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On C-injective generalized hyper S-acts
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Abstract. This paper explores generalized hyper S-acts (GHS-acts) over
a hypermonoid S as generalizations of monoid acts within the context of alge-
braic hyperstructures. Specifically, we extend the definition of C-injectivity
to GHS-acts and investigate their internal and homological properties. It
is established that to determine the GHS-injectivity of GHS-acts with a
fixed element, we only need to consider the inclusions of cyclic GHS-subacts
into indecomposable ones. Additionally, we introduce the concepts of semi-
injectivity and semi-C-injectivity and give some characterizations of these
types of injectivity for quotients of SS . It is demonstrated that, in contrast
to the case of ordinary acts over monoids, cyclic GHS-acts are not neces-
sarily a quotient of SS , and injectivity and semi-injectivity do not coincide
in the category of GHS-acts with a fixed element. Among other things, we
also show that all pure GHS-acts are injective if and only if all pure cyclic
GHS-acts are C-injective.
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1 Introduction and Preliminaries

Algebraic hyperstructures, initiated by Marty [3] in 1934, serve as gen-
eralizations of classical algebraic structures. An algebraic hyperstructure
consists of a set with operations in which the composition of two elements
is a non-empty set. A natural generalization of the concept of actions of
monoids on sets involves hyperactions of monoids on sets, which were in-
troduced in [4] and [6]. This idea was further developed in [5, 7, 8], by
introducing hypermonoids and their hyperactions on sets. In keeping with
the notation used in [7], we refer to this generalization as a generalized hy-
per S-act, or briefly GHS-act, where S is a hypermonoid. An S-act A is
called C-injective, as studied in [9], if it is injective relative to all inclusions
with cyclic domains. In this paper, we extend the definition of C-injectivity
to GHS-acts and examine some of their internal and homological prop-
erties. For the necessary background information about S-acts and their
properties, one may consult [2].

Let A be a set. We denote the set of all subsets of A by P(A) and
put P∗(A) := P(A)\{∅}. Let S be a non-empty set and ◦ : S × S → P∗(S)
be a map, called a hyperoperation, satisfying the following conditions:

(i) For any s, t, r ∈ S, s ◦ (t ◦ r) = (s ◦ t) ◦ r (where T ◦ s = ⋃t∈T t ◦ s
and s ◦ T =

⋃
t∈T s ◦ t for any T ⊆ S and s ∈ S).

(ii) There exists an element e ∈ S with s ◦ e = e ◦ s and s ∈ s ◦ e for
any s ∈ S.

Then (S, ◦) is called a hypermonoid. In the second condition, the element e
is called an identity element of S.

Let (S, ◦) be a hypermonoid and K be a non-empty subset of S. Then
K is called a right ideal of S, if K ◦ S =

⋃
s∈SK ◦ s ⊆ K. Let X be a non-

empty set and ∗ : X × S → P∗(X) satisfy the following conditions:

(i) For any x ∈ X and s, t ∈ S, x ∗ (s ◦ t) = (x ∗ s) ∗ t (where
y ∗ T =

⋃
t∈T y ∗ t and Y ∗ t = ⋃y∈Y y ∗ t for any y ∈ X, t ∈ S, T ⊆ S and

Y ⊆ X).

(ii) x ∈ x ∗ e for any x ∈ X.

Then (XS , ∗) (or simply, XS) is called a (right) generalized hyper S-act
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(or simply, a GHS-act). Let XS be a GHS-act and Y ⊆ X. Whenever
Y ∗S ⊆ Y , then (YS , ∗) is a GHS-act called a GHS-subact of XS , where by
Y ∗T we mean the set

⋃
y∈Y y ∗T for any T ⊆ S. Clearly, the GHS-subacts

of SS are precisely the right ideals of S. The GHS-act XS is called finitely
generated if there exists a finite subset Y of X with XS = Y ∗S. Moreover,
if Y is a singleton, then XS is called cyclic. An element x ∈ XS is called a
fixed element if x ∗ s = {x} for any s ∈ S.

Let (S, ◦) be a hypermonoid. An identity element e ∈ S is called pure
whenever s ◦ e = e ◦ s = {s} for any s ∈ S. Let S have a pure identity
element e and XS be a GHS-act with x ∗ e = {x} for any x ∈ X. In this
case, we call XS a pure GHS-act. In the sequel, any hypermonoid has a
(unique) pure identity element denoted by 1.

