Categories and General Algebraic Structures with Applications

Volume 20, Number 1, January 2024, 155-174. https://doi.org/10.48308/cgasa.20.1.155

S-metrizability and the Wallman basis of a frame

Cerene Rathilal

Dedicated to Themba Dube on the occasion of his 65^{th} birthday

Abstract. The Wallman basis of a frame and the corresponding induced compactification was first investigated by Baboolal [2]. In this paper, we provide an intrinsic characterisation of S-metrizability in terms of the Wallman basis of a frame. Particularly, we show that a connected, locally connected frame is S-metrizable if and only if it has a countable locally connected and uniformly connected Wallman basis.

1 Introduction and Preliminaries

In [7], García-Máynez utilised the Wallman basis to construct locally connected compactifications and characterise S-metrizable spaces. The purpose of this paper is to generalise García-Máynez's characterisation of Smetrizable spaces. Thus we present a study of the Wallman basis of a frame, which was introduced by Baboolal in [2], and the corresponding construction of the Wallman compactification of frame. We present an isomorphism theorem for the Wallman compactification of dense metric sublocales of a

Mathematics Subject Classification [2020]: 06D22, 54E35.

Keywords: S-metrizable, Wallman basis, compactification, frame.

Received: 31 May 2023, Accepted: 20 November 2023.

ISSN: Print 2345-5853 Online 2345-5861.

[©] Shahid Beheshti University

metric frame. This together with Baboolal's work on insular ideals of a Wallman compactification (see [2]), leads to obtaining a generalization of García-Máynez's intrinsic characterisation of S-metrizability in terms of the Wallman basis of a frame.

We will first recall relevant material which will be required. A *frame* L is a complete lattice which satisfies the infinite distributive law:

$$x \land \bigvee S = \bigvee \{x \land s | s \in S\},$$

for all $x \in L, S \subseteq L$, where $\bigvee S$ denotes $\bigvee \{s \mid s \in S\}$. The top element of a frame L is denoted by 1_L and the bottom element by 0_L . If no ambiguity is caused then we simply use 0 and 1. A map $h: L \longrightarrow M$ between frames is called a *frame homomorphism*, if h preserves all finite meets, including the top element, and all arbitrary joins, including the bottom element. his *dense* if whenever $h(x) = 0_M$ then $x = 0_L$. h is an *onto* frame homomorphism if for every $y \in L$ there is an $x \in M$ such that h(x) = y, and h is *one-to-one* if whenever h(a) = h(b), then a = b for $a, b \in L$. h is a frame *isomorphism* if and only if h is onto, one-to-one. h has a *right adjoint* $h_*: M \longrightarrow L$ satisfying the property that for all $x \in M$ and for all $y \in L$, $x \leq h_*(y)$ iff $h(x) \leq y$.

Given a topological space X, $\mathcal{O}X = \{U \subseteq X | U \text{ is open}\}$ is a frame. For any continuous map $f : X \longrightarrow Y$, from the topological space X to a topological space Y, we have a frame homomorphism,

$$\mathcal{O}(f): \ \mathcal{O}(Y) \longrightarrow \mathcal{O}(X),$$

$$U \ \mapsto \ f^{-1}(U).$$

 $\mathcal{O}: \mathbf{Top} \longrightarrow \mathbf{Frm}$ is a contravariant functor, where **Top** denotes the category of topological spaces and continuous maps, and **Frm** denotes the category of frames and frame homomorphisms. The contravariant functor is given by

$$\begin{split} \Sigma : \mathbf{Frm} &\longrightarrow \mathbf{Top}, \\ L &\mapsto \Sigma L. \end{split}$$

 ΣL , called the spectrum of L, is the space of all frame homomorphisms $\psi : L \longrightarrow \underline{2}$, where $\underline{2}$ denotes the two element frame $\{0, 1\}$. ΣL has open sets $\Sigma_a = \{\psi \in \Sigma L \mid \psi(a) = 1\}$, for $a \in L$, and $\{\Sigma_a \mid a \in L\}$ is a topology on ΣL . For any frame homomorphism $h : L \longrightarrow M$, we have $\Sigma h : \Sigma M \longrightarrow \Sigma L$ which is defined by composing a frame homomorphism from ΣM with h, that is, $\Sigma h(\psi) = \psi \cdot h$, for $\psi \in \Sigma M$.

We now recall definitions of corresponding topological concepts for frames. The *pseudocomplement* of a is denoted a^* and is characterized by the following formula

$$a^* = \bigvee \{ x \in L \mid a \land x = 0 \}.$$

For elements a, b in a frame L, we say that a is rather below b, written $a \prec b$, if there exists an element c in L such that $a \wedge c = 0$ and $b \vee c = 1$. A frame L is said to be regular if

$$a = \bigvee \{x \in L \mid x \prec a\}, \text{ for every } a \text{ in } L$$

A frame L is compact if whenever $\bigvee S = 1$, then there exists a finite subset F of S such that $\bigvee F = 1$. An element x in a frame L is said to be connected if whenever $x = b \lor c$ with $b \land c = 0$ we have either b = 0 or c = 0. Furthermore, a frame L is connected if its top element 1 is connected, and it is said to be *locally connected* provided each element in the frame can be written as the join of connected elements.

A compactification of a frame M is a compact regular frame L together with a dense onto homomorphism $h : L \longrightarrow M$, denoted by (L, h). A compactification (L, h) is said to be *perfect* with respect to an element $u \in M$, if

$$h_*(u \lor u^*) = h_*(u) \lor h_*(u^*),$$

where $h_*: M \longrightarrow L$ is the right adjoint of h. The compactification (L, h) is said to be a *perfect compactification* of M, if it is perfect with respect to every element $u \in M$.

