α-projectable and laterally α-complete Archimedean lattice-ordered groups with weak unit via topology

Anthony W. Hager and Brian Wynne*
Dedicated to Themba Dube on the occasion of his 65 th birthday

Abstract

Let \mathbf{W} be the category of Archimedean lattice-ordered groups with weak order unit, Comp the category of compact Hausdorff spaces, and $\mathbf{W} \xrightarrow{Y} \mathbf{C o m p}$ the Yosida functor, which represents a \mathbf{W}-object A as consisting of extended real-valued functions $A \leq D(Y A)$ and uniquely for various features. This yields topological mirrors for various algebraic (\mathbf{W}-theoretic) properties providing close analysis of the latter. We apply this to the subclasses of α-projectable, and laterally α-complete objects, denoted $P(\alpha)$ and $L(\alpha)$, where α is a regular infinite cardinal or ∞. Each \mathbf{W}-object A has unique minimum essential extensions $A \leq p(\alpha) A \leq l(\alpha) A$ in the classes $P(\alpha)$ and $L(\alpha)$, respectively, and the spaces $Y p(\alpha) A$ and $Y l(\alpha) A$ are recognizable (for the most part); then we write down what $p(\alpha) A$ and $l(\alpha) A$ are as functions on these spaces. The operators $p(\alpha)$ and $l(\alpha)$ are compared: we show that both preserve closure under all implicit functorial operations which are finitary. The cases of $A=C(X)$ receive special attention. In particular, if $(\omega<\alpha) l(\alpha) C(X)=C(Y l(\alpha) C(X))$, then X is finite. But $(\omega \leq \alpha)$ for

[^0]infinite $X, p(\alpha) C(X)$ sometimes is, and sometimes is not, $C(Y p(\alpha) C(X))$.

1 Introduction and Preliminaries

We begin with basic definitions, etc., trying to make the Abstract quickly comprehensible. More detail is in the introductions to [23] and [24], of which this paper is a loose continuation. General references for ℓ-groups and vector lattices are [1], [4], [12], and [32].

Definition 1.1. In an ℓ-group A (always assumed Archimedean, thus Abelian):
For $S \subseteq A, S^{\perp} \equiv\{a \in A| | a|\wedge| s \mid=0 \forall s \in S\}$ is an ideal (convex sub- ℓ-group). Ideals $S^{\perp \perp}$ are called polars.

Let α be a regular infinite cardinal or the symbol ∞; we write $\omega \leq \alpha \leq$ ∞. $|S|$ is the cardinal of the set S, and $|S|<\infty$ means S is of any size.

An α-polar in A is an $S^{\perp \perp}$ for $|S|<\alpha$.
$A \in P(\alpha)(A$ is α-projectable $)$ means that each α-polar $S^{\perp \perp}$ is an ℓ group direct summand, i.e., each $a \in A$ can be written uniquely $a=a_{1}+a_{2}$ with $a_{1} \in S^{\perp \perp}$ and $a_{2} \in S^{\perp}$.

The following terms are used in the literature: if $A \in P(\omega)$ (resp., $P(\infty)$), A is called projectable (resp., strongly projectable). For vector lattices, the terminology "principal projection property" (resp., "projection property") is sometimes used.
$A \in L(\alpha)$ (A is laterally α-complete) if each disjoint $S \subseteq A^{+}$("disjoint" means for all $s_{1}, s_{2} \in S$, if $s_{1} \neq s_{2}$, then $s_{1} \wedge s_{2}=0$) with $|S|<\alpha$, the supremum $\bigvee\{s \mid s \in S\}$ exists in A. Note that any $A \in L(\omega)$ (since A is a lattice). [23, 3.2] shows that $L(\alpha) \subseteq P(\alpha)$ in \mathbf{W}.

We turn to \mathbf{W} and the Yosida Theorem, and now restrict our ℓ-groups to $\mathbf{W}:\left(A, u_{A}\right) \in \mathbf{W}$ means A is an Archimedean ℓ-group (thus Abelian) and u_{A} is a distinguished weak unit (meaning $\left\{u_{A}\right\}^{\perp}=\{0\}$), positive unless $A=\{0\}$, where $u_{A}=0$.

A \mathbf{W}-homomorphism $\left(A, u_{A}\right) \xrightarrow{\varphi}\left(B, u_{B}\right)$ is an ℓ-group homomorphism with $\varphi\left(u_{A}\right)=u_{B}$. With these as morphisms, \mathbf{W} is a category.

The "interval" $\mathbb{R} \cup\{ \pm \infty\}=[-\infty,+\infty]$ is given the obvious topology and order. For a space X (always Tychonoff, frequently compact Hausdorff), $D(X)$ is the set of continuous $X \xrightarrow{f}[-\infty,+\infty]$ for which $f^{-1}(\mathbb{R})$ is dense in X. This is a lattice containing the constant function with value 1 as a weak
unit, with addition partially defined by $f+g=h$ meaning $f(x)+g(x)=h(x)$ for every $x \in f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R}) \cap h^{-1}(\mathbb{R})$. A \mathbf{W}-object in $D(X)$ is an $A \in \mathbf{W}$ which is a sublattice, with the partial addition of $D(X)$ fully defined on A, and with the constant function with value 1 contained in A and serving as the distinguished weak unit; we express all that succinctly by writing $A \leq D(X)$. For arbitrary $A, B \in \mathbf{W}, A \leq B$ means there is a \mathbf{W}-embedding of A into B.

Let Comp denote the category of compact Hausdorff spaces and continuous maps.

The Yosida Representation 1.2. The functor Y.
(a) (of objects) If $\left(A, u_{A}\right) \in \mathbf{W}$, there is a $Y A \in \mathbf{C o m p}$ and a \mathbf{W} isomorphism $\left(A, u_{A}\right) \xrightarrow{\eta_{A}} \eta_{A}(A) \leq D(Y A)$ with $\eta_{A}(A)$ separating the points of $Y A . Y A$ is unique up to homeomorphism for that data.
(b) (of morphisms) If $\left(A, u_{A}\right) \xrightarrow{\varphi}\left(B, u_{B}\right)$ is a \mathbf{W}-morphism, there is a unique continuous $Y A \stackrel{Y \varphi}{\longleftarrow} Y B$ for which $\eta_{B}(\varphi(a))=\eta_{A}(a) \circ Y \varphi$ for all $a \in A$. Moreover, φ is one-to-one if and only if $Y \varphi$ is onto. While φ onto implies $Y \varphi$ is one-to-one, the converse does not hold. ([40] exhibits $\left(A, u_{A}\right) \rightarrow D(Y A)$, the rest is from [26].)

For example, consider $A=C(X) \equiv\{f: X \rightarrow \mathbb{R} \mid f$ is continuous $\}$ and $A^{*}=C^{*}(X)=\{f \in C(X) \mid f$ is bounded $\}$, where X is any Tychonoff space. Since the natural maps $A^{*} \rightarrow A \rightarrow D(Y A)$ and $A^{*} \cong C(\beta X) \rightarrow$ $D(\beta X)$ both separate points, it follows from the uniqueness of the Yosida representation that $Y A=Y A^{*}=\beta X$ (the Čech-Stone compactification of $X)$.

We now view all \mathbf{W}-objects $\left(A, u_{A}\right)$ as being in their Yosida representation, and just write $A \leq D(Y A)\left(u_{A}=1\right.$ being understood when $\left.A \neq\{0\}\right)$.

We work toward combining $P(\alpha), L(\alpha)$ with Yosida.
Theorem 1.3. ([24, 2.9]) In $\mathbf{W}, P(\alpha)(r e s p ., ~ L(\alpha))$ is a hull class, i.e., for each $A \in \mathbf{W}$, there is an extension $p(\alpha) A$ (resp., $l(\alpha) A)$ minimum among essential extensions to $P(\alpha)$-objects (resp., $L(\alpha)$-objects), and it is unique up to \mathbf{W}-isomorphism.

Referring to "essential" in Theorem 1.3, in any category a monic m is called essential if $f \circ m$ monic implies f monic. In \mathbf{W}, monic means one-to-one, and essential can be said several ways ([4]).

Lemma 1.4. ([26]) In \mathbf{W}, the embedding $A \xrightarrow{\varphi} B$ is essential if and only if the surjection $Y A \stackrel{Y \varphi}{\longleftarrow} Y B$ is irreducible (the image of a proper closed set is proper), and in that case we call $Y \varphi$ a cover.

Thus, for every $A \in \mathbf{W}$, the map $Y A \stackrel{\sigma}{\leftarrow} Y p(\alpha) A$ is a cover.
There is a related theory of "covering properties", to a fragment of which we shall allude.

