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The prime state ideal theorem in state
residuated lattices

Francis Woumfo∗, Etienne Romuald Temgoua Alomo, Celestin Lele

Abstract. The aim of this paper is to establish the prime state ideal the-
orem in state residuated lattices (SRLs). We study the state ideals lattice
SI(L) of a state residuated lattice (L,φ) and prove that it is a complete
Brouwerian lattice in which the meet and the join of any two compact ele-
ments are compact (coherent frame). We characterize the notion of prime
state ideals in SRLs. In addition, we establish the condition for which the
lattice SI(L) is a Boolean algebra.

1 Introduction

The origin of residuated lattices is in mathematical logic without contrac-
tion. Apart from their logical interest, residuated lattices have important
algebraic properties as it is well known that the algebraic study of logical
systems plays an important role and have considerable applications in arti-
ficial intelligence.
The notion of state emerging from the theory of quantum mechanics was
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firstly applied to MV-algebras by Kôpka and Chovanec in [23] and then
extended to non-commutative MV-algebras in [7]. Since then, the theory
of states has been applied to other algebras such as (pseudo) BL-algebras
( [12]), (non-commutative) Rℓ-monoids ( [8]), (non-commutative) residuated
lattices ( [21]). By extending the codomain of a state to more general alge-
braic structures in order to provide an algebraic foundation for probabilities
of fuzzy events inside  Lukasiewicz infinite-valued logic, a new approach to
states on MV-algebras was introduced by Flaminio and Montagna in [10, 11],
where they added a unary operator φ to the language of MV-algebras as
an internal state (or a state operator), which preserves the usual properties
of states. They showed some fundamental results about state MV-algebras.
Consequently, the concept of state operators has become a prominent re-
search field in the theory of fuzzy logics and algebras [3, 5, 6, 9, 15, 22].
In 2018, using the De Morgan property (DMP): (x ∧ y)′ = x′ ∨ y′, Liviu-
Constantin Holdon introduced an important variety of residuated lattices
called De Morgan residuated lattice which comprises salient subclasses of
residuated lattices such as Boolean algebras, BL-algebras, MTL-algebras,
MV-algebras, IMTL-algebras, Stonean residuated lattices and regular resid-
uated lattices (see [17]). Recently in 2022, F. Woumfo et al, [29] studied
the lattice of all state ideals of a De Morgan state residuated lattice and
proved the prime state ideals theorem. It is worth nothing that, the condi-
tion (DMP) has simplified many calculations. However, similar results on
algebras without (DMP) are missing so far. This paper seeks to extend our
research in the more general class of state residuated lattices. The prime
state ideal theorem is established. Moreover, we prove that the state ideals
lattice SI(L) of a state residuated lattice (L,φ) is a coherent frame and we
characterize the SRL for which the lattice SI(L) is a Boolean algebra.

This work is organized into three sections: in the first one, we present
some preliminaries comprising the basic definitions, some rules of calculus
and theorems that are needed in the sequel. Section 2 studies the algebraic
structure of the set SI(L) of all state ideals in a SRL (L,φ). It is shown that
(SI(L),⊆) is a coherent frame. Also, we characterize the SRL for which the
lattice SI(L) is a Boolean algebra. In Section 3, we put emphasis on the
prime state ideals by characterizing them, and prove the prime state ideal
theorem.
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2 Preliminaries

We summarize here some fundamental definitions and results about residu-
ated lattices. For more details, we refer the reader to the papers [4, 24, 26,
28].

Definition 2.1. [4] A nonempty set L with four binary operations ∧,∨,⊙,→
and two constants 0, 1 is called a bounded integral commutative residuated
lattice or shortly residuated lattice if the following properties are verified:

(C1) (L,∧,∨, 0, 1) is a bounded lattice;

(C2) (L,⊙, 1) is a commutative monoid (with the unit element 1);

(C3) For all x, y ∈ L, x⊙ y ≤ z iff x ≤ y → z.

Definition 2.2. [17] A residuated lattice satisfying the De Morgan property
(DMP): (x ∧ y)′ = x′ ∨ y′ is called a De Morgan residuated lattice.

The following notations of residuated lattices will be used:

Note 2.3. L will stand for a residuated lattice (L,∧,∨,⊙,→, 0, 1). For any
x ∈ L and n ∈ N∗, x′ := x→ 0, x′′ := (x′)′, x0 := 1 and xn := xn−1⊙ x.

The following basic arithmetic of residuated lattices will be used.