We recall the following from Banaschewski [4]. A strong inclusion on a frame M is a binary relation \blacktriangleleft on M such that:

- 1. if $x \leq a \blacktriangleleft b \leq y$ then $x \blacktriangleleft y$,
- 2. \blacktriangleleft is a sublattice of $M \times M$,

- 3. $a \blacktriangleleft b \Longrightarrow a \prec b$,
- 4. $a \blacktriangleleft b \Longrightarrow a \prec c \prec b$, for some $c \in M$,
- 5. $a \blacktriangleleft b \Longrightarrow b^* \blacktriangleleft a^*$,
- 6. for each $a \in M$, $a = \bigvee \{x \in M \mid x \blacktriangleleft a\}$.

Let S(M) be the set of all strong inclusions on M. Let K(M) be the set of all compactifications of M, partially ordered by $(L,h) \leq (N,f)$ if and only if there exists a frame homomorphism $g: L \longrightarrow N$ making the following diagram commute.

Banaschewski [4] showed that K(M) is isomorphic to S(M) by defining maps $K(M) \longrightarrow S(M)$ and $S(M) \longrightarrow K(M)$, which are inverses of each other and are order preserving. For the map $S(M) \longrightarrow K(M)$, let \blacktriangleleft be any strong inclusion on M. Let γM be the set of all strongly regular ideals of M(That is, the ideals J of M such that $x \in J$ implies there exists $y \in J$ with $x \blacktriangleleft y$). Then the join map $\bigvee : \gamma M \longrightarrow M$ is dense and onto and γM is a regular subframe of the frame of ideals of $M, \mathcal{I}(M)$. Hence $\bigvee : \gamma M \longrightarrow M$ is a compactification of M associated with the given \blacktriangleleft .

We will be concerned with metric frames [10], which are defined as follows: A *diameter* on a frame L is a map $d: L \longrightarrow \mathbb{R}^+$ (the non-negative reals including ∞) such that:

(M1) d(0) = 0.

(M2) If $a \leq b$ then $d(a) \leq d(b)$.

(M3) If $a \wedge b \neq 0$ then $d(a \vee b) \leq d(a) + d(b)$.

(M4) For each $\varepsilon > 0$, $U_{\varepsilon}^d = \{u \in L | d(u) < \varepsilon\}$ is a cover.

A diameter d is called *compatible* if

(M5) For each $a \in L$, $a = \bigvee \{x \in L \mid x \triangleleft_d a\}$, where $x \triangleleft_d a$ means there exists U^d_{ε} such that

$$U_{\varepsilon}^{d}x = \bigvee \{ u \in U_{\varepsilon}^{d} \mid u \land x \neq 0 \} \le a.$$

A diameter d is called a *metric diameter* if

(M6) For each $a \in L$ with $d(a) < \infty$, and $\varepsilon > 0$ there exist $u, v \leq a$,

 $d(u), d(v) < \varepsilon \text{ such that}$ $d(a) - \varepsilon < d(u \lor v).$

A frame L with a specified compatible metric diameter d is called a *metric* frame and is denoted by (L, d). (L, d) is said to be uniformly locally connected (abbreviated ulc) if given any $\varepsilon > 0$, there exists $\delta > 0$ such that if $d(a) < \delta$ then there exists a connected $c, a \leq c$ and $d(c) < \varepsilon$.

2 The Wallman compactification and dense sublocales of compact metric frames

Our first aim is to show that every compact metric frame is a Wallman compactification of each of its dense sublocales. In order to do so, we will generalise a result of Steiner [13]. The Wallman compactification for frames was first introduced by Johnstone [8]. We begin by defining the Wallman compactification of a frame M.

Definition 2.1. For any frame $M, B \subseteq M$ is called a *Wallman basis* of M if:

- 1. The bottom and top elements of M are in B, and $a, b \in B$ implies that $a \lor b \in B$ and $a \land b \in B$.
- 2. For every $a \in M$, $a = \bigvee \{b \in B \mid b \prec_B a\}$, where $b \prec_B a$ means that there exists $c \in B$ such that $b \wedge c = 0$ and $c \vee a = 1$.
- 3. For $a, b \in B$ such that $a \lor b = 1$, there exist $c, d \in B$ such that $c \land d = 0$ and $a \lor c = b \lor d = 1$.

Proposition 2.2 ([2]). Let M be a regular frame and B a Wallman basis for M. Define $a \blacktriangleleft_B b$ in M by

 $a \blacktriangleleft_B b$ iff there exists $c \in B$ such that $a \prec_B c \prec_B b$.

Then \blacktriangleleft_B is a strong inclusion on M.

From Proposition 2.2, the corresponding compactification associated with this Wallman basis B, denoted by $\gamma_B M$, is called the Wallman compactification of M. Here $\gamma_B M$ consists of all strongly regular ideals of Massociated with \blacktriangleleft_B and we have the join map $\bigvee : \gamma_B M \longrightarrow M$. Baboolal [2] also showed how using the Wallman basis of a frame, one could obtain a Wallman basis for the corresponding Wallman compactification, using the join map.

Proposition 2.3 ([2]). Let B be a Wallman basis of M, then k(B) is a basis for $\gamma_B M$ where $k: M \longrightarrow \gamma_B M$ is the right adjoint of $\bigvee : \gamma_B M \longrightarrow M$.

We now recall a result of Steiner [13], in spaces. Before generalising the result in frames, we also recall the statement of the Boolean Ultrafilter Theorem which is required in the next proof we present.

Proposition 2.4 ([13]). If (X, d) is a compact metric space, then it has a base \mathcal{B} of open regular sets which satisfies the following: $B_1, B_2 \in \mathcal{B}$ implies that $B_1 \cap B_2 \in \mathcal{B}$ and $B_1 \cup B_2 \in \mathcal{B}$. We say that \mathcal{B} is a ring consisting of regular open sets.

Definition 2.5. An element a of a frame M is called *regular* if $a = a^{**}$.

Remark 2.6. We note the following:

- 1. If X is a topological space, then an open set U is said to be regular open if $U = int(\overline{U})$.
- 2. It can be shown that an open set $U \in \mathcal{O}X$ is regular open if and only if $U = U^{**}$, where U^* refers to the pseudocomplement of U in the frame $\mathcal{O}X$. Thus an open set U is *regular open* if and only if $U \in \mathcal{O}X$ is a regular element.

