 3.10. Every compact metric frame has a countable base.

Proof. Let (M,d) be a compact metric frame. For each n ∈ N, Ud1
n

= {x ∈
M | d(x) < 1

n} is a cover of M . So by compactness of M , there exists a
finite cover Fn ⊆ Ud1

n

, of M .

Let B =
⋃∞
n=1 Fn. Then B is countable. We shall show that B is a base for

M . Take any a ∈ M . Then a =
∨{x ∈ M | x �d a}. Now for any x �d a,

there exists ε > 0, such that Udε x ≤ a. Take n ∈ N, such that 1
n < ε. Then

Ud1
n

x ≤ a. Since Fn is a cover of M ,

x = x ∧
∨

{y | y ∈ Fn} =
∨

{x ∧ y | y ∈ Fn, y ̸= 0}.
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Now, y ∈ Fn and x ∧ y ̸= 0 imply that y ≤ a and therefore

x ≤
∨

{y ∈ Fn | x ∧ y ̸= 0} ≤ a.

Since a is a join of the x’s, it follows that a is a join of elements that come
from B, since each y ∈ Fn is in B. So B is a countable base.

Proposition 3.11. If (M,d) is a compact locally connected metric frame,
then each u ∈M has only countably many components.

Proof. Since M is locally connected, u =
∨
α∈I cα, where cα are the compo-

nents of u. Let B be a countable base of M . The existence of a countable
base follows from Proposition 3.10. Each cα is a join of elements from B,
so we can choose any bα ∈ B such that bα ≤ cα. Whenever α, β ∈ I and
α ̸= β, then cα ∧ cβ = 0, therefore bα ̸= bβ. Thus if I were uncount-
able, then {bα}α∈I would be uncountable. But {bα}α∈I ⊆ B, and B is
countable. Hence {bα}α∈I is countable, which is a contradiction. Thus I is
countable.

Theorem 3.12 ([11]). Let (M,d) be a connected, locally connected metric
frame. Then (M,d) is S-metrizable if and only if (M,d) has a perfect locally
connected metrizable compactification.

We are now ready to present the main result of this section:

Proposition 3.13. Let (M,d) be a connected metric frame. If M is S-
metrizable then M has a countable, locally connected and uniformly con-
nected Wallman basis.

Proof. Assume that (M,d) is S-metrizable. Then by Theorem 3.12, (M,d)
has a perfect locally connected metrizable compactification (just take the
completion of (M,d)). Call it (L, ρ) and let h : (L, ρ) −! (M,d) be a dense
surjection where ρ(a) = d(h(a)), for all a ∈ L. We know by Propositions
2.10 and 3.10, that whenever L is a compact metric frame, then L has a
countable ring basis, call it B0, consisting of regular elements. Let

C0 = {c ∈ L | c is a component of some b ∈ B0},
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and let B1 = ⟨B0 ∪ C0⟩, where ⟨B0 ∪ C0⟩ denotes the ring generated by B0

and C0. We will now show that B1 is the smallest ring containing B0 and
C0. Since B1 = ⟨B0 ∪ C0⟩, we have

B1 = {x ∈ L | x is a finite join of elements y, y =

n∧

i=1

ti, ti ∈ B0 ∪ C0}.

Take any x, y ∈ B1. Then x =
∨n
i=1 xi, where xi = si1 ∧ ... ∧ siki , for

sij ∈ B0∪C0, and y =
∨m
i=1 yi, where yi = ti1∧...∧tiqi , for tiqi ∈ B0∪C0. Thus

x∨ y =
∨n
i=1 xi ∨

∨m
i=1 yi, with xi and yi as described above, so x∨ y ∈ B1.

Now, x∧ y =
∨n
i=1

∨m
j=1(xi ∧ yi), where xi ∧ yi = si1 ∧ ...∧ siki ∧ t

i
1 ∧ ...∧ tiqi .

So x ∧ y ∈ B1. Hence B1 is a ring containing B0 and C0, and B1 is the
smallest ring containing B0 and C0.
We now show that B1 consists of regular elements. We first note that if x
and y are regular then x ∧ y is regular. For if x = x∗∗ and y = y∗∗, then
(x ∧ y)∗∗ = x∗∗ ∧ y∗∗ = x ∧ y and so x ∧ y is regular. If c ∈ C0, then c is
a component of some b ∈ B0. Now c ≤ b implies that c∗∗ ≤ b∗∗ = b, so
c ≤ c∗∗ ≤ b. Now, c is connected therefore c∗∗ is connected. Since c is a
component we must have c = c∗∗. Hence c is regular. Thus B0∪C0 consists
of regular elements and finite meets of elements from B0∪C0 is regular. Let

H1 = {x ∈ L | x is a finite meet of elements from B0 ∪ C0}.

Then H1 consists of regular elements. For each m > 1, let

Hm = {x ∈ L | x is a join of at most m elements from H1}.