Lemma 2.4. [4, 24]
In any residuated lattice L, the following hold for any x, y, z ∈ L:

(RL1) 1→ x = x, x→ x = 1, x→ 1 = 1, 0→ x = 1;

(RL2) x ≤ y ⇔ x→ y = 1;

(RL3) x→ y = y → x = 1⇔ x = y;

(RL4) if x ≤ y , then y → z ≤ x→ z , z → x ≤ z → y , x⊙ z ≤ y⊙ z and
y′ ≤ x′;

(RL5) x⊙ (x→ y) ≤ y; x⊙ (x→ y) ≤ x ∧ y;
(RL6) x⊙ y ≤ x ∧ y ≤ x, y ≤ x ∨ y; x ≤ y → x ; x⊙ y ≤ x→ y, y → x;

(RL7) (x⊙ y)′′ = x′′ ⊙ y′′, (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ ≥ x′ ∨ y′;
(RL8) 0′ = 1, 1′ = 0;

(RL9) x ≤ x′′ ≤ x′ → x;
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(RL10) x→ y ≤ y′ → x′;

(RL11) x′′′ = x′, (x⊙ y)′ = x→ y′ = y → x′ = x′′ → y′;

(RL12) x⊙ x′ = 0 , x⊙ y = 0⇔ x ≤ y′ ; x⊙ 0 = 0;

(RL13) x′ → y ≤ (x′ ⊙ y′)′, x′ ⊙ y′ ≤ (x′ → y)′, x′ ⊙ y′ ≤ (x⊙ y)′;

(RL14) x→ (x ∧ y) = x→ y;

(RL15) x⊙ y = x⊙ (x→ x⊙ y);

(RL16) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z), x ⊙ (y ∧ z) ≤ (x ⊙ y) ∧ (x ⊙ z),
x ∨ (y ⊙ z) ≥ (x ∨ y)⊙ (x ∨ z).

Let L be a residuated lattice. We set x⊕y = (x′⊙y′)′, for every x, y ∈ L.
Here are some properties of the operation ⊕ (see [2, 26, 29]).

Lemma 2.5. [2] Let L be a residuated lattice. For any x, y, z, t ∈ L, we
have:

(P1) x⊕ y = x′ → y′′ = y′ → x′′;

(P2) x⊕ x′ = 1, x⊕ 0 = x′′, x⊕ 1 = 1;

(P3) x⊕ y = y ⊕ x, x, y ≤ x⊕ y;
(P4) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(P5) If x ≤ y, then x⊕ z ≤ y ⊕ z;
(P6) If x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t.

For any x ∈ L and n ∈ N, we define 0x = 0, 1x = x and nx = (n−1)x⊕x,
for n ≥ 2.

Lemma 2.6. [26, 29] The following hold for any x, y ∈ L and m,n ∈ N∗:

(P7) m ≤ n⇒ mx ≤ nx. In particular, x ≤ nx;
(P8) x ≤ y ⇒ mx ≤ my;
(P9) n(x⊕ y) = nx⊕ ny;
(P10) x⊕ ny ≤ n(x⊕ y);

(P11) x, y ≤ x⊕ y;
(P12) [(x′)n]′ = nx;
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(P13) (x⊕ y)′′ = x⊕ y = x′′ ⊕ y′′;
(P14) x ∧ (y1 ⊕ ...⊕ yn) ≤ (x′′ ∧ y′′1)⊕ ...⊕ (x′′ ∧ y′′n).

Definition 2.7. [17] A nonempty subset I of a residuated lattice L is called
an ideal if the following conditions are satisfied for every x, y ∈ L:

(I1) if y ∈ I and x ≤ y, then x ∈ I;

(I2) if x, y ∈ I, then x⊕ y ∈ I.

The set of all ideals of a residuated lattice L will be denoted by I(L).

Remark 2.8. It is easy to see that for all I ∈ I(L), 0 ∈ I; x ∈ I if and
only if x′′ ∈ I, for any x ∈ L.

Now, we give some necessary results for the sequel about lattices and
frames. It is worth noting that the main references for frame theory are the
following books (see [18, 25]).

Definition 2.9. [15] A lattice (L,∧,∨) is called Brouwerian if it satisfies
the equality x∧ (

∨
k∈K

yk) =
∨
k∈K

(x∧ yk) (whenever the arbitrary joins exist),

for any x, yk ∈ L, k ∈ K.

Definition 2.10. [13] We call frame a complete lattice L that satisfies the
infinite distributive law x ∧ ∨A =

∨{x ∧ a : a ∈ A}, for all x ∈ L and
A ⊆ L.

Remark 2.11. 1. Every Brouwerian lattice (L,∧,∨) is distributive;

2. A frame is a complete Brouwerian lattice.

From [15, 20], an element a of a complete lattice L is called compact if
for all A ⊆ L, a ≤ ∨A implies that a ≤ ∨H for some finite H ⊆ A.