Definition 1.5. (a) If X is a space and $f \in D(X)$, then $\operatorname{coz}_{X}(f)=\{x \in$ $X \mid f(x) \neq 0\}$. If $S \subseteq D(X)$, then let $\operatorname{coz}_{X}(S)=\bigcup\left\{\operatorname{coz}_{X}(f) \mid f \in S\right\}$ and, for $\omega \leq \alpha \leq \infty$, let $\alpha \operatorname{coz}_{X}(C(X))=\left\{\operatorname{coz}_{X}(S) \mid S \subseteq C(X)\right.$ and $\left.|S|<\alpha\right\}$.
(b) If $A \in \mathbf{W}, f \in A$, and $S \subseteq A$, then let $\operatorname{coz}(f)=\operatorname{coz}_{Y A}(f)$ and $\operatorname{coz}(S)=\bigcup\{\operatorname{coz}(f) \mid f \in S\}$. And for $\omega \leq \alpha \leq \infty$, let $\alpha \operatorname{coz}(A)=\{\operatorname{coz}(S) \mid$ $S \subseteq A$ and $|S|<\alpha\}$. Note the difference: if $U \in \alpha \operatorname{coz}_{X}(C(X))$, then $U \subseteq X$, but if $U \in \alpha \operatorname{coz}(C(X))$, then $U \subseteq Y C(X)=\beta X$.
(c) For $\omega \leq \alpha \leq \infty$, a space X is called α-disconnected if $\left\{U_{i}\right\}_{i \in I} \subseteq$ $\omega \operatorname{coz}_{X}(C(X))$ and $|I|<\alpha$ imply that the closure of $\bigcup_{i \in I} U_{i}$ in X is open. $D(\alpha)$ denotes the class of such spaces. Then: $X \in D(\alpha)$ if and only if $\beta X \in D(\alpha)$; spaces in $D(\omega)=D\left(\omega_{1}\right)$ are called basically disconnected (BD$)$, and spaces in $D(\infty)$ are called extremally disconnected (ED). Note that $X \in D(\alpha)$ implies X is zero-dimensional (ZD), meaning X has a base of clopen sets. (See [15] for some of this.)

It is known that $D(\alpha)$ is a "covering class" in Comp, which means that for every space $X \in \mathbf{C o m p}$ there is $X \stackrel{\sigma}{\leftarrow} d(\alpha) X$ minimum for covers of X by spaces in $D(\alpha)$ (See [19], [36], [39]).

One may suspect something like \mathbf{W} versus Comp as: minimum essential extensions $A \xrightarrow{\varphi} B$ to \mathbf{W}-objects with a property \mathcal{P} are associated (as $Y A \stackrel{Y \varphi}{\longleftarrow} Y B)$ to minimum covers with a property \mathcal{L}. There is a literature on that ([7], [34], inter alia). Here we have cases in points, which we turn to.

2 Yosida spaces of the $P(\alpha)$ and $L(\alpha)$ hulls

We explain now what $Y p(\alpha) A$ and $Y l(\alpha) A$ are, then show constructions of the $p(\alpha) A$ and $l(\alpha) A$ in the next section.

If X is a space and $S \subseteq X$, then we write $\chi(S)$ for the characteristic function of S on X. We note: If $U \in \operatorname{clop}(Y A)$, then $\chi(U) \in A$ (from the
"point-separating" in Theorem 1.2(a), and a little arithmetic). Recall that $\alpha \operatorname{coz}(A)$ consists of subsets of $Y A$.

Theorem 2.1. ([23, 2.2 and 2.4]) $A \in P(\alpha)$ if and only if both of the following hold.
(a) For every $U \in \alpha \operatorname{coz}(A), \bar{U}$ is open.
(b) For every $a \in A$ and every $U \in \operatorname{clop}(Y A), a \chi(U) \in A$.

Remark 2.2. The condition in Theorem 2.1(a) can be called weakly $P(\alpha)$ $(w P(\alpha)) . w P(\alpha)$ is also a hull class. $w P(\omega)$ is (defined and) shown to be a hull class in [22]. The extension to general α will be evident; the $w P(\alpha)$ hull operator is denoted $w p(\alpha)$. A is called local $(A \in L o c)$ if $f \in D(Y A)$ and f locally in A implies $f \in A$, where "locally in A " is in the topological sense of local as functions on YG. Loc is also a hull class, indeed an essential reflection, and the associated hull operator is "loc". That $Y \operatorname{loc} A=Y A$ is not hard ([26]).

Lemma 2.3. Suppose $Y A$ is $Z D$. Then, A is local if and only if for every $a \in A$ and every $U \in \operatorname{clop}(Y A)$, one has $a \chi(U) \in A([23])$.

Thus, Theorem 2.1 says $P(\alpha)=w P(\alpha) \cap L o c$. Also, it's easy to see that $p(\alpha)=\operatorname{loc} \circ w p(\alpha)$ (the case $\alpha=\omega$ is in [22]).

Corollary 2.4. (a) If $A \in P(\alpha)$, then $Y A$ is $Z D$.
(b) $([23,2.4])$ For $\omega<\alpha$:
$-A \in w P(\alpha)$ if and only if $Y A \in D(\alpha)$.
$-A \in P(\alpha)$ if and only if $Y A \in D(\alpha)$ and $A \in$ Loc.
(c) For $\omega<\alpha$: If $A \in L(\alpha)$, then $Y A \in D(\alpha)$ and $A \in L o c$.

Proof. (a) and (b) follow from Theorem 2.1(a).
(c) is just because $L(\alpha) \subseteq P(\alpha)$ (noted in Definition 1.1).

Corollary 2.5. $C(X) \in P(\alpha)$ if and only if $X \in D(\alpha)$.
Proof. $C(X)$ is a ring, thus $C(X) \in \operatorname{Loc}([26])$ and $X \in D(\alpha)$ if and only if $Y C(X)=\beta X \in D(\alpha)$. For $\alpha=\omega$, use that $P(\alpha)=w P(\alpha) \cap L o c$. For $\alpha>\omega$, apply Corollary 2.4(b).

In Corollary 2.5, the cases $\alpha=\omega$, ∞ appear in [32, Section 43].
We require (now and later) some more information about spaces in $D(\alpha)$, and the following "over-class".

Definition 2.6. (Analogous to $D(\omega) \subseteq F$, where " F " denotes the class of F-spaces as in [15, Chapter 14]).
X is a $F(\alpha)$-space $(X \in F(\alpha))$ just in case all disjoint $U, V \in \alpha \operatorname{coz}_{X}(C(X))$ are completely separated.

If X is any topological space with subspace S, then S is C^{*}-embedded in X if every $f \in C^{*}(S)$ extends to some $\bar{f} \in C^{*}(X)$.

Lemma 2.7. (a) $X \in F(\alpha)$ if and only if every $U \in \alpha \operatorname{coz}_{X}(C(X))$ is C^{*}-embedded.
(b) $F=F(\omega)=F\left(\omega_{1}\right)$, and $F(\infty)=D(\infty)$.
(c) If $X \in F(\alpha)$, then dense $U \in \omega \operatorname{coz}_{X}(C(X))$ are C^{*}-embedded (called " X is quasi- F "), and the last if and only if $D(X)$ is a \mathbf{W}-object.
(d) $D(\alpha) \subseteq F(\alpha)$.

Proof. We prove (b)-(d) assuming that (a) holds, then prove (a).
For (b), see [15].
For (c), note that if $U \in \omega \operatorname{coz}_{X}(C(X))$, then $U \in \alpha \operatorname{coz}_{X}(C(X))$. The term "quasi- F " is from [13], and the "iff" here is proved in [30].

For (d), if $U, V \in \alpha \operatorname{coz}_{X}(C(X))$ are disjoint, then \bar{U} and \bar{V} are open, so $\bar{U} \cap \bar{V}=\emptyset$, and $\chi(\bar{U})$ separates U and V.

Finally, to establish (a) we use the version of the Urysohn Extension Theorem in $\left[15,1.15\right.$ and 1.17]: a subspace S of a Tychonoff X is C^{*} embedded in X if and only if disjoint zero-sets of S are completely separated in X. Suppose $S \in \alpha \operatorname{coz}_{X}(C(X))$ with $X \in F(\alpha)$ and Z_{1}, Z_{2} are disjoint zero-sets of S. There are disjoint cozero-sets C_{1}, C_{2} of S with $Z_{i} \subseteq C_{i}$ for $i \in\{1,2\}$. A cozero-set in an α-cozero-set is an α-cozero-set, so C_{1} and C_{2} are completely separated in X.

Theorem 2.8. If $X \in D(\alpha)$, then $D(X) \in L(\alpha)(\subseteq P(\alpha))$.
Proof. By Lemma 2.7, $D(X)$ is a \mathbf{W}-object.