We prove by induction that each Hm consists of regular elements. Let
m > 1 and assume Hm−1 consists of regular elements. Let x ∈ Hm. Then
there exist h1, h2, ..., hm ∈ H1 such that x = h1 ∨ h2 ∨ ...∨ hm. Take any hk
for 1 ≤ k ≤ m. Now,

hk = b1 ∧ ... ∧ bt ∧ c1 ∧ ... ∧ cs (where bi ∈ B0, cj ∈ C0)

= b ∧ c1 ∧ ... ∧ cs,

where b = b1 ∧ ... ∧ bt ∈ B0, since B0 is a ring. Each ci is a component of
some vi ∈ B0, so

hk = b ∧ c1 ∧ ... ∧ cs
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≤ b ∧ v1 ∧ ... ∧ vs = dk ∈ B0.

Claim: dk ≤ hk ∨ h∗k.
hk ∨h∗k = (b∧ c1 ∧ ...∧ cs)∨ (b∧ c1 ∧ ...∧ cs)∗. Now hk = b∧ c1 ∧ ...∧ cs ≤ ci,
for i = 1, ..., s. So c∗i ≤ h∗k, for each i, and thus c∗1 ∨ ... ∨ c∗s ≤ h∗k. Hence,

hk ∨ h∗k ≥ (b ∧ c1 ∧ ... ∧ cs) ∨ (c∗1 ∨ ... ∨ c∗s)
= (b ∨ (c∗1 ∨ ... ∨ c∗s)) ∧ (c1 ∨ (c∗1 ∨ ... ∨ c∗s)) ∧ ... ∧ (cs ∨ (c∗1 ∨ ... ∨ c∗s))
≥ b ∧ (c1 ∨ c∗1 ∨ ... ∨ c∗s) ∧ (c2 ∨ c∗1 ∨ ... ∨ c∗s) ∧ ... ∧ (cs ∨ c∗1 ∨ ... ∨ c∗s)
≥ b ∧ (c1 ∨ c∗1) ∧ (c2 ∨ c∗2) ∧ ... ∧ (cs ∨ c∗s) (By Lemma 3.9)

≥ b ∧ v1 ∧ v2 ∧ ... ∧ vs = dk.

Thus proving the claim that dk ≤ hk ∨ h∗k.
We now show that x is regular. Firstly, x = h1∨h2∨...∨hm ≤ d1∨d2∨...∨dm.
Hence x∗∗ ≤ (d1 ∨ d2 ∨ ...∨ dm)∗∗ = d1 ∨ d2 ∨ ...∨ dm, since di ∈ B0 and B0

is a ring of regular elements. Fix any i, 1 ≤ i ≤ m. Now x = hi ∨
∨
j ̸=i hj ,

hence

x ∧ h∗i ≤
∨

j ̸=i
hj

=⇒ (x ∧ h∗i )∗∗ ≤ (
∨

j ̸=i
hj)

∗∗ =
∨

j ̸=i
hj (by the induction hypothesis)

=⇒ x∗∗ ∧ h∗∗∗i ≤
∨

j ̸=i
hj

=⇒ x∗∗ ∧ h∗i ≤
∨

j ̸=i
hj

Hence for all i, we have x∗∗ ∧ h∗i ≤
∨
j ̸=i hj . Now,

x∗∗ ≤ d1 ∨ d2 ∨ ... ∨ dm
≤ (h1 ∨ h∗1) ∨ (h2 ∨ h∗2) ∨ ... ∨ (hm ∨ h∗m)
= (h1 ∨ ... ∨ hm) ∨ (h∗1 ∨ ... ∨ h∗m)
= x ∨ h∗1 ∨ h∗2... ∨ h∗m.

Therefore,

x∗∗ = x∗∗ ∧ (x ∨ h∗1 ∨ h∗2... ∨ h∗m)



S-metrizability and the Wallman basis 171

= (x∗∗ ∧ x) ∨ (x∗∗ ∧ h∗1) ∨ (x∗∗ ∧ h∗2) ∨ ... ∨ (x∗∗ ∧ h∗m)
≤ x ∨

∨

j ̸=1

hj ∨
∨

j ̸=2

hj ∨ ... ∨
∨

j ̸=m
hj

≤ x.

Since x ≤ x∗∗, we conclude that x = x∗∗, and so x is regular.
Thus by induction on m, Hm consists of regular elements for every m > 1.
Thus B1 = ⟨B0 ∪ C0⟩ consists of regular elements. Let B2 = ⟨B1 ∪ C1⟩,
where C1 consists of components of elements from B1. By a similar argu-
ment in which we showed that B1 consists of regular elements, we can show
that B2 consists of regular elements. Thus B =

⋃∞
n=0Bn, consists of regular

elements. Also, B is a ring basis since Bn ⊆ Bn+1 and since each Bn is a
ring basis. Hence by Proposition 2.13, h(B) is a Wallman basis for (M,d).