We will denote by C(L) the set of all compact elements of a complete
lattice L.

Proposition 2.12. [30] Let L be a frame and x ∈ L. Then, x ∈ C(L) if
for all A ⊆ L, x =

∨
A implies that x =

∨
H for some finite H ⊆ A.

Definition 2.13. [30] A frame L is called coherent if the following condi-
tions hold:
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(i) C(L) is a sublattice of L, i.e., for all x, y ∈ L, if x, y ∈ C(L), then
x ∧ y, x ∨ y ∈ C(L);

(ii) For all x ∈ L, x = ∨
k∈K

xk, with xk ∈ C(L).

In other words, a coherent frame is a complete Brouwerian algebraic lattice
in which the meet and the join of any two compact elements are compact.

Definition 2.14. [14] Let L be a lattice with 0 and x ∈ L. Then y ∈ L
is said to be a pseudocomplement of x if x ∧ y = 0 and for every z ∈ L,
x ∧ z = 0 implies z ≤ y. L is called pseudocomplemented if every element
has a pseudocomplement.
For every a, b ∈ L, we call a relative pseudocomplement of a with respect to
b, the greatest element (if it exists) c ∈ L such that a ∧ c ≤ b.

Proposition 2.15. [14] Every frame is pseudocomplemented.

The concepts of state operators and state residuated lattices were intro-
duced in 2015 by Pengfei He et al. in [15].

Definition 2.16. [15, 29] A map φ : L→ L is said to be a state operator
on L if the following conditions hold for any x, y ∈ L:

(SO1) φ(0) = 0;

(SO2) x→ y = 1 implies φ(x)→ φ(y) = 1;

(SO3) φ(x→ y) = φ(x)→ φ(x ∧ y);

(SO4) φ(x⊙ y) = φ(x)⊙ φ(x→ (x⊙ y));

(SO5) φ(φ(x)⊙ φ(y)) = φ(x)⊙ φ(y);

(SO6) φ(φ(x)→ φ(y)) = φ(x)→ φ(y);

(SO7) φ(φ(x) ∨ φ(y)) = φ(x) ∨ φ(y);

(SO8) φ(φ(x) ∧ φ(y)) = φ(x) ∧ φ(y).

The pair (L,φ) is said to be a state residuated lattice, or more precisely, a
residuated lattice with internal state.
The kernel of τ is the set ker(τ) := {x ∈ L : τ(x) = 1}. Analogously, the
co-kernel of τ is the set coker(τ) := {x ∈ L : τ(x) = 0}.
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From now on, unless othewise specified, (L,φ) will always denote a state
residuated lattice (L,∨,∧,⊙,→, 0, 1), that is, L is a residuated lattice and
φ is a state operator on L.

Definition 2.17. [29] An ideal I of L is said to be a state ideal of (L,φ)
if φ(I) ⊆ I, (i.e., for all x ∈ L, x ∈ I ⇒ φ(x) ∈ I ).

SI(L) will stand for the set of all state ideals of (L,φ). It is obvious
that {0}, L ∈ SI(L) ⊆ I(L).

For computational issues, we will use the following properties.

Lemma 2.18. [15, 29] For any x, y ∈ L, for all n ≥ 1, we have:

(SO9) φ(1) = 1;

(SO10) x ≤ y implies φ(x) ≤ φ(y);

(SO11) φ(x′) = (φ(x))′;

(SO12) φ(x⊙ y) ≥ φ(x)⊙ φ(y) and if x⊙ y = 0, then φ(x⊙ y) = φ(x)⊙
φ(y) = 0;

(SO13) If x ≤ y, then φ(x⊙ y′) = φ(x)⊙ (φ(y))′;

(SO14) φ(x→ y) ≤ φ(x)→ φ(y). Particulary, if x, y are comparable,
then φ(x→ y) = φ(x)→ φ(y);

(SO15) If φ is faithful, then x < y implies φ(x) < φ(y);

(SO16) φ2(x) = φ(φ(x)) = φ(x);

(SO17) φ(L) = Fix(φ), where Fix(φ) = {x ∈ L : φ(x) = x};
(SO18) φ(L) is a subalgebra of L;

(SO19) ker(φ) is a state filter of (L,φ);

(SO20) coker(φ) is a state ideal of (L,φ);

(SO21) (φ(x))′′ = φ(x′′);

(SO22) φ(x⊕ y) ≤ φ(x)⊕ φ(y);

(SO23) If x, y ∈ φ(L), then x⊕ y ∈ φ(L);

(SO24) φ(nx) ≤ nφ(x).
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Remark 2.19. [15] (L, idL) is a state residuated lattice. That is a resid-
uated lattice L can be view as a state residuated lattice. One can see that,
each ideal of L is a state ideal of (L, idL).