Let F = {Xi
S}i∈I be a family of GHS-acts. Assume that XS =∏

i∈I X
i
S = {(xi)i∈I : ∀ i ∈ I, xi ∈ Xi}, YS =

∐
i∈I X

i
S =

⋃̇
i∈IX

i
S =⋃

i∈I X
i
S × {i}, and for any i ∈ I, ∗i is the action of S on Xi

S . For any

(xi)i∈I ∈ XS , j ∈ I, yj ∈ Xj
S and s ∈ S, define (xi)i∈I ∗ s = {(ai)i∈I :

∀ i ∈ I, ai ∈ xi ∗i s}, (yj , j) ∗′ s = {(z, j) : z ∈ yj ∗j s}. Then XS and YS
are two GHS-acts called the product and the coproduct of the family F ,
respectively.

Let XS and YS be two GHS-acts and ϕ : XS → YS be a map. Then
by ϕ(x ∗ s) we mean {ϕ(z) : z ∈ x ∗ s} for any x ∈ X and s ∈ S. A map
ϕ : XS → YS is called a GHS-homomorphism if ϕ(x ∗ s) = ϕ(x) ∗ s for any
x ∈ X and s ∈ S. A one to one GHS-homomorphism is called a GHS-
monomorphism and a bijective GHS-homomorphism whose inverse is also a
GHS-homomorphism is called a GHS-isomorphism. Let XS be a GHS-act
and YS be a GHS-subact of XS . A GHS-homomorphism f : XS → YS is
called a retraction whenever f |Y = idY . In this case, YS is called a retract
of XS . Let XS be a GHS-act and µ be a relation on XS . Assume that
X1, X2 ⊆ XS . Then by X1 µX2 we mean for any x1 ∈ X1, there exists an
element x2 ∈ X2 with x1 µx2 and vice versa. An equivalence relation µ on
XS is called a congruence on XS whenever xµ y implies (x ∗ s)µ (y ∗ s) for
any x, y ∈ XS and s ∈ S. Let µ be a congruence on XS . Then we denote
the equivalence class including x ∈ XS by x

µ for any x ∈ XS and the set of

all equivalence classes by XS
µ . By defining x

µ ⊙ s = x∗s
µ for any x

µ ∈ XS
µ and
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s ∈ S, one can see that (XS
µ ,⊙) is a GHS-act, called the quotient GHS-

act of XS by µ. Note that L ⊆ XS
µ is a GHS-subact of XS

µ if and only
if there exists a GHS-subact YS of XS , where YS = {y ∈ X : [y]µ ∈ L}
such that L = YS

µ , where YS
µ = {[y]µ ∈ XS

µ : y ∈ Y }. We denote the
trivial congruence {{x} : x ∈ XS} on XS by ∆X . Let ϕ : XS → YS be a
GHS-homomorphism. The kernel of ϕ, denoted by Ker(ϕ), is defined as
Ker(ϕ) = {(x1, x2) ∈ XS × XS : ϕ(x1) = ϕ(x2)}. The image of a GHS-
homomorphism ϕ, denoted by Im(ϕ), is naturally defined. Clearly, Ker(ϕ)
is a congruence on XS , and

XS
Ker(ϕ) and Im(ϕ) are isomorphic GHS-acts,

see [6].

A GHS-act XS is called injective if for any GHS-monomorphism
i : YS ↪→ ZS and any GHS-homomorphism f : YS → XS , there exists
a GHS-homomorphism g : ZS → XS for which the following diagram
commutes:

YS
� � i //

f
��

ZS

g
}}

XS

Given the assumptions mentioned above, XS is referred to as C-
injective if YS is cyclic. The injectivity of GHS-acts was studied in [5],
where it was shown that the retracts of injective GHS-acts are also injec-
tive. Additionally, when S has a unique pure identity element, any GHS-act
XS can be essentially embedded in an injective GHS-act known as the in-
jective hull of XS (For the notion of essentiality of S-acts, see [1]). Here
we provide an equivalent definition of an injective GHS-act by assuming
that YS is a GHS-subact of ZS and i denotes the inclusion. It is worth
noting that every injective GHS-act is C-injective. A GHS-act XS is said
to be decomposable if there exist two disjoint GHS-subacts YS and ZS of
XS whose union equals XS , otherwise, it is called indecomposable. Any
cyclic GHS-act is clearly indecomposable. Furthermore, similarly to ordi-
nary acts over monoids, every GHS-act has a unique decomposition into
indecomposable GHS-subacts (see [7]).