Definition 2.7. Let M be a frame and $B \subseteq M$. B is called a *ring* in M, if $b_1, b_2 \in B$ implies that $b_1 \wedge b_2 \in B$ and $b_1 \vee b_2 \in B$.

Theorem 2.8 ([5], (Boolean ultrafilter theorem)). Every non trivial Boolean algebra contains an ultrafilter (That is, a maximal proper filter).

Lemma 2.9 ([5]). The following are equivalent:

- 1. Every non trivial Boolean algebra contains an ultrafilter.
- 2. Every compact regular frame M is spatial.

3. $\Sigma M \neq \emptyset$, for every non-trivial, compact regular M.

In the next proposition we provide a generalisation Steiner's result.

Proposition 2.10. If (M,d) is a compact metric frame, then M has a base B of regular elements, and B is a ring.

Proof. If (M, d) is a compact metric frame then (M, d) is compact regular, since every metric frame is regular. If we assume the Boolean ultrafilter theorem, then by Lemma 2.9, M is spatial. Thus

 $\eta: M \longrightarrow \mathcal{O}\Sigma M$, given by $\eta(a) = \Sigma_a = \{\psi: M \longrightarrow \underline{2} \mid \psi(a) = 1\},\$

for $a \in M$, is an isomorphism. From [6], $(\Sigma M, \rho)$ is a metric space with metric given by

$$\rho(\xi, \eta) = \inf\{d(a) \mid \xi(a) = 1 = \eta(a)\}, \text{ for } \xi, \eta \in \Sigma M,$$

and τ_{ρ} (the topology on ΣM generated by ρ) is exactly $\mathcal{O}\Sigma M$. Furthermore, since M is compact, $\mathcal{O}\Sigma M$ is compact and therefore ΣM is compact. So $(\Sigma M, \rho)$ is a compact metric space and by Proposition 2.4, has a ring base \mathcal{B} consisting of regular open sets of ΣM . Each $\Sigma_a \in \mathcal{B}$ is regular open in ΣM , so $\Sigma_a \in \mathcal{O}\Sigma M$ is a regular element of the frame $\mathcal{O}\Sigma M$. Since η is an isomorphism, $\eta^{-1}(\mathcal{B}) = B$ is a ring base for M consisting of regular elements. We can assume that $0_M, 1_M$ is also in B, without loss of generality, since $B \cup \{0_M, 1_M\}$ is still a ring base for M.

The existence of a ring basis B of regular elements for a compact frame L, is now guaranteed by Proposition 2.10. Utilizing this, we can show that for any dense onto frame homomorphism $h: L \to M$ where L is compact, the image of B under h is a Wallman basis.

Proposition 2.11. Let $h: L \longrightarrow M$ be a dense onto frame homomorphism. Suppose that L is compact and let B be a ring basis of regular elements of L. Then h(B) is a Wallman basis of M.

Proof. (1): Take any $h(b_1), h(b_2) \in h(B)$, for $b_1, b_2 \in B$. Then $h(b_1) \wedge h(b_2) = h(b_1 \wedge b_2)$, and since B is a ring, $h(b_1 \wedge b_2) \in h(B)$. Now $h(b_1) \vee h(b_2) = h(b_1 \vee b_2) \in h(B)$, since B is a ring. Also, $0_M = h(0_L) \in h(B)$ and $1_M = h(1_L) \in h(B)$.

(2): Take any $w \in M$. We will show that $w = \bigvee \{h(b) \mid b \in B, h(b) \prec_{h(B)} w\}$. Now w = h(a), for some $a \in L$ since h is onto, and

 $a = \bigvee \{b \mid b \in B, b \prec a\}, \text{ since } L \text{ is regular and } B \text{ is a basis of } L.$ <u>Claim 1</u>: $b \prec a \iff b \prec_B a.$ (2.1)

For $b \prec a$, we have $b^* \lor a = 1_L$. Now $b^* = \bigvee \{c \mid c \in B, c \leq b^*\}$, so by the compactness of L, we have $c_1 \lor c_2 \lor \ldots \lor c_n \lor a = 1_L$, for suitable $c_i \leq b^*$ and $c_i \in B$ for $i = 1, \ldots, n$. Since B is closed under finite joins, then $c = c_1 \lor c_2 \lor \ldots \lor c_n \in B$, and so $c \lor a = 1_L$ with $c \in B$ and $c \leq b^*$. Hence $c \land b = 0_L$. Thus for $b \prec a$, we have shown that there exists $c \in B$ such that $b \land c = 0_L$ and $c \lor a = 1_L$. Hence $b \prec_B a$.

Now $b \prec_B a$ implies $b \prec a$ is immediate, hence $b \prec a$ if and only if $b \prec_B a$.

We also note that $b \prec_B a$ implies $h(b) \prec_{h(B)} h(a)$, since for $c \in B$ such that $b \wedge c = 0_L$ and $c \vee a = 1_L$, we have $h(b) \wedge h(c) = 0_M$, $h(c) \vee h(a) = 1_M$ and $h(c) \in h(B)$. Thus

$$w = h(a) = h(\bigvee \{b \in B \mid b \prec a\})$$

= $h(\bigvee \{b \in B \mid b \prec_B a\})$
= $\bigvee \{h(b) \mid b \in B, b \prec_B a\}$
 $\leq \bigvee \{h(b) \mid b \in B, h(b) \prec_{h(B)} h(a)\}$
= $\bigvee \{h(b) \mid b \in B, h(b) \prec_{h(B)} w\}$
 $\leq w.$

So $w = \bigvee \{h(b) \mid b \in B, h(b) \prec_{h(B)} w\}$, as required.