Note 2.20. For any nonempty subset X of L, we denote by ⟨X⟩φ the state
ideal of (L,φ) generated by X, that is, ⟨X⟩φ is the smallest state ideal of
(L,φ) containing X and for an element a ∈ L, ⟨a⟩φ := ⟨{a}⟩φ is called
the principal state ideal of (L,φ). If I ∈ SI(L) and a ̸∈ I, we denote by
⟨I, a⟩φ := ⟨I ∪ {a}⟩φ.

Remark 2.21. By definition, we have ⟨∅⟩φ = {0} and ⟨I⟩φ = I, for any
state ideal I of (L,φ).

The next theorem gives the concrete description of the state ideal gen-
erated by a nonempty subset of a state residuated lattice (L,φ).

Theorem 2.22. [29]
Let X be a nonempty subset of L, I, I1, I2 ∈ SI(L) and a ∈ L\I. Then:

(1) ⟨X⟩φ = {x ∈ L : x ≤ n1(x1⊕φ(x1))⊕...⊕nk(xk⊕φ(xk)), for some k ∈
N∗, xi ∈ X, ni ∈ N∗, for 1 ≤ i ≤ k};

(2) ⟨a⟩φ = {x ∈ L : x ≤ n(a⊕ φ(a)), for some n ≥ 1};
(3) ⟨I, a⟩φ = {x ∈ L : x ≤ i⊕ n(a⊕ φ(a)), for some i ∈ I and n ≥ 1};
(4) I1 ∨ I2 := ⟨I1 ∪ I2⟩φ = {x ∈ L : x ≤ i1 ⊕ i2, with i1 ∈ I1 and i2 ∈ I2}.

Lemma 2.23. [29]
For all a, b ∈ L, we have:

(5) a ≤ b⇒ ⟨a⟩φ ⊆ ⟨b⟩φ;
(6) ⟨φ(a)⟩φ ⊆ ⟨a⟩φ;
(7) ⟨a⊕ φ(a)⟩φ = ⟨a⟩φ;
(8) ⟨(a⊕ φ(a)) ∧ (b⊕ φ(b))⟩φ ⊆ ⟨a⟩φ ∩ ⟨b⟩φ;
(9) ⟨a⟩φ ∨ ⟨b⟩φ = ⟨a ∨ b⟩φ = ⟨a⊕ b⟩φ.

Proposition 2.24. [29] (SI(L),⊆) is a bounded complete lattice with the
bottom element {0} and the top element L.
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3 The lattice of state ideals of a state residuated lattice

In this section, we focus on the algebraic structure of the set SI(L) of all
state ideals of a state residuated lattice (L,φ).

Proposition 3.1. (SI(L),⊆) is a Brouwerian lattice.

Proof. Let K be an index set, I ∈ SI(L), and {Ik}k∈K be a family of state
ideals of (L,φ). We will show that I ∧ (

∨
k∈K

Ik) =
∨
k∈K

(I ∧ Ik). That is,

I ∩ ⟨ ∪
k∈K

Ik⟩φ = ⟨ ∪
k∈K

(I ∩ Ik)⟩φ. Clearly, ⟨ ∪
k∈K

(I ∩ Ik)⟩φ ⊆ I ∩ ⟨ ∪
k∈K

Ik⟩φ.

Let x ∈ I ∩ ⟨ ∪
k∈K

Ik⟩φ. Then x ∈ I and x ∈ ⟨ ∪
k∈K

Ik⟩φ. It follows

that there exist k1, k2, ..., km ∈ K, xkj ∈ Ikj , 1 ≤ j ≤ m, such that x ≤

xk1⊕xk2⊕ ....⊕xkm . Then, x = x∧ (xk1⊕xk2⊕ ....⊕xkm)
(P14)

≤ (x′′∧x′′k1)⊕
(x′′∧x′′k2)⊕....⊕(x′′∧x′′km). Since I, Ikj ∈ SI(L), we have by Remark 2.8 that
x′′ ∧x′′kj ∈ I ∩ Ikj , for every 1 ≤ j ≤ m. We deduce that x ∈ ⟨ ∪

k∈K
(I ∩ Ik)⟩φ.