The organization of this paper is as follows. First we examine C-
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injective GHS-acts and prove that any such act has a fixed element. It is
also established that being injective and C-injective for cyclic pure GHS-
acts are equivalent. Furthermore, if a GHS-act XS has a fixed element,
it suffices to consider indecomposable GHS-acts ZS in the definition of C-
injectivity. We show that, for a hypermonoid S, all pure GHS-acts are
injective if and only if all pure cyclic GHS-acts are C-injective. Moreover,
we introduce the notion of semi-injectivity (semi-C-injectivity), that is, in-
jectivity with respect to all inclusions into cyclic GHS-acts (with cyclic
domains) and provide some characterizations of such kinds of injectivity for
quotients of SS . We illustrate that cyclic GHS-acts may not always be a
quotient of SS , in contrast to ordinary acts over monoids. Furthermore,
we demonstrate that although the Skornjakov criterion holds for GHS-acts
with a fixed element (see [5, Theorem 5]), injectivity and semi-injectivity
are not equivalent.

2 C-injectivity of GHS-acts

In this section, we introduce the concept of a C-injective GHS-act. We
then proceed to examine various elementary and homological properties, as
well as certain categorical aspects associated with this concept.

Lemma 2.1. Let a GHS-act XS have a fixed element and f : XS → YS be
a GHS-homomorphism. Then YS has a fixed element.

Corollary 2.2. Any C-injective GHS-act has a fixed element.

Proof. Let XS be a C-injective GHS-act and x ∈ XS . Take XS ∪{θ} as the
S-act with a fixed element θ adjoined to X. Consider the following diagram:

x ∗ S � � //� _

��

XS ∪ {θ}

XS

Since XS is C-injective, there exists a GHS-homomorphism g : XS ∪{θ} →
XS making the above diagram commutative. Now, it follows from Lemma
2.1 that XS has a fixed element.
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The following theorem states a relationship between injectivity and
C-injectivity.

Theorem 2.3. A cyclic pure GHS-act XS is C-injective if and only if it
is injective.

Proof. Assume that XS is a cyclic pure C-injective GHS-act. By [5, Propo-
sition 4.2], XS is embedded in an injective GHS-act ZS . Using the as-
sumption, there exists a GHS-homomorphism g : ZS → XS such that
g|XS

= idXS
. So XS is a retract of the injective GHS-act ZS , which gives

that XS is injective.

The next result provides an equivalent condition to C-injectivity of
GHS-acts.

Theorem 2.4. Let XS be a GHS-act. Then XS is C-injective if and only
if XS has a fixed element and for any indecomposable GHS-act ZS and any
cyclic GHS-subact YS of ZS, any GHS-homomorphism f : YS → XS is
extended to a GHS-homomorphism g : ZS → XS.

Proof. In view of Corollary 2.2, it suffices to prove the sufficiency. Consider a
GHS-actXS with a fixed element θ satisfying the property mentioned in the
hypothesis. To prove that XS is C-injective, let YS be a cyclic GHS-subact
of a GHS-act ZS . Assume that ZS =

⋃
i∈I Z

i
S is the (unique) decomposition

of ZS into its indecomposable GHS-subacts Zi
S . One can see that there

exists i0 ∈ I with YS ⊆ Zi0
S . So there exists a GHS-homomorphism gi0 :

Zi0
S → XS such that gi0 |XS

= f . Define the map g : ZS → XS as follows:

g(x) =

{
gi0(x) x ∈ Zi0

S ,

θ x /∈ Zi0
S .

Hence, g is a GHS-homomorphism extending f , as desired.

Note that for a family {Xi
S}i∈I of GHS-acts in which Xi

S has a fixed

element θi for any i ∈ I, λj : Xj
S → ∏

i∈I X
i
S , mapping any xj ∈ Xj

S to
{yi}i∈I with yj = xj and yi = θi for any i ̸= j, is a GHS-homomorphism.

The following is devoted to study the behaviour of C-injectivity with
respect to the product and coproduct of a family of GHS-acts.
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Theorem 2.5. Let {Xi
S}i∈I be a family of GHS-acts and XS =

∏
i∈I X

i
S

and YS =
∐

i∈I X
i
S. Then

(i) XS is C-injective if and only if Xi
S is C-injective for any i ∈ I.