(3): Take any $h(a), h(b) \in h(B)$ with $a, b \in B$, such that $h(a) \vee h(b) = 1_M$. Then $h(a \vee b) = 1_M$. We have to show that there exist $h(c), h(d) \in h(B)$ such that $h(c) \wedge h(d) = 0_M$ and $h(c) \vee h(a) = 1_M = h(d) \vee h(b)$. Now $a \vee b \in B$, so $a \vee b$ is regular.

<u>Claim 2</u>: If $x \in L$ is regular and $h(x) = 1_M$, then $x = 1_L$. (2.2) Assume that $h(x) = 1_M$ where x is regular. Then,

$$(h(x))^* = 0_M$$
$$\implies h(x^*) = 0_M$$

$$\implies x^* = 0_L \quad \text{(since } h \text{ is dense)}$$
$$\implies x^{**} = 1_L.$$

Since x is regular, $x = 1_L$, as claimed.

Hence $h(a \lor b) = 1_M$ implies $a \lor b = 1_L$. Now $a = \bigvee \{x \mid x \in B, x \prec_B a\}$, and $b = \bigvee \{y \mid y \in B, y \prec_B b\}$, therefore

$$\bigvee \{x \mid x \in B, \ x \prec_B a\} \lor \bigvee \{y \mid y \in B, \ y \prec_B b\} = 1_L.$$

Since M is compact, there exists $x \in B$ with $x \prec_B a$, and there exists $y \in B$ with $y \prec_B b$ such that $x \lor y = 1_L$. $x \prec_B a$ implies that there exists $c \in B$, such that $x \land c = 0_L$ and $c \lor a = 1_L$, and $y \prec_B b$ implies that there exists $d \in B$ such that $y \land d = 0_L$ and $d \lor b = 1_L$. Now, $c \land d = (c \land d) \land (x \lor y) =$ $(c \land d \land x) \lor (c \land d \land y) = 0_L$. Hence $h(c) \land h(d) = h(c \land d) = 0_M$. Furthermore, $h(c) \lor h(a) = 1_M$, since $c \lor a = 1_L$ and $h(d) \lor h(b) = 1_M$, since $d \lor b = 1_L$. Hence condition (3) is satisfied.

We have shown that h(B) is a Wallman basis of M.

We briefly discuss an application of Proposition 2.11 to dense metric sublocales to guarantee the existence of a Wallman basis for all dense metric sublocales of compact frames. We recall the definition of a metric sublocale [9].

Definition 2.12 ([9]). Let (L, ρ) be a metric frame and $h : L \longrightarrow M$ be an onto frame homomorphism. For $a \in M$, let

$$d(a) = \inf\{\rho(x) \mid a \le h(x), x \in L\},\$$

then d is a compatible metric diameter on M, and (M, d) is called a *metric* sublocale of (L, ρ) . Additionally, if h is a dense map, then we call (M, d) a dense metric sublocale of (L, ρ) .

Corollary 2.13. Let (M, d) be a dense metric sublocale of (L, ρ) , with a dense onto homomorphism $h : L \longrightarrow M$. Suppose that L is compact and let B be a ring basis of regular elements of L. Then h(B) is a Wallman basis of M.

Proof. Follows immediately from Proposition 2.11.

We now recall a result that follows directly from the work of Banaschewski in [4].

Theorem 2.14 ([4]). Let M be a frame. Let (L, h) be a compactification of M associated with strong inclusion \blacktriangleleft_1 , and let (N, f) be a compactification of M associated with strong inclusion $ৰ_2$. If $\blacktriangleleft_1 = \blacktriangleleft_2$, then $L \cong N$.

It is well-known in the literature that rather below relation, \prec , interpolates in a compact regular frame. We recall this fact below and then present an isomorphism theorem for the Wallman compactification of dense sublocales of a frame.

Proposition 2.15 ([5]). Let L be a compact regular frame. Then for any $a, b \in L$, $a \prec b$ implies that there exists $c \in L$ such that $a \prec c \prec b$. We say that \prec interpolates in a compact regular frame.

Theorem 2.16. With the conditions as in Proposition 2.13, the Wallman compactification $\gamma_{h(B)}M$ of M is isomorphic to L (as frames).

Proof. By Proposition 2.2, h(B) determines a strong inclusion on M given by: $x \blacktriangleleft y$ for $x, y \in M$ if and only if there exists h(b) for $b \in B$, such that $x \prec_{h(B)} h(b) \prec_{h(B)} y$. Thus, $\gamma_{h(B)}M = \{J \mid J \text{ is a strongly regular ideal}\}$, where J is said to be strong regular if $x \in J$ implies there exists $y \in J$ such that $x \blacktriangleleft y$. $\gamma_{h(B)}M$ is a compact regular frame and the join map

$$\bigvee : \gamma_{h(B)} M \longrightarrow M$$
$$J \longmapsto \bigvee J$$

makes $\gamma_{h(B)}M$ a compactification of M. We will show that $\gamma_{h(B)}M \cong L$. Let h_* be the right adjoint of h. We note that $h : L \longrightarrow M$ is a compactification of M (since L is a compact regular frame), and this induces a strong inclusion \blacktriangleleft_1 on M given by

$$x \blacktriangleleft_1 y \iff h_*(x) \prec h_*(y).$$

It suffices to show that $\blacktriangleleft = \blacktriangleleft_1$, for then by Theorem 2.14, $\gamma_{h(B)}M \cong L$. So suppose that $x \blacktriangleleft_1 y$, for $x, y \in M$. Then $h_*(x) \prec h_*(y)$ and therefore there exists $z \in L$ such that $h_*(x) \prec z \prec h_*(y)$, since \prec interpolates in compact regular frames by Proposition 2.15. Now $h_*(x) \prec z$ implies $h_*(x)^* \lor z = 1_L$, and so $h_*(x)^* \lor \bigvee \{b \in B \mid b \leq z\} = 1_L$. Since L is compact and B is closed under finite joins, it follows that $h_*(x)^* \lor b = 1_L$, for some $b \in B$ with $b \leq z$. Now,