Hence, I ∩ ⟨ ∪
k∈K

Ik⟩φ ⊆ ⟨ ∪
k∈K

(I ∩ Ik)⟩φ, that is I ∧ (
∨
k∈K

Ik) =
∨
k∈K

(I ∧ Ik).
Therefore, (SI(L),⊆) is a Brouwerian lattice.

Theorem 3.2. The lattice (SI(L),⊆) is a frame.

Proof. From Proposition 2.24, (SI(L),⊆) is a complete lattice. From Propo-
sition 3.1, (SI(L),⊆) is a Brouwerian lattice. Combining them, we have by
Remark 2.11 (2) that (SI(L),⊆) is a frame.

In the following result, we describe the right adjoint of the map,

I1∩− : SI(L) −→ SI(L)
I 7−→ (I1∩−)(I) = I1 ∩ I.

Now, for any I1, I2 ∈ SI(L), we put I1 → I2 = {x ∈ L : I1∩ ⟨x⟩φ ⊆ I2}.

Theorem 3.3. In the frame (SI(L),⊆), for any I1, I2, I ∈ SI(L), we have:

1. I1 → I2 ∈ SI(L);
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2. I1 ∩ I ⊆ I2 ⇔ I ⊆ I1 → I2, that is,

I1 → I2 = sup{I ∈ SI(L) : I1 ∩ I ⊆ I2}

and

I1 →−: SI(L) −→ SI(L)
I 7−→ (I1 →−)(I) = I1 → I

is the right adjoint of I1∩− : SI(L) −→ SI(L);

3. I1 → I2 = {x ∈ L : i ∧ n(x⊕ φ(x)) ∈ I2, for all i ∈ I1 and n ∈ N∗}.
Proof. (1) We will show that I1 → I2 is a state ideal of (L,φ). Clearly,
I1 → I2 ̸= ∅. In fact, ⟨0⟩φ = {0} and I1 ∩ ⟨0⟩φ = {0} ⊆ I2. Hence
0 ∈ I1 → I2.

Now, let x, y ∈ I1 → I2. Then I1 ∩ ⟨x⟩φ ⊆ I2 and I1 ∩ ⟨y⟩φ ⊆ I2. It
follows that, (I1 ∩ ⟨x⟩φ) ∨ (I1 ∩ ⟨y⟩φ) ⊆ I2. From Theorem 3.2, we deduce
that I1 ∩ (⟨x⟩φ ∨ ⟨y⟩φ) ⊆ I2, which implies (by Lemma 2.23 (9)) that,
I1 ∩ ⟨x⊕ y⟩φ ⊆ I2. Thus, x⊕ y ∈ I1 → I2.

Suppose that x ∈ I1 → I2 and y ≤ x. Then, I1 ∩ ⟨x⟩φ ⊆ I2 and

⟨y⟩φ
Lemma2.23(9)

⊆ ⟨x⟩φ. It follows that I1 ∩ ⟨y⟩φ ⊆ I1 ∩ ⟨x⟩φ ⊆ I2. Hence
y ∈ I1 → I2. Finally, let x ∈ I1 → I2. Then, I1 ∩ ⟨x⟩φ ⊆ I2. Since,
I1 ∩ ⟨φ(x)⟩φ ⊆ I1 ∩ ⟨x⟩φ ⊆ I2(due to Lemma 2.23 (6)), we obtain that
φ(x) ∈ I1 → I2. Therefore, I1 → I2 is a state ideal of (L,φ). That is
I1 → I2 ∈ SI(L).

(2) Now, we prove that I1 ∩ I ⊆ I2 ⇔ I ⊆ I1 → I2, for any I, I1, I2 ∈
SI(L). Assume that I1 ∩ I ⊆ I2 and x ∈ I, we have I1 ∩ ⟨x⟩φ ⊆ I1 ∩ I ⊆ I2

(since φ(x) ∈ I)). It follows that x ∈ I1 → I2. That is I ⊆ I1 → I2.
Conversely, let I ⊆ I1 → I2 and x ∈ I1 ∩ I. Then we have x ∈ I ⊆ I1 → I2.
That is, I1 ∩ ⟨x⟩φ ⊆ I2. Since x ∈ I1 ∩ ⟨x⟩φ ⊆ I2, we deduce that x ∈ I2

which implies I1 ∩ I ⊆ I2. Therefore,

I1 → I2 = sup{I ∈ SI(L) : I1 ∩ I ⊆ I2}

and

I1 →−: SI(L) −→ SI(L)
I 7−→ (I1 →−)(I) = I1 → I



The prime state ideal theorem in SRL 141

is the right adjoint of I1∩− : SI(L) −→ SI(L).