Suppose $\left\{f_{i}\right\}_{i \in I} \subseteq D(X)^{+}$is disjoint and $|I|<\alpha$. Each $\overline{\operatorname{coz}_{X}\left(f_{i}\right)}$ is open, and $U \equiv \overline{\bigcup_{i \in I} \overline{\operatorname{coz}_{X}\left(f_{i}\right)}}$ is open. Let

$$
S=\left(\bigcup_{i \in I} \overline{\operatorname{coz}_{X}\left(f_{i}\right)}\right) \cup(X-U)
$$

Since $X \in F(\alpha), S$ is C^{*}-embedded (each by Lemma 2.7).
Let $f \in D(S)$ be such that $\left.f\right|_{\overline{\operatorname{coz}_{X}\left(f_{i}\right)}}=f_{i}$ for $i \in I$ and $\left.f\right|_{X-U}=0$. Since S is dense and C^{*}-embedded (and $[-\infty,+\infty]$ is compact), f extends to $\bar{f} \in D(X)([15,6.4])$. One sees that $\bar{f}=\bigvee_{i \in I} f_{i}$.

Theorem 2.9. $(\omega<\alpha)$ For every $A \in \mathbf{W}$,

$$
Y p(\alpha) A=Y l(\alpha) A=d(\alpha) Y A
$$

Proof. Given A, we have the cover $Y A \stackrel{\sigma}{\leftarrow} d(\alpha) Y A \equiv X$. Since $X \in D(\alpha)$, we have $D(X) \in L(\alpha)$ by Theorem 2.8.

Since σ is a cover, $A \approx A \circ \sigma \leq D(X)$ is an essential extension with codomain in $P(\alpha)$. Hence $p(\alpha) A \leq D(X)$ by the minimality of $p(\alpha) A$. Then $Y p(\alpha) A \leq Y D(X)=X$ (as covers), from the Yosida functor. But $Y p(\alpha) A \in D(\alpha)$ by Theorem 2.4. Thus $Y p(\alpha) A=X$ by the minimality of $d(\alpha) Y A$.

Since $A \leq p(\alpha) A \leq l(\alpha) A \leq D(X)$, we see too that $Y l(\alpha) A=X$.
Note, Theorem 2.9 assumes $\omega<\alpha$. The case $\omega=\alpha$ is less purely topological and more complicated.

Theorem 2.10. Let $A \in \mathbf{W}$.
(a) $([22]) Y A \leftarrow Y p(\omega) A$ is the minimum among covers $Y A \stackrel{\sigma}{\leftarrow} X$ for which the closure of $\sigma^{-1}(\operatorname{coz}(a))$ is open in X for all $a \in A$.
(b) ([6], [25]) Yp(ω) A is the Stone space of the Boolean subalgebra generated by $\{\{P \in \operatorname{Min}(A) \mid a \notin P\}\}_{a \in A}$ in the power set of $\operatorname{Min}(A)$ (here $\operatorname{Min}(A)$ is the collection of minimal prime subgroups of $A)$.

Two related questions arise: What about Theorem 2.10(a) (mutatis mutandis) for $\omega<\alpha$? For compact X, is there/what is the minimum among covers $X \stackrel{\sigma}{\leftarrow} Z$ which have ${\overline{\sigma^{-1}(U)}}^{Z}$ open for all $U \in \alpha \operatorname{coz}_{X}(C(X)$) (for
$\omega \leq \alpha$, here)? To the first, [22, 3.7(b)] says "it's the same". For the second, $[25,6.3]$ (and a little thought) says such a minimum exists. Then, what is it? $d(\alpha) X$? For $\alpha=\infty$, it's easy to see that this minimum is in $D(\infty)$ (=ED), and thus is $d(\infty) X$ (the Gleason cover).

But, for $\omega=\alpha$, Vermeer [39] has constructed this minimum called $\Lambda_{1} X$ $(=Y p(\omega) C(X)$, by Theorem 2.10(a)), and shown that $d(\omega) X$ is achieved by transfinite iteration of Λ_{1}, and presented the example $\Lambda_{1} X<d(\omega) X$ (qua covers) in Corollary 2.11(b) following.

Corollary 2.11. (Of Theorem 2.10 and the literature)
(a) For every $A, Y p(\omega) A \leq d(\omega) Y A$ (qua covers of $Y A$, which means $Y p(\omega) A$ is covered by $d(\omega) Y A)$.
(b) If $Z=\beta \mathbb{N}-\mathbb{N}$, then $Y p(\omega) C(Z)<d(\omega) Z$, i.e., $Y p(\omega) C(Z) \notin D(\omega)$ (by the minimality of $d(\omega) Z$, see Definition 1.5).
(c) Suppose Z compact (so $Y C(Z)=Z$). If every open set in Z is a cozero-set (e.g., Z compact metrizable), then $Y p(\omega) C(Z)=Y p(\alpha) C(Z)$ $=d(\infty) Z$ for every $\alpha($ a fortiori, $=d(\omega) Z)$.

Proof. (a) $X=d(\omega) Y A$ has \bar{U} open for all $U \in \omega \operatorname{coz}_{X}(C(X))$, not just the $\sigma^{-1}(\operatorname{coz}(a))$.
(b) [39, Theorem 3.6].
(c) By Theorem 2.10 and the remark above that $d(\omega) Z$ is the minimum cover making preimages of opens in Z, open in the cover.

Remark 2.12. What "really is" $d(\alpha) X(\omega<\alpha)$?
Since $d(\alpha) X$ is ZD, it is the Stone space of $\operatorname{clop}(d(\alpha) X)$, of course. The question is to be interpreted with the addition "in terms of X ", thus "What is $\operatorname{clop}(d(\alpha) X)$, in terms of X ?".

From various details of Stone Duality between Boolean Algebras and compact ZD spaces, and the discussion in [20] and [21], the following suspect/conjecture emerges: $\operatorname{clop}(d(\alpha) X)=\alpha \mathcal{B} X / \alpha M$ (where $\alpha \mathcal{B} X$ is the σ-algebra generated by the α-cozero sets in the power set of X, and αM is its σ-ideal of meagre sets).

This is true if and only if $\alpha \mathcal{B} X / \alpha M$ is an α-complete Boolean Algebra, which is true in at least these three cases:
(i) $\alpha=\infty$. This is because $d(\infty) X$ is the Stone space of the regular open algebra, which algebra is $\infty \mathcal{B} X / \infty M$ ([16], [37]).
(ii) $\alpha=\omega_{1}$. Some people surely know this, but in any event it follows from the discussion in [2].
(iii) X is α-cozero-complemented (i.e., for every $U \in \alpha \operatorname{coz}_{X}(C(X))$ there is a disjoint $V \in \alpha \operatorname{coz}_{X}(C(X))$ with $U \cup V$ dense in $\left.X\right)$. This is a slight extension of [21, 3.2].

We depart the subject.

3 Representation of the hulls $p(\alpha) A$ and $l(\alpha) A$

Our descriptions are the main results of the paper. We make two constructions: A_{X} in Theorem 3.1 and $\overline{A_{X}}$ in Theorem 3.3. Note that these constructions depend on α, but the notation will suppress that for the sake of simplicity.

A frequently used notation (for emphasis) is: $\dot{\bigcup} U_{i}$ for the union of disjoint sets $\left\{U_{i}\right\}, \dot{\sum} f_{i}$ for a sum of disjoint elements $\left\{f_{i}\right\}$ in an ℓ-group or in a $D(X)$.

Theorem 3.1. ([22, 2.5 and 2.6]) Suppose X is compact and $Z D$ and $A \leq$ $D(X)$. Define A_{X} to be the set of all $\sum_{i \in I} a_{i} \chi\left(U_{i}\right) \in D(X)$ such that $|I|<\omega$, each $a_{i} \in A$, and $\left\{U_{i}\right\}_{i \in I} \subseteq \operatorname{clop}(X)$ is a disjoint family. (Note, we could enlarge $\left\{U_{i}\right\}_{i \in I}$ to $\left\{U_{i}\right\}_{i \in I} \cup\left(X-\bigcup_{i \in I} U_{i}\right)$ and on $X-\bigcup_{i \in I} U_{i}$, let the function be 0; so we could suppose that $\bigcup_{i \in I} U_{i}=X$.) Then $A_{X} \leq D(X)$, $Y A_{X}=X, A_{X} \in L o c$, and $(*) A_{X} \in P(\omega)$ if and only if $\overline{\operatorname{coz}(a)}$ is open for every $a \in A$.

Proof. See the reference given. The last assertion does not appear there, but is obvious.

Corollary 3.2. ([22, 2.6]) Suppose $A \in \mathbf{W}$, and take $X=Y p(\omega) A$ in Theorem 3.1. Then $A_{X}=p(\omega) A$.

Note here that, as described in Section 2, $X=Y p(\omega) A$ need not be ω disconnected $(\mathrm{BD}, D(\omega))$. Toward the representation especially for $l(\alpha) A$, $\omega<\alpha$, we extend the ideas in Theorem 3.1 as follows.

Let $X \in D(\alpha)$ and consider $A \leq D(X),|I|<\alpha,\left\{a_{i}\right\}_{i \in I} \subseteq A$, and $\left\{U_{i}\right\}_{i \in I}$ a disjoint family in $\operatorname{clop}(X)$, where $X=Y A$. Then $(*) f \equiv$ $\dot{\sum}_{i \in I} a_{i} \chi\left(U_{i}\right)$ is a priori just defined on $U \equiv \bigcup_{i \in I} U_{i}$, and $U \in \alpha \operatorname{coz}(A)$,
so \bar{U} is open. Then, we extend the definition of f to $U \cup(X-\bar{U}) \equiv S$, which is dense and in $\alpha \operatorname{coz}(A)$, by letting $f \equiv 0$ on $X-\bar{U}$. Then, S is C^{*}-embedded in X (by (c) and (d) of Lemma 2.7), and so (by [15, 6.4]) f extends further to a function in $D(X)$.