$$h_*(x) \prec b \leq z \prec h_*(y)$$

$$\implies h_*(x) \prec b \prec h_*(y) \quad (b \in B)$$

$$\implies h_*(x) \prec_B b \prec_B h_*(y) \quad (\text{by equation (2.1)})$$

$$\implies hh_*(x) \prec_{h(B)} h(b) \prec_{h(B)} hh_*(y)$$

$$\implies x \prec_{h(B)} h(b) \prec_{h(B)} y$$

$$\implies x \blacktriangleleft y.$$

Now suppose $x \triangleleft y$, for $x, y \in M$. Then there exists $b_1 \in B$ such that

$$x \prec_{h(B)} h(b_1) \prec_{h(B)} y.$$

 $x \prec_{h(B)} h(b_1)$ implies there exists $c_1 \in B$ such that $x \wedge h(c_1) = 0_M$ and $h(c_1) \vee h(b_1) = 1_M$. Now $h(h_*(x) \wedge c_1) = hh_*(x) \wedge h(c_1) = x \wedge h(c_1) = 0_M$. So, $h_*(x) \wedge c_1 = 0_L$, since h is a dense map. Furthermore, $c_1 \vee b_1 \in B$ and is therefore regular, so by equation (5.2), since $h(c_1 \vee b_1) = h(c_1) \vee h(b_1) = 1_M$, we must have $c_1 \vee b_1 = 1_L$. Hence we have shown that $h_*(x) \prec b_1$. Now, we observe that

$$h(b_1) \leq y$$

$$\implies b_1 \leq h_*(y)$$

$$\implies h_*(x) \prec b_1 \prec h_*(y)$$

$$\implies h_*(x) \prec h_*(y)$$

$$\implies x \blacktriangleleft_1 y.$$

Hence, we have shown that $\gamma_{h(B)}M \cong L$.

3 S-metrizability and the Wallman basis

The purpose of this section is to provide one of the main results of this paper. We present a characterisation of S-metrizability in terms of the Wallman basis of a frame. S-metrizability of a frame is defined in terms of a connectedness property, called *Property S*, which is attributed to Sierpinski [12].

Definition 3.1. Let (L, d) be a metric frame. L is said to have Property S if, given any $\varepsilon > 0$, there exist $a_1, a_2, ..., a_n$ such that $\bigvee_{i=1}^n a_i = 1$, where a_i is connected and $d(a_i) < \varepsilon$ for each i.

Definition 3.2. Let (L, d) be a metric frame. Then (L, d) is *S*-metrizable if L admits a metric diameter that has Property S.

In what remains, we will let M be a locally connected frame. We briefly state required theory from [2].

Definition 3.3. An element $0 \neq c \in M$ is a *component* of an element $u \in M$ if:

- 1. c is connected and $c \leq u$,
- 2. c is maximally connected in u (that is, whenever $c \le x \le u$ and x is connected in M, then c = x).

Remark 3.4. We note that if c_{α} and c_{β} are components of $u \in M$, and $c_{\alpha} \neq c_{\beta}$, then $c_{\alpha} \wedge c_{\beta} = 0$

Definition 3.5. Let $B \subseteq M$ be a Wallman basis. Then B is *locally connected* if each component of each element of B is also in B.

Definition 3.6. A basis *B* of *M* is *uniformly connected* if whenever *A* is finite, $\bigvee A = 1$ and $A \subseteq B$, then there exists finite cover $C \subseteq B$, such that every $c \in C$ is connected and *C* is a refinement of *A*, denoted by $C \leq A$.

Definition 3.7. Let $\gamma_B M$ be the Wallman compactification associated with a Wallman basis B. An ideal $J \in \gamma_B M$ is said to be *insular* if whenever $x \in J$, there exists $y \in J$ having finitely many components, such that $y \in B$ and $x \blacktriangleleft y$.

In [2], Baboolal obtained the following characterisation for insular ideals of the Wallman compactification associated with a locally connect Wallman basis on a locally connected frame. This result plays an important role in the main result of this paper.

Theorem 3.8 ([2]). Let B be a locally connected Wallman basis for the locally connected frame M. Then the following are equivalent:

- 1. \bigvee : $\gamma_B M \longrightarrow M$ is a perfect locally connected compactification of M.
- 2. B is uniformly connected.
- 3. Every ideal J in $\gamma_B M$ is insular.

Although the following Lemma is known, it is difficult to find in the literature. We therefore, provide a proof for completeness.

Lemma 3.9. Let M be a locally connected frame and c be a component of $v \in M$. Then $v \leq c \vee c^*$.

Proof. By the local connectedness of M, $v = \bigvee_{\alpha \in I} c_{\alpha}$, where c_{α} are the components of v. Now $c = c_{\alpha}$, for some $\alpha \in I$. For $\beta \neq \alpha$, $c_{\beta} \wedge c_{\alpha} = 0_M$, so $c_{\beta} \leq c^*$. This implies that $\bigvee_{\beta \neq \alpha} c_{\beta} \leq c^*$, therefore $v = c \lor (\bigvee_{\beta \neq \alpha} c_{\beta}) \leq c \lor c^*$.

Next we shall show that S-metrizability of a locally connected frame ensures the existence of a countable locally connected and uniformly connected Wallman basis. Before doing this, we need the following two propositions on *countability*.

Proposition 3.10. Every compact metric frame has a countable base.

Proof. Let (M, d) be a compact metric frame. For each $n \in \mathbb{N}$, $U_{\frac{1}{n}}^d = \{x \in M \mid d(x) < \frac{1}{n}\}$ is a cover of M. So by compactness of M, there exists a finite cover $F_n \subseteq U_{\frac{1}{n}}^d$, of M.