Claim: h(B) is countable.
B0 is countable and by Proposition 3.11, since (L, ρ) is compact and locally
connected, it follows that C0 is countable. Thus the ring generated by B0

and C0 is countable. So B1 is countable. It follows that all Bn’s are count-
able. Hence B =

⋃∞
n=0Bn is countable. In addition, h(B) would then be a

countable base, as claimed.

We now show that h(B) is a locally connected base. Take any h(b) ∈ h(B),
where b ∈ B. Let w be a component of h(b). We will show that w ∈ h(B).
Now, b ∈ Bn for some n. We know that b =

∨
α{cα | cα is a component of b},

therefore
h(b) =

∨

α

{h(cα) | cα is a component of b}.

Since (L, ρ) is a perfect compactification, then each h(cα) is connected in
M . Now w ≤ h(b) implies w ∧ h(cα) ̸= 0M , for some component cα of b.
Therefore w ≤ w ∨ h(cα) ≤ h(b), with w ∨ h(cα) connected in M . Since w
is a component of h(b), h(cα) ≤ w. Also,

w = w ∧ h(b) = (w ∧ h(cα)) ∨
∨

β ̸=α
(w ∧ h(cβ)).

Furthermore,

(w ∧ h(cα)) ∧
∨

β ̸=α
(w ∧ h(cβ)) = w ∧ (h(cα) ∧

∨

β ̸=α
h(cβ)) = 0M .
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Whenever β ̸= α, then h(cα) ∧ h(cβ) = h(cα ∧ cβ) = h(0L) = 0M . So since
w is connected and w ∧ h(cα) ̸= 0M , we must have

∨
β ̸=α(w ∧ h(cβ)) = 0M .

Hence w = w ∧ h(cα) ≤ h(cα), and therefore w = h(cα). But cα is a com-
ponent of b ∈ Bn for some n, so cα ∈ Bn+1 ⊆ B. Thus w = h(cα) with
cα ∈ B, showing that h(B) is a locally connected basis.
Lastly, we show that h(B) is a uniformly connected base. We have h :
(L, ρ) −! (M,d) is a perfect locally connected metrizable compactifica-
tion of M , therefore by Proposition 2.16, the Wallman compactification
γh(B)M ∼= L, as frames. Thus γh(B)M is a perfect locally connected com-
pactification of M . By Theorem 3.8, h(B) is uniformly connected. Thus
h(B) is a countable, locally connected and uniformly connected Wallman
base for M .

4 The Main Result

The following metrization theory from [9], is required for our main result:

Definition 4.1. A subset X ⊆ M is said to be locally finite if there exists
a cover W of M such that each w ∈ W meets only finitely many elements
from X.

Definition 4.2. A basis B of M is said to be σ−locally finite if B =⋃∞
n=1Bn and each subset Bn is locally finite.

Theorem 4.3 ([9]). Let M be a regular frame. M is metrizable if and only
if M has a σ−locally finite basis.

We now establish our main result in this section, which is a generalisation
of a result of Garćıa-Máynez [7].

Theorem 4.4. Let M be a connected and locally connected frame. The
following are equivlent:

1. M is S-metrizable.

2. M has a countable locally connected and uniformly connected Wallman
basis.

3. M has a countable locally connected Wallman basis B such that every
ideal J of γBM is insular.
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Proof. 1 =⇒ 2: Follows from Proposition 3.13.

2 ⇐⇒ 3: Follows from Theorem 3.8.

2 =⇒ 1: Suppose then that M has a countable locally connected and uni-
formly connected Wallman basis B. By Theorem 3.8,

∨
: γBM −! M is

a perfect locally connected compactification of M . From Proposition 2.3,
k(B) is a basis for γBM , where k : M −! γBM is the right adjoint of∨

: γBM −!M . Since B is countable, then k(B) is countable. Thus γBM
has a countable basis and hence by Theorem 4.3 γBM must be metriz-
able, since it is regular . So M has a perfect locally connected metrizable
compactification and hence by Theorem 3.12 is S-metrizable.

Remark 4.5. It should be noted that in [7], Garćıa-Máynez does not as-
sume connectedness nor local connectedness. However, it is not expected
that local connectedness could be relaxed in the point-free context.

Acknowledgement

The author gratefully acknowledges support from National Research Foun-
dation via a Thuthuka grant and the reviewer for the valuable suggestions.

References

[1] Baboolal, B., Connectedness in metric frames, Appl. Categ. Structures 13 (2005),
161-169.

[2] Baboolal, B., Local connectedness and the Wallman compactification, Quaestions
Mathematicae. (2012), 245-257.

[3] Baboolal, D. and Banaschewski, B., Compactification and local connectedness of
frames, Pure Appl. Algebra 70 (1991), 3-16.

[4] Banaschewski, B., Compactification of frames, Math. Nachr. 149 (1990), 105-116.

[5] Banaschewski, B., Lecture on Frames, Seminar, University of Cape Town, 1988.

[6] Banaschewski, B. and Pultr, A., A Stone Duality for Metric Spaces, American Math-
ematical Society, 1992.
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