So, we can understand an expression $(*)$ to include " $\bigcup_{i \in I} U_{i}$ is dense in X " - we say " $\left\{U_{i}\right\}_{i \in I}$ is a clopen quasi-partition of X " - and $f \in D(X)$. Thus, one obtains an analogue $A_{X, \alpha}$ of A_{X} for $\alpha>\omega$ (and note that $A_{X, \omega}=$ A_{X}.

Then our extension of Theorem 3.1 is
Theorem 3.3. Suppose compact $X \in D(\alpha)$ and $A \leq D(X)$. Then:
(a) $A_{X} \in P(\alpha)$.
(b) Let $\overline{A_{X, \alpha}}$ be the set of all $\dot{\sum}_{i \in I} a_{i} \chi\left(U_{i}\right)$ such that $|I|<\alpha,\left\{a_{i}\right\}_{i \in I} \subseteq A$, and $\left\{U_{i}\right\}_{i \in I}$ is a disjoint family in $\operatorname{clop}(X)$. Then $\overline{A_{X, \alpha}} \leq D(X)$, $\overline{A_{X, \alpha}} \in L o c$, and $\overline{A_{X, \alpha}} \in L(\alpha)$.

Proof. (a) In Theorem 3.1, (*) is satisfied.
(b) (This goes as the proof of Theorem 3.1, mutatis mutandis, but we write down some details.)

We expressed that $\overline{A_{X, \alpha}} \subseteq D(X)$. To see that $\overline{A_{X, \alpha}} \in \mathbf{W}$, take $f=$ $\dot{\sum}_{i \in I} a_{i} \chi\left(U_{i}\right), g=\dot{\sum}_{j \in J} b_{j} \chi\left(V_{j}\right)$ in $\overline{A_{X, \alpha}}$, where we assume $\left\{U_{i}\right\}_{i \in I}$ and $\left\{V_{j}\right\}_{j \in J}$ are clopen quasi-partitions in X, and consider $\otimes=+,-, \vee, \wedge$. Then, one sees that $\left\{U_{i} \cap V_{j}\right\}_{i, j}$ is a clopen quasi-partition of X and

$$
f \otimes g=\sum_{i, j}\left(a_{i} \otimes b_{j}\right) \chi\left(U_{i} \cap V_{j}\right) \in \overline{A_{X}}
$$

So $\overline{A_{X, \alpha}} \in \mathbf{W}$.
Since $\chi(U) \in \overline{A_{X, \alpha}}$ whenever $U \in \operatorname{clop}(X)$, we see that $\overline{A_{X, \alpha}}$ separates points of X, so $Y \overline{A_{X, \alpha}}=X$. Since any $a \chi(U) \in \overline{A_{X, \alpha}}$ and X is ZD, we have $\overline{A_{X, \alpha}} \in L o c$ (see Theorem 5.1).

Finally, $\overline{A_{X, \alpha}} \in L(\alpha)$ is shown much as $D(X) \in L(\alpha)$ was shown, to wit. Let $\left\{f_{\gamma}\right\}_{\gamma \in \Gamma}$ be a disjoint family in $\overline{A_{X, \alpha}}$ with $|\Gamma|<\alpha$. Let \mathcal{U}_{γ} be the set of U_{i} 's in the expression for f_{γ} with $\operatorname{coz}\left(f_{\gamma}\right) \cap U_{i} \neq \emptyset$. Then, since $\left\{\operatorname{coz}\left(f_{\gamma}\right)\right\}_{\gamma \in \Gamma}$ is a disjoint family, $\bigcup_{\gamma \in \Gamma} \mathcal{U}_{\gamma} \equiv \mathcal{V}$ is a disjoint clopen family with $|\mathcal{V}|<\alpha$, and one may let f be defined as f_{γ} on each $U \in \mathcal{U}_{\gamma}$ and 0 on $X-\overline{\cup \mathcal{V}}$. Then f extended over X realizes $\bigvee_{\gamma \in \Gamma} f_{\gamma}$ in $\overline{A_{X, \alpha}}$.

To be completely explicit about the hulls:
Theorem 3.4. Suppose $\omega<\alpha$. Let $A \in \mathbf{W}$, and let $X=Y p(\alpha) A=$ $Y l(\alpha) A=d(\alpha) Y A($ recalling Theorem 2.9), denoted qua cover as $Y A \stackrel{\sigma}{\leftarrow} X$. Identify A with its isomorph $A \circ \sigma \leq D(X)$. Then, $p(\alpha) A=(A \circ \sigma)_{X}$ and $l(\alpha) A=\overline{(A \circ \sigma)_{X, \alpha}}$. Explicitly for reference later, about the elements:

The elements of $p(\alpha) A$ are exactly the $f \in D(X)$ of the form $f=$ $\dot{\sum}_{i \in I}\left(a_{i} \circ \sigma\right) \chi\left(U_{i}\right)$, where I is finite, $a_{i} \in A$ for $i \in I$, and $\left\{U_{i}\right\}_{i \in I}$ is a clopen partition of X.

The elements of $l(\alpha) A$ are exactly the $f \in D(X)$ of the form $f=$ $\dot{\sum}_{i \in I}\left(a_{i} \circ \sigma\right) \chi\left(U_{i}\right)$, where $|I|<\alpha, a_{i} \in A$ for $i \in I$, and $\left\{U_{i}\right\}_{i \in I}$ is a clopen quasi-partition in X.

Both [5] and [11] construct $p(\omega) A$ and $p(\infty) A$ for a representable ℓ group A in ways which have elements in common with the method of the present paper. [5] remarks that [11] fails to leave the reader with a "concrete feeling for these hulls". Our method, which is restricted to \mathbf{W}, of course, considerably enhances concreteness.

Note too, that [11] shows that, via the construction there, if A is an f ring, so too are the hulls. In \mathbf{W}, that is considerably extended by Theorem 4.1 here.

The history of these hulls, and others, is complicated. See the references in [5], [11], and in [23] and [24], inter alia.

We apologize to neglected authors.

4 Some features of $p(\alpha)$ and $l(\alpha)$

The "features" involve: If A has additional algebraic properties, then $p(\alpha) A$ and $l(\alpha) A$ do/do not possess those properties. And, how $p(\alpha)$ and $l(\alpha)$ treat boundedness. Our representations of the hulls informs these issues.

The "additional algebraic properties" are closures under sets of functorial implicit operations of \mathbf{W}. Such an operation is an $o \in C\left(\mathbb{R}^{\mathbb{N}}\right)$, and A is o-closed means: if $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subseteq A$, then $o \circ\left\langle a_{n}\right\rangle \in A$ in the following sense. Let $S=\bigcap_{n \in \mathbb{N}} a_{n}^{-1}(\mathbb{R})$, dense in $Y A$ by the Baire Category Theorem. $\left\langle a_{n}\right\rangle: S \rightarrow \mathbb{R}^{\mathbb{N}}$ is $\left\langle a_{n}\right\rangle(x)=\left(a_{1}(x), a_{2}(x), \ldots\right) \in \mathbb{R}^{\mathbb{N}}$, so $o \circ\left\langle a_{n}\right\rangle \in C(S)$, and if this extends over $Y A$ (automatically uniquely), we write " $o \circ\left\langle a_{n}\right\rangle \in A$ ". Then, for $\mathcal{O} \subseteq C\left(\mathbb{R}^{\mathbb{N}}\right), A$ is \mathcal{O}-closed if A is o-closed for every $o \in \mathcal{O}$.

The classes \mathcal{O}-closed in \mathbf{W} comprise exactly the full monoreflective subcategories \mathcal{R} in \mathbf{W} for which each reflection map is essential, and $\mathcal{R}=H \mathcal{R}$ (i.e., \mathcal{R} is closed under \mathbf{W}-homomorphic images).

An $o \in C\left(\mathbb{R}^{\mathbb{N}}\right)$ is n-ary $(n<\omega)$ if $o=\bar{o} \circ P_{n}$ for some $\bar{o} \in C\left(\mathbb{R}^{n}\right)$, where $P_{n}: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{n}$ is projection onto the first n coordinates, and finitary if n-ary for some $n ; \mathcal{O} \subseteq C\left(\mathbb{R}^{\mathbb{N}}\right)$ is finitary if each $o \in \mathcal{O}$ is finitary.