(3) Set A = {x ∈ L : i ∧ n(x ⊕ φ(x)) ∈ I2, for all i ∈ I1 and n ∈ N∗}.
First, let x ∈ I1 → I2. Then, I1 ∩ ⟨x⟩φ ⊆ I2. For n ≥ 1, and i ∈ I1, we have
n(x⊕φ(x)) ∈ ⟨x⟩φ (since x, φ(x) ∈ ⟨x⟩φ)). It follows that, i∧n(x⊕φ(x)) ∈
I1 ∩ ⟨x⟩φ, which implies that i ∧ n(x⊕ φ(x)) ∈ I2. Hence x ∈ A.

Conversely, let x ∈ A and t ∈ I1 ∩ ⟨x⟩φ. Then, there exists n ∈ N∗

such that t ≤ n(x ⊕ φ(x)). Hence, t = t ∧ n(x ⊕ φ(x)) ∈ I2. That is,
I1 ∩ ⟨x⟩φ ⊆ I2. Hence, x ∈ I1 → I2. Therefore, I1 → I2 = {x ∈ L :
i ∧ n(x⊕ φ(x)) ∈ I2, for all i ∈ I1 and n ∈ N∗}.

For every I ∈ SI(L), we put I ′ = I → {0} = {x ∈ L : ⟨x⟩φ ∩ I = {0}}.
Then from Theorem 3.3 (3), we have the following corollary.

Corollary 3.4. For every I ∈ SI(L), we have I ′ = {x ∈ L : i ∧ n(x ⊕
φ(x)) = 0, for all i ∈ I and n ∈ N∗}.

Theorem 3.5. Let I ∈ SI(L). Then C(SI(L)) = {⟨x⟩φ : x ∈ L}.

Proof. (⇒). Assume that I ∈ C(SI(L)). Set H = {⟨x⟩φ : x ∈ L}. Since
I = ∨

x∈I
⟨x⟩φ, then there are {xi}1≤i≤n such that I = ⟨x1⟩φ∨⟨x2⟩φ∨...∨⟨xn⟩φ

( Proposition 2.12). By Lemma 2.23 (9), we have I = ⟨x1 ⊕ x2 ⊕ ...⊕ xn⟩φ.
Thus, I ∈ H, that is C(SI(L)) ⊆ H.
(⇐). Let I ∈ H. Then, there exists x ∈ L such that I = ⟨x⟩φ. Assume
{Ik}k∈K ⊆ SI(L) and I = ⟨x⟩φ ⊆ ∨

k∈K
{Ik}. Then, x ∈ ∨

k∈K
{Ik} = ⟨ ∪

k∈K
Ik⟩φ.

It follows that there exist kj ∈ K, xkj ∈ Ikj , for all 1 ≤ k ≤ m such that
x ≤ xk1⊕xk2⊕...⊕xkm . That is, x ∈ ⟨Ik1∪Ik2∪...∪Ikm⟩φ = Ik1∨Ik2∨...∨Ikm .
I ∈ C(SI(L)), that is, H ⊆ C(SI(L)). Therefore, C(SI(L)) = {⟨x⟩φ : x ∈
L}.

Remark 3.6. Theorem 3.5 means that a state ideal I is a compact element
of the frame SI(L) if and only if it is principal.

Lemma 3.7. Let L be a residuated lattice and m,n ∈ N∗, m,n ≥ 2. For
any x, y ∈ L, the following items hold:

(P16) x ∧ (ny) ≤ n(x′′ ∧ y′′);
(P17) (nx)′′ = nx;
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(P18) (mx) ∧ (ny) ≤ mn(x′′ ∧ y′′).
Proof. (P16). We have

x ∧ (ny) = x ∧ (y ⊕ ...⊕ y)︸ ︷︷ ︸
n times

(P14)

≤ (x′′ ∧ y′′)⊕ ...⊕ (x′′ ∧ y′′)︸ ︷︷ ︸
n times

= n(x′′ ∧ y′′).

It follows that x ∧ (ny) ≤ n(x′′ ∧ y′′).

(P17): By induction, we have 2x = x ⊕ x = (x′ ⊙ x′)′. It follows
that (2x)′′ = (x′ ⊙ x′)′′′ = (x′ ⊙ x′)′ = 2x. Let k ∈ N such that k ≥ 2.

Assume that (kx)′′ = kx. Then, we have (k + 1)x = kx ⊕ x
hypotesis

=
(kx)′′⊕x = ((kx)′′′⊙x′)′ = ((kx)′⊙x′)′. Thus, ((k+1)x)′′ = ((kx)′⊙x′)′′′ =
((kx)′ ⊙ x′)′ = (kx) ⊕ x = (k + 1)x. Therefore, (nx)′′ = nx, for all
n ∈ N, n ≥ 2.