(ii) YS is C-injective and Xi
S has a fixed element for any i ∈ I if and

only if Xi
S is C-injective for any i ∈ I.

Theorem 2.6. Let S be a hypermonoid. Then the following are equivalent:

(i) All pure GHS-acts are C-injective.

(ii) All cyclic pure GHS-acts are C-injective.

(iii) All indecomposable pure GHS-acts are C-injective.

(iv) All cyclic pure GHS-acts are injective.

Proof. (i) ⇒ (ii) and (iv) ⇒ (i) are trivial.

(ii) ⇒ (iii) Let XS be an indecomposable pure GHS-act. Consider
the following diagram:

YS
� � //

f
��

ZS

XS

where YS is a cyclic GHS-act. Note that f(YS) is a cyclic GHS-subact of
XS . So there exists a GHS-homomorphism g : ZS → f(YS) extending f .

(iii) ⇒ (iv) This follows from Theorem 2.3 and the fact that all cyclic
GHS-acts are indecomposable.

3 Semi-injectivity and semi-C-injectivity

In this section, we introduce the notions of semi-injectivity and semi-C-
injectivity and show that they are actually different. Then we give some
characterization results for being such kinds of injectivity of quotients of
SS , where S is a hypermonoid.
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Remark 3.1. As we know, any cyclic S-act is isomorphic to a quotient of
SS , where S is a monoid. However, there are some cyclic GHS-acts over
a hypermonoid S isomorphic to no quotient of SS . For instance, assume
that the hypermonoid S = {1, s, t} and the GHS-act XS = {x1, x2, x3} are
defined as the following tables:

◦ 1 s t

1 {1} {s} {t}
s {s} {s} {s, t}
t {t} {s} {t}
∗ 1 s t

x1 {x1} {x1, x2} {x1}
x2 {x2} {x2} {x2}
x3 {x3} X X

Then XS is cyclic but isomorphic to no quotient of SS . For this, it suffices to
show that XS and SS are not isomorphic since the cardinalities of the other
quotients of SS are less than 3. On the contrary, assume that ϕ : SS → XS

is a GHS-isomorphism. Note that both XS and SS have only one generator.
Hence, ϕ(1) = x3, which implies {ϕ(s)} = ϕ(1 ◦ s) = ϕ(1) ∗ s = x3 ∗ s = X,
which is a contradiction.

Based on Remark 3.1, we present the following definition:

Definition 3.2. GHS-act XS is called semi-injective whenever for any con-
gruence µ on SS , any GHS-subact YS of SS

µ and any GHS-homomorphisms

f : YS → XS , there exists a GHS-homomorphism g : SS
µ → XS extending

f . Further, if YS is cyclic, then XS is called semi-C-injective. These notions
can also be defined for acts over monoids.

Obviously, any semi-injective GHS-act is semi-C-injective. The fol-
lowing example shows that the converse is not true in general.

Example 3.3. Let S = {1, s, t}. Define ◦ on S as follows:

x ◦ y = {x}, 1 ◦ x = x ◦ 1 = {x}, ∀x, y ∈ {s, t}.
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Then S is a hypermonoid. Obviously, K = {s, t} is a right ideal of S.
We claim that KS is C-injective and then semi-C-injective but not semi-
injective. Note that the identity map id : KS → KS has no extension to
SS , since the image of any GHS-homomorphism from SS to KS must be
cyclic. This follows that KS is not semi-injective. Now assume that ZS is
a GHS-act and YS is a cyclic GHS-subact of ZS . Moreover, assume that
f : YS → KS is a GHS-homomorphism. Then Im(f) is cyclic and hence a
singleton. Let Im(f) = {q}, where q ∈ KS . Then the GHS-homomrphism
g : ZS → XS , by setting g(m) = q, is an extension of f . Therefore, KS is
C-injective.

The well-known Skornjakov criterion states that an S-act, for a monoid
S, containing a fixed element is injective if and only if it is injective relative
to all inclusions into cyclic acts, i.e., semi-injective in our setting. This cri-
terion also holds for GHS-acts with a fixed element (see [5, Theorem 5]).
However, the following example shows that semi-injective GHS-acts (with
a fixed element) are not necessarily injective.