Examples of many 1-ary's are: For p a prime, let $d(p): \mathbb{R} \rightarrow \mathbb{R}$ be given by $d(p)(x)=\frac{x}{p}$. Then A is divisible if A is \mathcal{O}-closed for $\mathcal{O}=\{d(p) \mid$ p prime $\}$. Also, for $r \in \mathbb{R}$, let $m(r): \mathbb{R} \rightarrow \mathbb{R}$ be given by $m(r)(x)=r x$. Then A is a vector lattice if A is \mathcal{O}-closed, where $\mathcal{O}=\{m(r) \mid r \in \mathbb{R}\}$.

The property " A is an f-ring" is binary.
The property " A is uniformly complete" is infinitary: This property is u-closed, for $u: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ given by $u\left(\left(x_{n}\right)\right)=\sum_{n \in \mathbb{N}} \frac{1}{2^{n}}\left(\left|x_{n}\right| \wedge 1\right)$.

The largest \mathcal{O}-closed class is \mathbf{W}, which has $\mathcal{O}=F(\omega)$, the \mathbf{W}-object in $C\left(\mathbb{R}^{\mathbb{N}}\right)$ generated by 1 and all projections $\mathbb{R}^{\mathbb{N}} \equiv \prod_{k \in \mathbb{N}} \mathbb{R}_{k} \xrightarrow{\pi(n)} \mathbb{R}_{n}$. This is the \mathbf{W}-object free with respect to the functor F from \mathbf{W} to pointed sets, which has $F\left(u_{A}\right)$ the distinguished point in $F(A)$.

The smallest \mathcal{O}-closed class has $\mathcal{O}=C\left(\mathbb{R}^{\mathbb{N}}\right)$, and this gives the class of " Φ-algebras closed under countable composition" from [29], which coincides with the class $\{C(\mathcal{F}) \mid \mathcal{F}$ a frame $\}([31],[33])$.

All this is discussed in detail, for \mathbf{W}, in [17], and in an abstract setting in [18].

Theorem 4.1. (a) Suppose $\mathcal{O} \subseteq C\left(\mathbb{R}^{\mathbb{N}}\right)$ is finitary. Then, if A is \mathcal{O} closed, so are $p(\alpha) A$ and $l(\alpha) A$.
(b) There are A-closed with $p(\omega) A=p(\infty) A$ and $l\left(\omega_{1}\right) A=l(\infty) A$, and these are not u-closed.

Proof. (a) We suppose that $A \leq D(X)$ with X ZD, and A is \mathcal{O}-closed. We show that A_{X} is too. This gives the result for $p(\alpha) A$ in (a) by virtue of Section 3.

To suppress tedious typography, we take liberties with the notation.
Let $o \in \mathcal{O}$. Since \mathcal{O} is finitary, we may view $o \in C\left(\mathbb{R}^{n}\right)$ for some $n<\omega$. We need to show $o \circ\left\langle f_{i}\right\rangle \in A_{X}$ for $\left\{f_{1}, \ldots, f_{n}\right\} \subseteq A_{X}$.
$f \in A_{X}$ means $f=\dot{\sum}_{U \in \mathcal{U}} a_{U} \chi(U)$, with \mathcal{U} a finite clopen partition, and $a_{U} \in A$ for $U \in \mathcal{U}$. Write f / \mathcal{U}.

Given $f_{i} \in A_{X}, i \in\{1, \ldots, n\}$, and f_{i} / \mathcal{U}_{i}, let $\mathcal{V}=\bigwedge_{i \in I} \mathcal{U}_{i}(\mathcal{V}$ is all $\left.U_{1} \cap \cdots \cap U_{n}, U_{i} \in \mathcal{U}_{i}\right)$ and rewrite f_{i} expressing f_{i} / \mathcal{V} for each $i \in\{1, \ldots, n\}$ as $f_{i}=\sum_{V \in \mathcal{V}} a_{V, i} \chi(V)$, where $a_{V, i}=a_{U}$ if $U \in \mathcal{U}_{i}$ with $V \subseteq U$.

Then, $o \circ\left\langle f_{i}\right\rangle=\sum_{V \in \mathcal{V}}\left(o \circ\left\langle a_{V, i}\right\rangle\right) \chi(V)$, where $\left\langle a_{V, i}\right\rangle=\left\langle a_{V, 1}, \ldots, a_{V, n}\right\rangle$ (by the "liberties with notation"), and $o \circ\left\langle a_{V, i}\right\rangle \in A$, so $o \circ\left\langle f_{i}\right\rangle \in A_{X}$.

We turn to $l(\alpha)$. This goes as for $p(\alpha)$, with the necessary modification of replacing the finite partitions with quasi-partitions of size less than α.

Suppose that $A \leq D(X)$ with $X \in D(\alpha)$, and A is \mathcal{O}-closed. We show that $\overline{A_{X, \alpha}}$ is too. This gives the desired conclusion by virtue of Section 3.

We continue the "liberties with notation".
Again, let $o \in \mathcal{O}$ so $o \in C\left(\mathbb{R}^{n}\right), n<\omega$. Now, $f \in \overline{A_{X, \alpha}}$ means $f=$ $\dot{\sum}_{U \in \mathcal{U}} a_{U} \chi(U)$, with \mathcal{U} a clopen quasi-partition in $X,|\mathcal{U}|<\alpha$, and $a_{U} \in A$ for $U \in \mathcal{U}$. Write f / \mathcal{U}.

Given $\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \overline{A_{X}}$ with $f_{i} / \mathcal{U}_{i}, \bigwedge_{i=1}^{n} \mathcal{U}_{i}=\mathcal{V}$ as before are again a quasi-partition with $|\mathcal{V}|<\alpha$, and we rewrite f_{i} expressing f_{i} / \mathcal{V}. Then, as in the last paragraph of the proof for $p(\alpha)$ above, $o \circ\left\langle f_{i}\right\rangle \in \overline{A_{X, \alpha}}$.
(b) An example is $A=C([0,1])$, the important features being from [35], as we now explain.
[35] says: Suppose X compact metrizable. The maximum ring of quotients (in the general sense of Johnson-Utumi) of $C(X)$, called $Q(X)$, is uniformly complete if and only if the set isol (X) of isolated points of X is dense in X (in which case $Q(X)=C(\operatorname{isol}(X))$). (And for X compact metrizable, this $Q(X)$ is just the usual "ring of fractions" (called $Q_{\mathrm{cl}}(X)$). See [14] about $Q(X), Q_{\mathrm{cl}}(X)$, etc.)

Suppose X is compact metrizable. Then for all $\alpha \geq \omega$, one has $d(\alpha) X=$ $d(\infty) X=g X$ (the Gleason cover) by Lemma 2.11(c) (or [39, Theorem 3.5]), hence $Y p(\alpha) C(X)=g X$ for $\alpha \geq \omega$ and $Y l(\alpha) C(X)=g X$ for $\alpha>\omega$.

Now for all $G \in \mathbf{W}$, we have $Y G=Y B G$, and

$$
(*) p(\omega) G \leq p(\alpha) G \leq l(\alpha) G \leq l(\infty) G
$$

Also, for any $X, Q(X)=l(\infty) C(X)([38])$.
Thus, for any compact metrizable X and $G=C(X)$, uniform completeness of any item A in (*) means that $B A=C(g X)$ (since $B C(X)$ is a vector lattice, the Stone-Weierstrass Theorem yields that $l(\infty) C(X)$ is uniformly complete too). But, for $X=[0,1]$, that fails by [35, Theorem 2.6].
[8], [9], and precursor articles examine and classify hull operators h by the equations that are satisfied by h together with B (the bounded coreflection in $\mathbf{W}, B A=\left\{a \in A|\exists n \in \mathbb{N}| a \mid \leq n \cdot u_{A}\right\}$). The cases in point here are: h commutes with B (i.e., $h B=B h$; we say h is $C B$); h is antithesis of preserving boundedness if, by definition, $h=h B$; we say h is anti-PB. It is not hard to see that no h is both (written $\mathrm{CB} \cap$ anti- $\mathrm{PB}=\emptyset$).

The following is part of data exhibited in the Hasse Diagram [8, p.167]. We don't know if a full proof has been published; we present one now.

Theorem 4.2. [8]
(a) $(\omega \leq \alpha \leq \infty) p(\alpha)$ is $C B$.
(b) $(\omega<\alpha \leq \infty) l(\alpha)$ is anti-PB.

Proof. We note first the cases $\omega=\alpha$. For $p(\omega)$, the result is explicit in [25] (we prove it again, the same way below). And $l(\omega)$ is just the identity, and this fails anti-PB.

Now, keep in mind the representation of elements of $p(\alpha) A$ and $l(\alpha) A$ as of the form $\dot{\sum}_{I}$ as discussed in Section 3.