Let $B = \bigcup_{n=1}^{\infty} F_n$. Then *B* is countable. We shall show that *B* is a base for *M*. Take any $a \in M$. Then $a = \bigvee \{x \in M \mid x \triangleleft_d a\}$. Now for any $x \triangleleft_d a$, there exists $\varepsilon > 0$, such that $U_{\varepsilon}^d x \leq a$. Take $n \in \mathbb{N}$, such that $\frac{1}{n} < \varepsilon$. Then $U_{\underline{1}}^d x \leq a$. Since F_n is a cover of *M*,

$$x = x \land \bigvee \{y \mid y \in F_n\} = \bigvee \{x \land y \mid y \in F_n, y \neq 0\}$$

Now, $y \in F_n$ and $x \wedge y \neq 0$ imply that $y \leq a$ and therefore

$$x \le \bigvee \{y \in F_n \mid x \land y \ne 0\} \le a.$$

Since a is a join of the x's, it follows that a is a join of elements that come from B, since each $y \in F_n$ is in B. So B is a countable base.

Proposition 3.11. If (M, d) is a compact locally connected metric frame, then each $u \in M$ has only countably many components.

Proof. Since M is locally connected, $u = \bigvee_{\alpha \in I} c_{\alpha}$, where c_{α} are the components of u. Let B be a countable base of M. The existence of a countable base follows from Proposition 3.10. Each c_{α} is a join of elements from B, so we can choose any $b_{\alpha} \in B$ such that $b_{\alpha} \leq c_{\alpha}$. Whenever $\alpha, \beta \in I$ and $\alpha \neq \beta$, then $c_{\alpha} \wedge c_{\beta} = 0$, therefore $b_{\alpha} \neq b_{\beta}$. Thus if I were uncountable, then $\{b_{\alpha}\}_{\alpha \in I}$ would be uncountable. But $\{b_{\alpha}\}_{\alpha \in I} \subseteq B$, and B is countable. Hence $\{b_{\alpha}\}_{\alpha \in I}$ is countable, which is a contradiction. Thus I is countable.

Theorem 3.12 ([11]). Let (M, d) be a connected, locally connected metric frame. Then (M, d) is S-metrizable if and only if (M, d) has a perfect locally connected metrizable compactification.

We are now ready to present the main result of this section:

Proposition 3.13. Let (M, d) be a connected metric frame. If M is Smetrizable then M has a countable, locally connected and uniformly connected Wallman basis.

Proof. Assume that (M, d) is S-metrizable. Then by Theorem 3.12, (M, d) has a perfect locally connected metrizable compactification (just take the completion of (M, d)). Call it (L, ρ) and let $h : (L, \rho) \longrightarrow (M, d)$ be a dense surjection where $\rho(a) = d(h(a))$, for all $a \in L$. We know by Propositions 2.10 and 3.10, that whenever L is a compact metric frame, then L has a countable ring basis, call it B_0 , consisting of regular elements. Let

 $C_0 = \{ c \in L \mid c \text{ is a component of some } b \in B_0 \},\$

and let $B_1 = \langle B_0 \cup C_0 \rangle$, where $\langle B_0 \cup C_0 \rangle$ denotes the ring generated by B_0 and C_0 . We will now show that B_1 is the smallest ring containing B_0 and C_0 . Since $B_1 = \langle B_0 \cup C_0 \rangle$, we have

$$B_1 = \{ x \in L \mid x \text{ is a finite join of elements } y, \ y = \bigwedge_{i=1}^n t_i, \ t_i \in B_0 \cup C_0 \}.$$

Take any $x, y \in B_1$. Then $x = \bigvee_{i=1}^n x_i$, where $x_i = s_1^i \wedge \ldots \wedge s_{k_i}^i$, for $s_j^i \in B_0 \cup C_0$, and $y = \bigvee_{i=1}^m y_i$, where $y_i = t_1^i \wedge \ldots \wedge t_{q_i}^i$, for $t_{q_i}^i \in B_0 \cup C_0$. Thus $x \lor y = \bigvee_{i=1}^n x_i \lor \bigvee_{i=1}^m y_i$, with x_i and y_i as described above, so $x \lor y \in B_1$. Now, $x \land y = \bigvee_{i=1}^n \bigvee_{j=1}^m (x_i \land y_i)$, where $x_i \land y_i = s_1^i \land \ldots \land s_{k_i}^i \land t_1^i \land \ldots \land t_{q_i}^i$. So $x \land y \in B_1$. Hence B_1 is a ring containing B_0 and C_0 , and B_1 is the smallest ring containing B_0 and C_0 .

We now show that B_1 consists of regular elements. We first note that if xand y are regular then $x \wedge y$ is regular. For if $x = x^{**}$ and $y = y^{**}$, then $(x \wedge y)^{**} = x^{**} \wedge y^{**} = x \wedge y$ and so $x \wedge y$ is regular. If $c \in C_0$, then c is a component of some $b \in B_0$. Now $c \leq b$ implies that $c^{**} \leq b^{**} = b$, so $c \leq c^{**} \leq b$. Now, c is connected therefore c^{**} is connected. Since c is a component we must have $c = c^{**}$. Hence c is regular. Thus $B_0 \cup C_0$ consists of regular elements and finite meets of elements from $B_0 \cup C_0$ is regular. Let

 $H_1 = \{x \in L \mid x \text{ is a finite meet of elements from } B_0 \cup C_0\}.$

Then H_1 consists of regular elements. For each m > 1, let

 $H_m = \{x \in L \mid x \text{ is a join of at most } m \text{ elements from } H_1\}.$