Example 3.4. Consider the hypermonoid S mentioned in Remark 3.1.
Note that SS is not C-injective and then not injective since it has no fixed el-
ement. We show that SS is semi-injective. All congruences on SS are the sets
µ1 = {{1}, {s}, {t}}, µ2 = {{1}, {s, t}}, µ3 = {{1, t}, {s}}, µ4 = {{1, s, t}}.
Also K1 = {s, t} and K2 = S are the only right ideals of S. We must
show that for any congruence µ on SS and any right ideal K of S, any
GHS-homomorphism f : KS

µ → SS is extended to a GHS-homomorphism

g : SS
µ → SS . If K = S, then we can choose g = f . Otherwise, assume that

K = K1. One can see that the only GHS-homomorphism from KS to SS
is the inclusion. It follows that there is no GHS-homomorphism from KS

µ2

and KS
µ4

to SS . Also, if µ = µ3, then
K2
µ = SS

µ established before. It remains
to verify the case K = K1 and µ = µ1. In this case, f is the inclusion, and
it is enough to take g the identity map.

In what follows, we study semi-injectivity and semi-C-injectivity of
quotients of SS for a hypermonoid S. To this end, we list some preliminaries.

Let S be a hypermonoid, K be a right ideal of S and µ and λ be two
congruences on SS . For any s ∈ S, we define K(s, µ) = {a ∈ S : s◦a

µ ⊆ KS
µ }.
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It is easily seen that K(s, µ) is a right ideal of S. For any q ∈ S, the relation
R(K,µ, λ, q) on S is defined as follows:

s R(K,µ, λ, q) t⇔ K(s, µ) = K(t, µ),∀a ∈ K(s, µ), (q ◦ s ◦ a) λ (q ◦ t ◦ a),

for all s, t ∈ S. Now we have the following:

Lemma 3.5. The relation R(K,µ, λ, q) is a congruence on SS.

Proof. It is clear that R(K,µ, λ, q) is an equivalence relation. Denote
R(K,µ, λ, q) briefly by R. Let x, y, s ∈ S and x

R = y
R . We must show

that x◦s
R = y◦s

R . It follows from x
R = y

R that K(x, µ) = K(y, µ) and
(q ◦ x ◦ b) λ (q ◦ y ◦ b) for any b ∈ K(x, µ). First, we need to show that

K(x ◦ s, µ) = K(y ◦ s, µ). For any z ∈ K(x ◦ s, µ), we have (x◦s)◦z
µ ⊆ K

µ .

Note that (x◦s)◦z
µ = x◦(s◦z)

µ , which implies s◦z ⊆ K(x, µ) = K(y, µ). Hence,
(y◦s)◦z

µ = y◦(s◦z)
µ ⊆ K

µ . Thus z ∈ K(y ◦ s, µ), which implies K(x ◦ s, µ) ⊆
K(y ◦ s, µ). Similarly, K(y ◦ s, µ) ⊆ K(x ◦ s, µ) and so K(x ◦ s, µ) =
K(y ◦ s, µ). Now let a ∈ K(x ◦ s, µ). Then s ◦ a ⊆ K(x, µ). This gives that
(q ◦ x ◦ (s ◦ a)) λ (q ◦ y ◦ (s ◦ a)) whence (q ◦ (x ◦ s) ◦ a) λ (q ◦ (y ◦ s) ◦ a).
Therefore, x◦s

R = y◦s
R .

Lemma 3.6. Let p, q ∈ S, µ and λ be two congruences on SS, and K be a
right ideal of S. If for any m ∈ S, m

µ ∈ K
µ implies (p ◦m) λ (q ◦m), then

R(K,µ, λ, p) = R(K,µ, λ, q).

Proof. Let s R(K,µ, λ, p) t. To show that s R(K,µ, λ, q) t, it is enough to
verify (q ◦ s ◦ a) λ (q ◦ t ◦ a) for any a ∈ K(s, µ). Let a ∈ K(s, µ) = K(t, µ).
Then s◦a

µ , t◦aµ ⊆ K
µ . It follows from s R(K,µ, λ, p) t that (p◦s◦a) λ (p◦t◦a).

On the other hand, (p ◦ (s ◦ a)) λ (q ◦ (s ◦ a)) and (p ◦ (t ◦ a)) λ (q ◦ (t ◦ a)).
Therefore, (q ◦s◦a) λ (q ◦ t◦a), which implies R(K,µ, λ, p) ⊆ R(K,µ, λ, q).
The reverse inclusion is established in a similar manner.