Suppose now $\omega<\alpha$.
Now, for all $A \in \mathbf{W}$, we know $Y A \stackrel{\sigma}{\leftarrow} Y p(\alpha) A$ or $Y l(\alpha) A$ and the elements of $p(\alpha) A / l(\alpha) A$ are of the form $(*) f=\dot{\sum}_{i \in I}\left(a_{i} \circ \sigma\right) \chi\left(U_{i}\right)$, for appropriate I and $\left\{U_{i}\right\}_{i \in I}$.
(a) Since $B A$ is essential in $A, p(\alpha) B A \leq p(\alpha) A$. First, $p(\alpha) B A=$ $B p(\alpha) B A$ (called " $p(\alpha)$ preserves boundedness", and written $p(\alpha)$ is $P B$), because in $(*)$, if the finitely many a_{i} are bounded, so is the finite sum $\dot{\sum}_{i \in I}\left(a_{i} \circ \sigma\right) \chi\left(U_{i}\right)$. Thus $p(\alpha) B A \leq B p(\alpha) A$.

Reversely, if in $(*)$ the f is bounded, say $|f| \leq n$, then if the a_{i} are replaced by $\left(a_{i} \wedge n\right) \vee(-n) \in B A$, we get the same f, showing $f \in p(\alpha) B A$.
(b) Here, $\omega<\alpha$ and $Y l(\alpha) A=d(\alpha) Y A \equiv X$.

Again $B A \leq A$ essential yields $l(\alpha) B A \leq l(\alpha) A$. For the reverse, take $f \in D(X)^{+}$. Then, some arithmetic shows $f^{-1}(\mathbb{R})=\dot{U}_{n \in \mathbb{N}} U_{n}$, where $U_{n} \in$ $\operatorname{clop}(X)$ for $n \in \mathbb{N}$ and $\left.f\right|_{U_{n}} \leq n$ because $X \in D(\omega)$. Then $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ is a quasi-partition in X and

$$
f=\sum_{n \in \mathbb{N}} f \chi\left(U_{n}\right)=\dot{\sum_{n \in \mathbb{N}}}(f \wedge n) \chi\left(U_{n}\right)
$$

Applying this to $f=a \circ \sigma$ yields $(* *) a \circ \sigma=\dot{\sum}_{n \in \mathbb{N}}((a \wedge n) \circ \sigma) \chi\left(U_{n}\right)$.
Now take $f \in(l(\alpha) A)^{+}$, per $(*)$ as $f=\dot{\sum}_{i \in I}\left(a_{i} \circ \sigma\right) \chi\left(U_{i}\right)$ and for each $i \in I$ insert $(* *)$, obtaining

$$
\begin{aligned}
f & \left.=\sum_{i \in I}\left(\sum_{i, n}\left(\left(a_{i} \wedge n\right) \circ \sigma\right) \chi\left(U_{n}^{i}\right)\right)\right) \chi\left(U_{i}\right) \\
& =\sum_{I \times \mathbb{N}}\left(\left(a_{i} \wedge n\right) \circ \sigma\right) \chi\left(U_{n}^{i} \cap U_{i}\right) .
\end{aligned}
$$

Take note that the index set $I \times \mathbb{N}$ is of size less than α. Thus $f \in l(\alpha) B A$.

5 About $C(X)$

We first characterize $C(X) \in P(\alpha)$ (resp., $L(\alpha)$), then consider the inclusion $p(\alpha) C(X) \leq C(d(\alpha) X)$ for X compact. Here it is understood that the distinguished weak unit of $C(X)$ is the constant function with value 1.

First, we summarize the general situation.
Theorem 5.1. $(\omega \leq \alpha \leq \infty)$
(a) $A \in w P(\alpha)$ if and only if $B A \in w P(\alpha)$.
(b) If $A \in P(\alpha)$, then $B A \in P(\alpha)$.
(c) $[A \in P(\alpha) \Longleftarrow B A \in P(\alpha)]$ if and only if $A \in$ Loc.
(d) If $A \in L o c$ and $\omega \operatorname{coz}(A)=\omega \operatorname{coz}(C(Y A))$, then $[A \in P(\alpha)$ if and only if $Y A \in D(\alpha)]$.

Proof. (a) $Y A=Y B A$, so $\operatorname{coz}(A)=\operatorname{coz}(B A)$.
(b) If $A \in P(\alpha)$, then $A \in w P(\alpha)$, so $B A \in w P(\alpha)$ by (a); and $B A \in$ Loc.
(c) Again, use (a). ([23, Remarks 2.3(a)] contains an example of a nonlocal A with $Y A=\beta \mathbb{N}$, which makes $B A \in P(\infty)$.)
(d) The case $\alpha>\omega$ is immediate from Corollary 2.4(b). The case $\alpha=\omega$ uses that $\operatorname{coz}(A)=\omega \operatorname{coz}(C(Y A))$ (also, recall from Remark 2.2 that $P(\alpha)=w P(\alpha) \cap L o c)$.

The following adds some information to Corollary 2.5.
Corollary 5.2. $(\omega \leq \alpha \leq \infty)$ The following are equivalent:
(a) $C(X) \in P(\alpha)($ or $w P(\alpha))$.
(b) $B C(X) \in P(\alpha)($ or $w P(\alpha))$.
(c) $X \in D(\alpha)($ and $/$ or $\beta X \in D(\alpha))$.

Proof. The "(or $w P(\alpha)$)" in (a) and (b) are because $C(X) \in L o c$. In (c), $X \in D(\alpha)$ if and only if $\beta X \in D(\alpha)$. The rest follows from Theorem 5.1.

We turn to the question: When is $C(X) \in L(\alpha)$? First, we treat the case $\alpha=\omega_{1}$, due to Buskes ([6]), with a small elaboration of his result.

The space X is called a P-space if all cozero sets are closed (see $[15,4 \mathrm{~J}]$).
Theorem 5.3. These are equivalent.
(a) $C(X) \in L\left(\omega_{1}\right)$.
(b) Each countable disjoint family in $C(X)^{+}$has an upper bound in $C(X)$, and βX is $Z D$.
(c) X is a P-space.

Proof. (a) $\Longrightarrow(\mathrm{b})$. We need only that βX is ZD , which follows since $L\left(\omega_{1}\right) \subseteq P\left(\omega_{1}\right)$ and for every $A \in \mathbf{W}$, if $A \in P\left(\omega_{1}\right)$, then $Y A$ is ZD (use Corollary 2.5 and Definition 1.5).
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$. Take $U \in \omega \operatorname{coz}_{X}(C(X))$. We show U is closed. Now $U=\operatorname{coz}_{X}(u)$ for $u \in C^{*}(X)$. Let $\tilde{u} \in C(\beta X)$ extend u, and let $\tilde{U}=\operatorname{coz}_{X}(\tilde{u})$. Then, $\tilde{U} \cap X=U$. Since βX is $\mathrm{ZD}, \tilde{U}=\bigcup_{n<\omega} U_{n}$ for $U_{n} \in \operatorname{clop}(\beta X)$, and then $U=\tilde{U} \cap X=\dot{U}_{n<\omega}\left(U_{n} \cap X\right)$ and $V_{n} \equiv U_{n} \cap X \in \operatorname{clop}(X)$. Here each $V_{n} \neq \emptyset$ (unless U is already clopen, in which case we're done), so if $x \in \bar{U}-U$, any neighborhood W of x meets infinitely many V_{n} 's.

Now suppose (b), so there is $f \in C(X)$ with $f \geq n \chi\left(V_{n}\right)$ (pointwise) for all $n<\omega$. If $x \in \bar{U}-U$, then there is a neighborhood W of x with $f(x)-1 \leq f(y) \leq f(x)+1$ for every $y \in W$, so W can meet only finitely many of the V_{n} 's. Thus there does not exist $x \in \bar{U}-U$.
(c) \Longrightarrow (a). Given disjoint $\left\{f_{n}\right\}_{n<\omega} \subseteq C(X)^{+}, U=\dot{U}_{n<\omega} \operatorname{coz}_{X}\left(f_{n}\right) \in$ $\omega \operatorname{coz}_{X}(C(X))$, so U is closed (since X is a P-space). Then f defined as
$\left.f\right|_{\operatorname{coz}_{X}\left(f_{n}\right)}=\left.f_{n}\right|_{\operatorname{coz}_{X}\left(f_{n}\right)}$, and $\left.f\right|_{X-U}=0$ is locally continuous, thus continuous, and f is the pointwise supremum of $\left\{f_{n}\right\}_{n<\omega}$. Thus $f=\bigvee_{n<\omega} f_{n}$ in $C(X)$.

The preceding (Theorem 5.3) is a lemma to, and a special case of, the following.

Theorem 5.4. $(\omega<\alpha \leq \infty)$. The following are equivalent.
(a) $C(X) \in L(\alpha)$.
(b) $X \in D(\alpha)($ and/or $\beta X \in D(\alpha))$ and X is a P-space.
(c) $C(X) \in P(\alpha) \cap L\left(\omega_{1}\right)$.

Proof. $(\mathrm{b}) \Longrightarrow(\mathrm{c})$, by Corollary 5.2 and Theorem 5.3.
$(\mathrm{a}) \Longrightarrow(\mathrm{c}) . L(\alpha) \subseteq P(\alpha)$ and $L(\alpha) \subseteq L\left(\omega_{1}\right)$.
(b) $/$ (c) \Longrightarrow (a). Recall from Lemma 2.7 that $D(\alpha) \subseteq F(\alpha)$.