(P18). We have (mx) ∧ (ny)
(P16)

≤ n[(mx)′′ ∧ y′′] (P17)
= n[(mx) ∧ y′′]

(P16)

≤
n[m(x′′ ∧ y′′′′)] (RL11)

= n[m(x′′ ∧ y′′)] = mn(x′′ ∧ y′′). Hence, (mx) ∧ (ny) ≤
mn(x′′ ∧ y′′).

Proposition 3.8. If (L,φ) is a state residuated lattice, then for all a, b ∈ L,
we have: ⟨(a⊕ φ(a)) ∧ (b⊕ φ(b))⟩φ = ⟨a⟩φ ∩ ⟨b⟩φ.
Proof. Let a, b ∈ L. Then from Lemma 2.23 (8), we have ⟨(a ⊕ φ(a)) ∧
(b ⊕ φ(b))⟩φ ⊆ ⟨a⟩φ ∩ ⟨b⟩φ. Now, let x ∈ ⟨a⟩φ ∩ ⟨b⟩φ. Then x ∈ ⟨a⟩φ and
x ∈ ⟨b⟩φ. Hence, from Theorem 2.22 (2), there exist m,n ≥ 1 such that,
x ≤ m(a ⊕ φ(a)) and x ≤ n(b ⊕ φ(b)). Therefore, x ≤ m(a ⊕ φ(a)) ∧
n(b ⊕ φ(b))

(P18)

≤ mn((a ⊕ φ(a))′′ ∧ (b ⊕ φ(b))′′)
(P13)

= mn((a ⊕ φ(a)) ∧ (b ⊕
φ(b)))

(P3)

≤ mn((a⊕φ(a))∧ (b⊕φ(b)))⊕φ((a⊕φ(a))∧ (b⊕φ(b))). That is,
x ∈ ⟨(a⊕φ(a))∧(b⊕φ(b))⟩φ. Hence, ⟨a⟩φ∩⟨b⟩φ ⊆ ⟨(a⊕φ(a))∧(b⊕φ(b))⟩φ.
Thus, ⟨(a⊕ φ(a)) ∧ (b⊕ φ(b))⟩φ = ⟨a⟩φ ∩ ⟨b⟩φ.

Theorem 3.9. The lattice (SI(L),⊆) is a coherent frame.

Proof. (1) From Theorem 3.2, we have that (SI(L),⊆) is a frame.
(2) From Theorem 3.5, we obtain that C(SI(L)) = {⟨x⟩φ : x ∈ L}. By

Proposition 3.8 we have ⟨x⟩φ ∧ ⟨y⟩φ = ⟨(x ⊕ φ(x)) ∧ (y ⊕ φ(y))⟩φ and by
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Lemma 2.23 (9), we have ⟨x⟩φ ∨ ⟨y⟩φ = ⟨x⊕ y⟩φ for all x, y ∈ L. Therefore,
(C(SI(L)),⊆) is a sublattice of (SI(L),⊆).

(3) For any I ∈ SI(L), we have I = ∨
x∈I
⟨x⟩φ.

(1), (2), (3) combining with Definition 2.13 implies (SI(L),⊆) is a co-
herent frame.

The following results are immediate.

Corollary 3.10. The lattice (SI(L),⊆) is pseudocomplemented. Clearly,
for all I ∈ SI(L), we have that I ′ = I → {0} = {x ∈ L : I ∩ ⟨x⟩φ = {0}} is
the pseudocomplement of I

According to Theorem 2.13 and Corollary 3.10, we have the following
Corollary in any residuated lattice L.

Corollary 3.11. 1. (I(L),⊆) is a coherent frame;

2. (I(L),⊆) is a pseudocomplemented lattice.

We recall that a Heyting algebra [1] is a lattice (L,∨,∧) with 0 such
that for every x, y ∈ L, there exists an element x→ y ∈ L (call the pseudo-
complement of x with respect to y) such that for every z ∈ L, x ∧ z ≤ y ⇔
z ≤ x→ y (that is, x→ y = sup{z ∈ L : x ∧ z ≤ y}).

Remark 3.12. From Theorem 3.3, (SI(L),∨,∧,′ , {0}) is a Heyting alge-
bra, where for I ∈ SI(L), I ′ = I → {0} = {x ∈ L : ⟨x⟩φ ∩ I = {0}}.

Lemma 3.13. Let L be a residuated lattice. Then, for any x, y, z ∈ L the
following hold:
(P19) x ∧ (y ⊕ z) ≤ x′′ ∧ (y ⊕ z)′′ ≤ (x′′ ∧ y′′)⊕ (x′′ ∧ z′′).