The following theorem determines a relationship between being semi-
injective of a quotient of SS and the form of some certainGHS-homomorphi-
sms.
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Theorem 3.7. Let S be a hypermonoid and λ be a congruence on SS. Then
the following are equivalent:

(i) SS
λ is semi-injective (semi-C-injective).

(ii) For any right ideal K of S and any congruence µ on SS (that KS
µ is

cyclic), if f : KS
µ → SS

λ is a GHS-homomorphism, then there exists q ∈ SS

such that f(mµ ) =
q◦m
λ for any m

µ ∈ KS
µ and for any s, t ∈ S, s R(K,µ, λ, q) t

implies (q ◦ s) λ (q ◦ t).

Proof. (i) ⇒ (ii) Let K be a right ideal of S and µ be a congruence on SS
(such that KS

µ is cyclic). Also let f : KS
µ → SS

λ be a GHS-homomorphism.
Consider the following diagram:

KS
µ
� � i //

f
��

SS
µ

SS
λ

Using the assumption, there exists a GHS-homomorphism g : SS
µ → SS

λ

such that gi = f . Assume that g( 1µ) =
p0
λ . Then

g(
m

µ
) = g(

1

µ
⊙m) = g(

1

µ
)⊙m =

p0
λ

⊙m =
p0 ◦m
λ

,

for any m ∈ S. If m
µ ∈ KS

µ , then

f(
m

µ
) = (gi)(

m

µ
) =

p0 ◦m
λ

.

Now assume that ρ = R(K,µ, λ, p0). We define α : KS
ρ → SS

λ by setting

α(mρ ) = p0◦m
λ . Consider m1

ρ ,
m2
ρ ∈ KS

ρ with m1
ρ = m2

ρ . Then K(m1, µ) =
K(m2, µ) and (p0 ◦ m1 ◦ a) λ (p0 ◦ m2 ◦ a) for any a ∈ K(m1, µ). Since
m1
ρ ∈ KS

ρ , there exists k ∈ K such that m1ρk and 1 ∈ K(k, µ) = K(m1, µ),
which implies (p0 ◦m1) λ (p0 ◦m2). Therefore, α is well-defined. One can
see that α is indeed a GHS-homomorphism.
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Let m1
µ = m2

µ . We have

s ∈ K(m1, µ) ⇔
m1

µ
⊙ s ⊆ KS

µ
⇔ m2

µ
⊙ s ⊆ KS

µ
⇔ s ∈ K(m2, µ),

which means K(m1, µ) = K(m2, µ). Take any a ∈ K(m1, µ). Then

p0 ◦m1 ◦ a
λ

=
p0 ◦m1

λ
⊙ a = g(

m1

µ
)⊙ a =

g(
m2

µ
)⊙ a =

p0 ◦m2

λ
⊙ a =

p0 ◦m2 ◦ a
λ

,

which gives that m1
ρ = m2

ρ . Now we show that m
ρ ∈ KS

ρ if and only if
m
µ ∈ KS

µ . If m
ρ ∈ KS

ρ , as above, 1 ∈ K(m,µ), and hence m
µ = m1◦1

µ ∈ KS
µ .

Let m
µ ∈ KS

µ . Then there exists k ∈ KS with m
µ = k

µ . Thus m
ρ = k

ρ , which

implies m
ρ ∈ KS

ρ (KS
ρ is cyclic). Now we consider the following diagram:

KS
ρ
� � i //

α

��

SS
ρ

SS
λ

It follows from semi-injectivity (semi-C-injectivity) of SS
λ that there exists

a GHS-homomorphism β : SS
ρ → SS

λ commuting the diagram.

Suppose that β(1ρ) =
q
λ for some q ∈ SS . Then β(mρ ) =

q◦m
λ for any

m
ρ ∈ SS

ρ . Let m
µ ∈ KS

µ . Then m
ρ ∈ KS

ρ and hence

f(
m

µ
) =

p0 ◦m
λ

= α(
m

ρ
) = β(

m

ρ
) =

q ◦m
λ

.

Also we get
p0 ◦m
λ

= α(
m

ρ
) = β(

m

ρ
) =

q ◦m
λ

.