We prove by induction that each H_m consists of regular elements. Let m > 1 and assume H_{m-1} consists of regular elements. Let $x \in H_m$. Then there exist $h_1, h_2, ..., h_m \in H_1$ such that $x = h_1 \vee h_2 \vee ... \vee h_m$. Take any h_k for $1 \le k \le m$. Now,

$$h_k = b_1 \wedge \dots \wedge b_t \wedge c_1 \wedge \dots \wedge c_s \quad (\text{where } b_i \in B_0, c_j \in C_0)$$
$$= b \wedge c_1 \wedge \dots \wedge c_s,$$

where $b = b_1 \wedge ... \wedge b_t \in B_0$, since B_0 is a ring. Each c_i is a component of some $v_i \in B_0$, so

$$h_k = b \wedge c_1 \wedge \dots \wedge c_s$$

$$\leq b \wedge v_1 \wedge \dots \wedge v_s = d_k \in B_0.$$

 $\begin{array}{l} \underline{\text{Claim:}} & d_k \leq h_k \lor h_k^*. \\ h_k \lor h_k^* = (b \land c_1 \land \ldots \land c_s) \lor (b \land c_1 \land \ldots \land c_s)^*. \text{ Now } h_k = b \land c_1 \land \ldots \land c_s \leq c_i, \\ \text{for } i = 1, \ldots, s. \text{ So } c_i^* \leq h_k^*, \text{ for each } i, \text{ and thus } c_1^* \lor \ldots \lor c_s^* \leq h_k^*. \text{ Hence,} \end{array}$

$$\begin{split} h_k \vee h_k^* &\geq (b \wedge c_1 \wedge \ldots \wedge c_s) \vee (c_1^* \vee \ldots \vee c_s^*) \\ &= (b \vee (c_1^* \vee \ldots \vee c_s^*)) \wedge (c_1 \vee (c_1^* \vee \ldots \vee c_s^*)) \wedge \ldots \wedge (c_s \vee (c_1^* \vee \ldots \vee c_s^*)) \\ &\geq b \wedge (c_1 \vee c_1^* \vee \ldots \vee c_s^*) \wedge (c_2 \vee c_1^* \vee \ldots \vee c_s^*) \wedge \ldots \wedge (c_s \vee c_1^* \vee \ldots \vee c_s^*) \\ &\geq b \wedge (c_1 \vee c_1^*) \wedge (c_2 \vee c_2^*) \wedge \ldots \wedge (c_s \vee c_s^*) \quad (By \text{ Lemma 3.9}) \\ &\geq b \wedge v_1 \wedge v_2 \wedge \ldots \wedge v_s = d_k. \end{split}$$

Thus proving the claim that $d_k \leq h_k \vee h_k^*$. We now show that x is regular. Firstly, $x = h_1 \vee h_2 \vee \ldots \vee h_m \leq d_1 \vee d_2 \vee \ldots \vee d_m$. Hence $x^{**} \leq (d_1 \vee d_2 \vee \ldots \vee d_m)^{**} = d_1 \vee d_2 \vee \ldots \vee d_m$, since $d_i \in B_0$ and B_0 is a ring of regular elements. Fix any $i, 1 \leq i \leq m$. Now $x = h_i \vee \bigvee_{j \neq i} h_j$, hence

$$\begin{aligned} x \wedge h_i^* &\leq \bigvee_{j \neq i} h_j \\ \implies (x \wedge h_i^*)^{**} &\leq (\bigvee_{j \neq i} h_j)^{**} = \bigvee_{j \neq i} h_j \quad \text{(by the induction hypothesis)} \\ \implies x^{**} \wedge h_i^{***} &\leq \bigvee_{j \neq i} h_j \\ \implies x^{**} \wedge h_i^* &\leq \bigvee_{j \neq i} h_j \end{aligned}$$

Hence for all *i*, we have $x^{**} \wedge h_i^* \leq \bigvee_{j \neq i} h_j$. Now,

$$\begin{aligned} x^{**} &\leq d_1 \lor d_2 \lor \ldots \lor d_m \\ &\leq (h_1 \lor h_1^*) \lor (h_2 \lor h_2^*) \lor \ldots \lor (h_m \lor h_m^*) \\ &= (h_1 \lor \ldots \lor h_m) \lor (h_1^* \lor \ldots \lor h_m^*) \\ &= x \lor h_1^* \lor h_2^* \ldots \lor h_m^*. \end{aligned}$$

Therefore,

$$x^{**} = x^{**} \land (x \lor h_1^* \lor h_2^* \dots \lor h_m^*)$$

$$= (x^{**} \wedge x) \vee (x^{**} \wedge h_1^*) \vee (x^{**} \wedge h_2^*) \vee \ldots \vee (x^{**} \wedge h_m^*)$$

$$\leq x \vee \bigvee_{j \neq 1} h_j \vee \bigvee_{j \neq 2} h_j \vee \ldots \vee \bigvee_{j \neq m} h_j$$

$$\leq x.$$

Since $x \leq x^{**}$, we conclude that $x = x^{**}$, and so x is regular.

Thus by induction on m, H_m consists of regular elements for every m > 1. Thus $B_1 = \langle B_0 \cup C_0 \rangle$ consists of regular elements. Let $B_2 = \langle B_1 \cup C_1 \rangle$, where C_1 consists of components of elements from B_1 . By a similar argument in which we showed that B_1 consists of regular elements, we can show that B_2 consists of regular elements. Thus $B = \bigcup_{n=0}^{\infty} B_n$, consists of regular elements. Also, B is a ring basis since $B_n \subseteq B_{n+1}$ and since each B_n is a ring basis. Hence by Proposition 2.13, h(B) is a Wallman basis for (M, d).

<u>Claim</u>: h(B) is countable.

 B_0 is countable and by Proposition 3.11, since (L, ρ) is compact and locally connected, it follows that C_0 is countable. Thus the ring generated by B_0 and C_0 is countable. So B_1 is countable. It follows that all B_n 's are countable. Hence $B = \bigcup_{n=0}^{\infty} B_n$ is countable. In addition, h(B) would then be a countable base, as claimed.