Suppose (b)/(c), and consider disjoint $\left\{f_{i}\right\}_{i \in I} \subseteq C(X)^{+}$, with $|I|<\alpha$. Since X is a P-space, the $\operatorname{coz}_{X}\left(f_{i}\right)$ are clopen, and since $X \in D(\alpha)$, one sees $V \equiv \overline{\bigcup_{i \in I} \operatorname{coz}_{X}\left(f_{i}\right)}$ is clopen. Thus, $\left(\bigcup_{i \in I} \operatorname{coz}_{X}\left(f_{i}\right)\right) \cup(X-V) \equiv S$ is C^{*}-embedded, and dense. Define $f \in C(S)$ as $\left.f\right|_{\operatorname{coz}_{X}\left(f_{i}\right)}=\left.f_{i}\right|_{\operatorname{coz}_{X}\left(f_{i}\right)}$ for $i \in I$, and $\left.f\right|_{X-V}=0$. Extend f to $\hat{f} \in D(X)$. Now, $\hat{f}^{-1}(\infty)$ is a zero-set, thus open (since X is a P-space). Moreover, $\hat{f}^{-1}(\infty)$ intersects the dense set S and therefore is empty. Now, one easily sees that $f=\bigvee_{i \in I} f_{i}$ in $C(X)$ (in fact, is the pointwise join).

Example 5.5. (a) $(\alpha=\infty)$ Theorem 5.4 for $\alpha=\infty$ (also noted in [6]) says $C(X) \in L(\infty)$ if and only if X is ED and a P-space. Isbell ([31]) has shown that if X is ED and a P-space, and if the cardinal $|X|$ is nonmeasurable, then X is discrete. But, if Y is discrete and $|Y|$ is measurable, then the Hewitt realcompactification $v Y(\supsetneq Y)$ is ED and a P-space (and not discrete). See [15].
(b) $(\omega<\alpha<\infty)$ This witnesses the other cases of Theorem 5.4 and will be used later. Let D be discrete with $|D| \geq \alpha$, and let $X(\alpha)=D \cup\{x(\alpha)\}$ be D with the point $x(\alpha)$ adjoined, where neighborhoods U of $x(\alpha)$ have $|D-U|<\alpha$. Then $x(\alpha)$ is a P-point of $X(\alpha)$, so $X(\alpha)$ is an α-disconnected P-space. Of course $Y C(X(\alpha))=\beta X(\alpha)$. Let D denote the one-point compactification of D (caution: this use of the dot notation should not be confused with the earlier use of the dot to denote disjoint sums and unions).

Then $\beta X(\alpha)=d(\alpha) \dot{D}$, because (one can show) that $\beta X(\alpha)$ is the minimum $D(\alpha)$ cover of \dot{D}.
(c) $(\omega<\alpha \leq \infty)$ One may wonder if Theorem 5.4(c) holds for any $A \in \mathbf{W}$, i.e., if $L(\alpha)=P(\alpha) \cap L\left(\omega_{1}\right)$ in \mathbf{W}. Here are examples to the contrary.

Let $X \in D(\alpha)$ be compact with a clopen quasi-partition of size ω_{1} (e.g., the $\beta X(\alpha)$ in (b)).

Let $F(X, \mathbb{R})=\{f \in C(X)| | f(X) \mid<\omega\}$ and $A=l\left(\omega_{1}\right) F(X, \mathbb{R})$. We show $A \notin L(\alpha)$. Any $a \in A$ is of the form $a=\dot{\sum}_{i \in I} r_{i} \chi\left(U_{i}\right)$ with $\left\{U_{i}\right\}_{i \in I}$ a countable clopen quasi-partition in X. Put $U(a)=\bigcup_{i \in I} U_{i}$, which is dense, and evidently $|a(U(a))| \leq \omega$.

Let $\left\{V_{j}\right\}_{j \in J}$ be a clopen quasi-partition in X with $|J|=\omega_{1}$. Take distinct $r_{j} \in \mathbb{R}(j \in J)$. Then $f=\bigvee_{j \in J} v_{j} \chi\left(V_{j}\right)$, extended over X, is in $l(\alpha) F(X, \mathbb{R})$ (recall that $\bigcup_{j \in J} V_{j}$ is C^{*}-embedded in X).

Supposing $f \in A$, we have $U(f)$ as above. But every $V_{j} \cap U(f) \neq \emptyset$, so $r_{j} \in f(U(f))$. Thus $|f(U(f))| \geq \omega_{1}$. The contradiction shows $f \notin A$, so $A \notin L(\alpha)$.

If X is compact and $\omega \leq \alpha \leq \infty$, then $p(\alpha) C(X) \leq C(Y p(\alpha) C(X))$. We illustrate instances of $<$, and of $=$.

Example 5.6. (a) $Y p(\omega) C(\dot{\mathbb{N}})=\beta \mathbb{N}$ (which is ED) and $p(\omega) C(\dot{\mathbb{N}})<$ $C(\beta \mathbb{N})$.

The first is easily checked. The second is shown much as Example 5.5(c): Any $a \in p(\omega) C(\dot{\mathbb{N}})$ has $|a(\beta \mathbb{N})| \leq \omega$, while there are $f \in C(\beta \mathbb{N})$ with $|f(\beta \mathbb{N})|=c$.
(b) $(\omega<\alpha \leq \infty)$ We exhibit compact X which is not ω-disconnected so $C(X)<p(\omega) C(X)$, for which, for all $\omega<\alpha \leq \infty$, we have:

$$
Y p(\omega) C(X)=Y p(\alpha) C(X)=d(\infty) X
$$

and

$$
p(\omega) C(X)=p(\alpha) C(X)=C(d(\infty) X)
$$

We recall a construction from [28], which see for details. Suppose E is compact ED, and $p \neq q$ in E are non- P-points. Let γ be the quotient map identifying p and q, let $E_{\gamma}=E-\{p, q\}$, and denote the resulting surjection $\dot{E}_{\gamma} \stackrel{\gamma}{\leftarrow} E$ (since the image under γ is the one-point compactification of E_{γ}).

Then: $\dot{E}_{\gamma} \notin D(\omega)$ (because p, q are not P-points), and E is the unique proper cover of $\dot{E_{\gamma}}$.

To make our X : let Y be infinite compact ED, Y^{\prime} a copy of Y, for $y \in Y$ denote the corresponding point in Y^{\prime} as y^{\prime}. Let $E=Y+Y^{\prime}$ (topological sum). Take y a non- P-point of Y, with corresponding $y^{\prime} \in Y^{\prime}$, and identify y with y^{\prime} in $E=Y+Y^{\prime}$, per the construction outlined above. We now have $X=\dot{E}_{\gamma} \underline{\sim} E$ with the properties mentioned, which result in:
$C\left(\dot{E}_{\gamma}\right)<p(\omega) C\left(\dot{E}_{\gamma}\right), Y p(\omega) C\left(\dot{E}_{\gamma}\right)=E$, then using the material in Section 2, $p(\omega) C\left(\dot{E}_{\gamma}\right)=p(\alpha) C\left(\dot{E}_{\gamma}\right)$ for all $\omega \leq \alpha \leq \infty$.

We now show $p(\omega) C\left(\dot{E}_{\gamma}\right)=C(E)$.
By Theorem 3.4, $p(\omega) C\left(\dot{E}_{\gamma}\right)$ is comprised of all $\sum_{i \in I}\left(g_{i} \circ \gamma\right) \chi\left(U_{i}\right)$, where $|I|<\omega,\left\{g_{i}\right\}_{i \in I} \subseteq C\left(\dot{E}_{\gamma}\right)$, and $\left\{U_{i}\right\}_{i \in I}$ is a clopen partition of E. Now, any $f \in C(E)$ takes this form, indeed as

$$
(*) f=(g \circ \gamma) \chi(Y)+\left(g^{\prime} \circ \gamma\right) \chi\left(Y^{\prime}\right)
$$

with $g, g^{\prime} \in C\left(\dot{E}_{\gamma}\right)$, defined as follows.
For $y \in Y, g(y) \equiv f(y) \equiv g\left(y^{\prime}\right)$, and $g^{\prime}(y) \equiv f\left(y^{\prime}\right) \equiv g^{\prime}\left(y^{\prime}\right)$. These g, g^{\prime} factor through γ, which is quotient, thus we construct $g, g^{\prime} \in C\left(\dot{E}_{\gamma}\right)$.

One checks (*).

$6 \quad b L(\alpha)($ in W)

We consider application of our methods to one more family of hull classes, $b L(\alpha)$, which has received attention the literature, beginning with [38] for $\alpha=\infty$. We simply summarize the situation, with references and a few indications of proof.