Therefore, by Lemma 3.6, R(K,µ, λ, q) = R(K,µ, λ, p0) = ρ. Let
s R(K,µ, λ, q) t. Then s

ρ = t
ρ and hence

q ◦ s
λ

= β(
1

ρ
⊙ s) = β(

1

ρ
⊙ t) =

q ◦ t
λ
.
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(ii) ⇒ (i) Let µ be a congruence on SS . Consider the following dia-
gram:

KS
µ
� � i //

f
��

SS
µ

SS
λ

where K is a right ideal of S (that KS
µ is cyclic). Using the assumption,

there exists q ∈ SS in such a way that f(mµ ) =
q◦m
λ for any m

µ ∈ KS
µ . Define

g : SS
µ → SS

λ by setting g(mµ ) =
q◦m
λ . We show that g is well-defined. Let

m1
µ ,

m2
µ ∈ SS

µ with m1
µ = m2

µ . It suffices to show that m1 R(K,µ, λ, q) m2.
Note that K(m1, µ) = K(m2, µ) since m1

µ = m2
µ . Now let a ∈ K(m1, µ).

So m1◦a
µ = m2◦a

µ . It follows from m1◦a
µ ⊆ KS

µ that q◦(m1◦a)
λ = f(m1◦a

µ ) =

f(m2◦a
µ ) = q◦(m2◦a)

λ . Thus m1 R(K,µ, λ, q) m2 and hence q◦m1

λ = q◦m2

λ .
Therefore, g is well-defined. It is easily seen that g is indeed a GHS-
homomorphism and gi = f . Consequently, SS

λ is semi-injective (semi-C-
injective).

Corollary 3.8. Let S be a hypermonoid. Then the following are equivalent:

(i) All quotients of SS are semi-injective (semi-C-injective).

(ii) For any right ideal K of S and any two congruences µ and λ on
SS (that KS

µ is cyclic), if f : KS
µ → SS

λ is a GHS-homomorphism, then there
exists q ∈ SS such that

(1) f(mµ ) =
q◦m
λ for any m

µ ∈ KS
µ ,

(2) for any s, t ∈ S, s R(K,µ, λ, q) t implies (q ◦ s) λ (q ◦ t).

Let S be a hypermonoid and K be a right ideal of S. Then for any
q ∈ S, we define the relation ρ(K, q) on S as follows:

∀s, t ∈ S, s ρ(K, q) t⇔ Ks = Kt and ∀a ∈ Ks, q ◦ s ◦ a = q ◦ t ◦ a,

where Km = {u ∈ S : m ◦ u ⊆ K} for any m ∈ S.

Corollary 3.9. Let S be a hypermonoid. Then the following are equivalent:
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(i) SS is semi-injective.

(ii) For any right ideal K of S, if f : KS → SS is a GHS-homomorphi-
sm, then there exists q ∈ SS such that f(m) = q ◦m for any m ∈ K, and
for any s, t ∈ S, s ρ(K, q) t implies q ◦ s = q ◦ t.

Proof. (i) ⇒ (ii) By Theorem 3.7, it suffices to set λ = µ = ∆S .

(ii) ⇒ (i) It is enough to show that Condition (ii) of Theorem 3.7 is
satisfied with the assumption λ = ∆S . Let K be a right ideal of S and
f : KS

µ → SS be a GHS-homomorphism. Let K ′ be the set of all elements

m ∈ SS with m
µ ∈ KS

µ . Indeed, K ′ = K(1, µ) which is a right ideal of S.

Now, define f ′ : K ′
S → SS by f ′(m) = f(mµ ) for any m ∈ K ′

S . Then f ′ is
a GHS-homomorphism. It follows from the assumption that there exists
q ∈ SS such that f ′(m) = q ◦m for any m ∈ K ′

S , and s ρ(K
′, q) t implies

q ◦ s = q ◦ t for any s, t ∈ S. So f(mµ ) = f ′(m) = q ◦m for any m
µ ∈ KS

µ .
Consider any s, t ∈ S with s R(K,µ,∆, q) t. We must show that q◦s = q◦t.
It follows from s R(K,µ, λ, q) t that K(s, µ) = K(t, µ) and q◦s◦a = q◦ t◦a
for any a ∈ K(s, µ). It suffices to prove that s ρ(K ′, q) t. For this, first we
show that K ′

s = K ′
t. We have

K ′
s = {u ∈ S : s ◦ u ⊆ K ′} = {u ∈ S :

s ◦ u
µ

⊆ KS

µ
}

= K(s, µ) = K(t, µ) = K ′
t.

Thus for any a ∈ K ′
s = K(s, µ), q ◦s◦a = q ◦ t◦a, which implies s ρ(K ′, q) t

and hence q◦s = q◦t by the assumption. Therefore, SS is semi-injective.
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