We now show that h(B) is a locally connected base. Take any $h(b) \in h(B)$, where $b \in B$. Let w be a component of h(b). We will show that $w \in h(B)$. Now, $b \in B_n$ for some n. We know that $b = \bigvee_{\alpha} \{c_{\alpha} \mid c_{\alpha} \text{ is a component of } b\}$, therefore

$$h(b) = \bigvee_{\alpha} \{h(c_{\alpha}) \mid c_{\alpha} \text{ is a component of } b\}.$$

Since (L, ρ) is a perfect compactification, then each $h(c_{\alpha})$ is connected in M. Now $w \leq h(b)$ implies $w \wedge h(c_{\alpha}) \neq 0_M$, for some component c_{α} of b. Therefore $w \leq w \vee h(c_{\alpha}) \leq h(b)$, with $w \vee h(c_{\alpha})$ connected in M. Since w is a component of h(b), $h(c_{\alpha}) \leq w$. Also,

$$w = w \wedge h(b) = (w \wedge h(c_{\alpha})) \vee \bigvee_{\beta \neq \alpha} (w \wedge h(c_{\beta})).$$

Furthermore,

$$(w \wedge h(c_{\alpha})) \wedge \bigvee_{\beta \neq \alpha} (w \wedge h(c_{\beta})) = w \wedge (h(c_{\alpha}) \wedge \bigvee_{\beta \neq \alpha} h(c_{\beta})) = 0_{M}.$$

Whenever $\beta \neq \alpha$, then $h(c_{\alpha}) \wedge h(c_{\beta}) = h(c_{\alpha} \wedge c_{\beta}) = h(0_L) = 0_M$. So since w is connected and $w \wedge h(c_{\alpha}) \neq 0_M$, we must have $\bigvee_{\beta \neq \alpha} (w \wedge h(c_{\beta})) = 0_M$. Hence $w = w \wedge h(c_{\alpha}) \leq h(c_{\alpha})$, and therefore $w = h(c_{\alpha})$. But c_{α} is a component of $b \in B_n$ for some n, so $c_{\alpha} \in B_{n+1} \subseteq B$. Thus $w = h(c_{\alpha})$ with $c_{\alpha} \in B$, showing that h(B) is a locally connected basis. Lastly, we show that h(B) is a uniformly connected base. We have h:

Lastly, we show that h(B) is a uniformity connected base. We have $h : (L, \rho) \longrightarrow (M, d)$ is a perfect locally connected metrizable compactification of M, therefore by Proposition 2.16, the Wallman compactification $\gamma_{h(B)}M \cong L$, as frames. Thus $\gamma_{h(B)}M$ is a perfect locally connected compactification of M. By Theorem 3.8, h(B) is uniformly connected. Thus h(B) is a countable, locally connected and uniformly connected Wallman base for M.

4 The Main Result

The following metrization theory from [9], is required for our main result:

Definition 4.1. A subset $X \subseteq M$ is said to be *locally finite* if there exists a cover W of M such that each $w \in W$ meets only finitely many elements from X.

Definition 4.2. A basis *B* of *M* is said to be σ -locally finite if $B = \bigcup_{n=1}^{\infty} B_n$ and each subset B_n is locally finite.

Theorem 4.3 ([9]). Let M be a regular frame. M is metrizable if and only if M has a σ -locally finite basis.

We now establish our main result in this section, which is a generalisation of a result of García-Máynez [7].

Theorem 4.4. Let M be a connected and locally connected frame. The following are equivlent:

- 1. M is S-metrizable.
- 2. *M* has a countable locally connected and uniformly connected Wallman basis.
- 3. *M* has a countable locally connected Wallman basis *B* such that every ideal *J* of $\gamma_B M$ is insular.

Proof. $1 \Longrightarrow 2$: Follows from Proposition 3.13.

 $2 \iff 3$: Follows from Theorem 3.8.

 $2 \implies 1$: Suppose then that M has a countable locally connected and uniformly connected Wallman basis B. By Theorem 3.8, $\bigvee : \gamma_B M \longrightarrow M$ is a perfect locally connected compactification of M. From Proposition 2.3, k(B) is a basis for $\gamma_B M$, where $k : M \longrightarrow \gamma_B M$ is the right adjoint of $\bigvee : \gamma_B M \longrightarrow M$. Since B is countable, then k(B) is countable. Thus $\gamma_B M$ has a countable basis and hence by Theorem 4.3 $\gamma_B M$ must be metrizable, since it is regular . So M has a perfect locally connected metrizable compactification and hence by Theorem 3.12 is S-metrizable.

Remark 4.5. It should be noted that in [7], García-Máynez does not assume connectedness nor local connectedness. However, it is not expected that local connectedness could be relaxed in the point-free context.

Acknowledgement

The author gratefully acknowledges support from National Research Foundation via a Thuthuka grant and the reviewer for the valuable suggestions.

References

- Baboolal, B., Connectedness in metric frames, Appl. Categ. Structures 13 (2005), 161-169.
- [2] Baboolal, B., Local connectedness and the Wallman compactification, Quaestions Mathematicae. (2012), 245-257.
- [3] Baboolal, D. and Banaschewski, B., Compactification and local connectedness of frames, Pure Appl. Algebra 70 (1991), 3-16.
- [4] Banaschewski, B., Compactification of frames, Math. Nachr. 149 (1990), 105-116.
- [5] Banaschewski, B., Lecture on Frames, Seminar, University of Cape Town, 1988.
- [6] Banaschewski, B. and Pultr, A., A Stone Duality for Metric Spaces, American Mathematical Society, 1992.
- [7] García-Máynez, A., Property C, Wallman basis and S-metrizability, Topology Appl. 12 (1981), 237-246.

- [8] Johnstone, P.T., Wallman compactification of locales, Houston J. Math. 10(2) (1984), 201-206.
- [9] Picado, J. and Pultr, A., Frames and Locales: Topology without points, Frontiers in Mathematics, Springer Basel AG, 2012.
- [10] Pultr, A., Pointless uniformities I. complete regularity, Comment. Math. Univ. Carolin 25(1) (1984), 91-104.
- [11] Rathilal, C., A note on S-metrizable frames, Topology Appl 307 (2022).
- [12] Sierpinski, W., Sur une condition pour qu'un continu soit une courbe jordanienne, Fund. Math 1 (1920), 44-60.
- [13] Steiner, E.F., Wallman spaces and compactification, Fund. Math. 61 (1967), 295-304.

Cerene Rathilal School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa.

National Institute for Theoretical and Computational Sciences (NITheCS), South Africa. Email: rathilalc@ukzn.ac.za