Definition 6.1. $(\omega<\alpha \leq \infty) A$ is boundedly laterally α-complete $(A \in$ $b L(\alpha)$) if for every $|I|<\alpha,\left\{a_{i}\right\}_{i \in I} \subseteq A^{+}$disjoint and A-bounded (i.e., there is $a \in A$ such that $a_{i} \leq a$ for every $i \in I$), the join $\bigvee_{i \in I} a_{i}$ exists in A.
Theorem 6.2. In \mathbf{W} :
(a) $([23,3.2]$, with credits to $[38]) L(\alpha) \subseteq b L(\alpha) \subseteq P(\alpha)$. So $A \in b L(\alpha)$ implies $Y A \in D(\alpha)$.
(b) ([23, 2.9], with credits to [38]) bL(α) is a hull class in W. Denoting the hull operator $b l(\alpha), p(\alpha) \leq b l(\alpha) \leq l(\alpha)$.
(c) Suppose $A \in \mathbf{W}$. Denote the cover $Y A \stackrel{\sigma}{\leftarrow} d(\alpha) Y A$. Then $Y b l(\alpha) A=$ $d(\alpha) Y A$, and

$$
b l(\alpha) A=\{f \in l(\alpha) A \mid \exists a \in A \text { with }|f| \leq a \circ \sigma\} .
$$

(d) $b l(\alpha)$ is $C B$ (commutes with the bounded coreflection $B)$.
(e) $C(X) \in b L(\alpha)$ if and only if $X \in D(\alpha)$ if and only if $C(X) \in P(\alpha)$.

Proof. (Sketch)
(a) and (b): See the references above.
(c) As with $l(\alpha)$ earlier in this paper.
(d) The last item in (c) shows that $b l(\alpha)$ is the "convex modification" of $l(\alpha)$, called $\bar{c}(l(\alpha))$ in [10]; since $l(\alpha)$ is anti-PB (Theorem 4.2), $\bar{c}(l(\alpha))$ is $C B$ by ([10]). (This can be shown directly from (c).)
(e) Apply Theorem 5.3 and (c) here, observing that, there, the condition " X is a P-space" disappears because of the now added condition " $\left\{a_{i}\right\}$ is A-bounded".

Acknowledgement

The authors wish to thank the anonymous referee for their helpful comments.

References

[1] Anderson, M. and Feil, T., "Lattice-Ordered Groups; an Introduction", Reidel Texts, Math. Sci., Kluwer, 1988.
[2] Ball, R.N. and Hager, A.W., Epicompletion of Archimedean ℓ-groups and vector lattices with weak unit, J. Aust. Math. Soc. Ser. A 48(1) (1990), 25-56.
[3] Ball, R.N., Marra, V., McNeil, D., and Pedrini, A., From Freudenthal's spectral theorem to projectable hulls of unital Archimedean lattice-groups, through compactifications of minimal spectra, Forum Math. 30(2) (2018), 513-526.
[4] Bigard, A., Keimel, K., and Wolfenstein, S., "Groupes et Anneaux Reticules", Lecture Notes in Math. 608, Springer, 1977.
[5] Bleier, R.D., The SP-hull of a lattice-ordered group, Canad. J. Math. 26(4) (1974), 866-878.
[6] Buskes, G.J.H.M., Disjoint sequences and completeness properties, Nederl. Akad. Wetensch. Indag. Math. 47(1) (1985), 11-19.
[7] Carrera, R. and Hager, A.W., On hull classes of ℓ-groups and covering classes of spaces, Math. Slovaca 61(2) (2011), 411-428.
[8] Carrera, R. and Hager, A.W., Bounded equivalence of hull classes in Archimedean lattice-ordered groups with unit, Appl. Categ. Structures 24 (2016), 163-179.
[9] Carrera, R. and Hager, A.W., A classification of hull operators in Archimedean lattice-ordered groups with weak unit, Categ. Gen. Algebr. Struct. Appl. 13(1) (2020), 83-103.
[10] Carrera, R. and Hager, A.W., Some modifications of hull operators in Archimedean lattice-ordered groups with weak unit, (to appear).
[11] Chambless, D.A., Representation of the projectable and strongly projectable hulls of a lattice-ordered group Proc. Amer. Math. Soc. 34(2) (1972), 346-350.
[12] Darnel, M.R., "Theory of lattice-ordered groups", Monographs and Textbooks in Pure and Applied Mathematics, vol. 187, Marcel Dekker, New York, 1995.
[13] Dashiel, F., Hager, A.W., and Henriksen, M., Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
[14] Fine, N., Gillman, L., and Lambek J., "Rings of Quotients of Rings of Functions", McGill Univ. Press, Montreal, 1965.
[15] Gillman, L. and Jerison, M., "Rings of Continuous Functions", The University Series in Higher Mathematics. Van Nostrand, Princeton, 1960. (Reprinted as SpringerVerlag Graduate Texts 43, 1976.)
[16] Gleason, A.M., Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
[17] Hager, A.W., Algebraic closures of ℓ-groups of continuous functions, In:"Rings of continuous functions", Lecture Notes in Pure and Appl. Math. 95, 149-164, Dekker, 1985.
[18] Hager, A.W., A description of HSP-like classes, and applications, Pacific J. Math. 125(1) (1986), 93-102.
[19] Hager, A.W., Minimal covers of topological spaces, Ann. New York Acad. Sci. 552 (1989), 44-59.
[20] Hager, A.W., α-cut complete Boolean algebras, Algebra Universalis 39(1-2) (1998), 57-70.
[21] Hager, A.W., A note on acozero-complemented spaces and α Borel sets, Houston J. Math. 25(4) (1999), 679-685.
[22] Hager, A.W., Kimber, C.M., and McGovern, W.W., Weakly least integer closed groups, Rend. Circ. Mat. Palermo (2) 52(3) (2003), 453-480.
[23] Hager, A.W. and Martinez, J., α-Projectable and laterally α-complete archimedean lattice-ordered groups, In S. Bernau (ed.): "Proc. Conf. on Mem. of T. Retta (Temple U., PA/Addis Ababa, 1995)", Ethiopian J. Sci. 19 (1996), 73-84.
[24] Hager, A.W. and Martinez, J., Hulls for various kinds of α-completeness in archimedean lattice-ordered groups, Order 16 (1999), 98-103.
[25] Hager, A.W. and McGovern, W.W., The projectable hull of an archimedean ℓ-group with weak unit, Categ. Gen. Algebr. Struct. Appl. 7(1) (2017), 165-179.
[26] Hager, A.W. and Robertson, L.C., Representing and ringifying a Riesz space, Symp. Math. 21 (1977), 411-431.
[27] Hager, A.W. and Robertson, L.C., Extremal units in an archimedean Riesz space, Rend. Semin. Mat. Univ. Padova 59 (1978), 97-115.
[28] Hager, A.W. and Wynne, B., Atoms in the lattice of covering operators in compact Hausdorff spaces, Topology Appl. 289 (2021), 107402.
[29] Henriksen, M., Isbell, J.R., and Johnson, D.G., Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117.
[30] Henriksen, M. and Johnson, D., On the structure of a class of archimedean latticeordered algebras, Fund. Math. 50 (1961), 73-94.
[31] Isbell, J., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
[32] Luxemburg, W. and Zaanen, A., "Riesz Spaces I", North Holland, 1971.
[33] Madden, J.J. and Vermeer, J., Epicomplete Archimedean ℓ-groups via a localic Yosida theorem, J. Pure Appl. Algebra 68(1-2) (1990), 243-253.
[34] Martinez, J., Hull classes of Archimedean lattice-ordered groups with unit: a survey, In: "Ordered algebraic structures", Dev. Math., vol. 7, pp. 89-121. Kluwer Academic Publishers, 2002.
[35] Martinez, J. and McGovern, W.W., When the maximum ring of quotients of $C(X)$ is uniformly complete, Topology Appl. 116(2) (2001), 185-198.
[36] Porter, J.R. and Woods, R.G., "Extensions and absolutes of Hausdorff spaces", Springer-Verlag, 1988.
[37] Sikorski, R., "Boolean algebras", Third edition, Springer-Verlag, 1969.
[38] Veksler, A.I. and Geiler, V.A., Order completeness and disjoint completeness of linear partially ordered spaces, Sibirsk. Mat. Ž 13 (1972), 43-51.
[39] Vermeer, J., The smallest basically disconnected preimage of a space, Topology Appl. 17(3) (1984), 217-232.
[40] Yosida, K., On vector lattices with a unit, Proc. Imp. Acad. Tokyo 17 (1941), 121124.

[^1]
[^0]: * Corresponding author

 Keywords: Lattice-ordered group, archimedean, projectable, laterally complete. [2010]: 06D99, 08C05, 54C40.
 Received: 8 October 2023, Accepted: 8 December 2023.
 ISSN: Print 2345-5853 Online 2345-5861.
 (C) Shahid Beheshti University

[^1]: Anthony Wood Hager Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, 06459, USA.
 Email: ahager@wesleyan.edu
 Brian Wynne Department of Mathematics, Lehman College, CUNY, Gillet Hall, Room 211, 250 Bedford Park Blvd West, Bronx, NY 10468, USA.
 Email: brian.wynne@lehman.cuny.edu