Proof. Let x, y, z ∈ L.
From (RL9), we have x ≤ x′′ and y⊕z ≤ (y⊕z)′′. Hence, x∧(y⊕z) ≤ x′′∧

(y⊕z)′′. In addition, x′′∧(y⊕z)′′ = x′′∧(y′⊙z′)′′′ (RL11)
= x′′∧(y′⊙z′)′ (RL7)

=

[x′∨(y′⊙z′)]′
(RL4),(RL16)

≤ [(x′∨y′)⊙(x′∨z′)]′ (RL11)
= [(x′∨y′)⊙(x′∨z′)]′′′ (RL7)

=

[(x′ ∨ y′)′′ ⊙ (x′ ∨ z′)′′]′ (RL7)
= (x′′ ∧ y′′)′ ⊙ (x′′ ∧ z′′)′]′ = (x′′ ∧ y′′)⊕ (x′′ ∧ z′′).

Thus, x′′ ∧ (y ⊕ z)′′ ≤ (x′′ ∧ y′′) ⊕ (x′′ ∧ z′′). Therefore, x ∧ (y ⊕ z) ≤
x′′ ∧ (y ⊕ z)′′ ≤ (x′′ ∧ y′′)⊕ (x′′ ∧ z′′).
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Proposition 3.14. For any a, b ∈ L, we have:

1. (⟨a⟩φ)′ = {x ∈ L : (a⊕ φ(a)) ∧ (x⊕ φ(x)) = 0};
2. (⟨a⟩φ)′ ∩ (⟨b⟩φ)′ = (⟨a⊕ b⟩φ)′.

Proof. (1) We have, (⟨a⟩φ)′ = ⟨a⟩φ → {0} = {x ∈ L : ⟨a⟩φ ∩ ⟨x⟩φ =

{0}} Proposition 3.8
= {x ∈ L : ⟨(a ⊕ φ(a)) ∧ (x ⊕ φ(x))⟩φ = {0}} = {x ∈ L :

(a⊕ φ(a)) ∧ (x⊕ φ(x)) = 0}.

(2) Let x ∈ (⟨a⟩φ)′ ∩ (⟨b⟩φ)′. Then by (1), we have (a ⊕ φ(a)) ∧ (x ⊕
φ(x)) = 0 and (b⊕ φ(b)) ∧ (x⊕ φ(x)) = 0. Furthermore by (P19), we have
((a⊕φ(a))⊕(b⊕φ(b)))∧(x⊕φ(x)) ≤ ((a⊕φ(a))′′∧(x⊕φ(x))′′)⊕((b⊕φ(b))′′∧
(x⊕ φ(x))′′)

(P13)
= ((a⊕ φ(a)) ∧ (x⊕ φ(x)))⊕ ((b⊕ φ(b)) ∧ (x⊕ φ(x))) = 0,

hence ((a ⊕ φ(a)) ⊕ (b ⊕ φ(b))) ∧ (x ⊕ φ(x)) = 0. Then combining (P19)
and (P13), we have (2((a ⊕ φ(a)) ⊕ (b ⊕ φ(b)))) ∧ (x ⊕ φ(x)) ≤ 2(((a ⊕
φ(a)) ⊕ (b ⊕ φ(b))) ∧ (x ⊕ φ(x))) = 0. Moreover, by (RL6) and (SO22),
2(((a⊕φ(a))⊕(b⊕φ(b))) = ((a⊕φ(a))⊕(b⊕φ(b)))⊕((a⊕φ(a))⊕(b⊕φ(b))) ≥
a⊕b⊕φ(a)⊕φ(b) ≥ a⊕b⊕φ(a⊕b). Hence, (a⊕b⊕φ(a⊕b))∧(x⊕φ(x)) = 0.
Then by (1), we have x ∈ (⟨a⊕b⟩φ)′. Therefore (⟨a⟩φ)′∩(⟨b⟩φ)′ ⊆ (⟨a⊕b⟩φ)′.

Conversely, let x ∈ (⟨a ⊕ b⟩φ)′. Then by (1), ((a ⊕ b) ⊕ φ(a ⊕ b))) ∧
(x ⊕ φ(x)) = 0, we have a ≤ a ⊕ b, so φ(a) ≤ φ(a ⊕ b). It follows that
a ⊕ φ(a) ≤ (a ⊕ b) ⊕ φ(a ⊕ b). We obtain (a ⊕ φ(a)) ∧ (x ⊕ φ(x)) ≤
((a⊕ b)⊕φ(a⊕ b)))∧ (x⊕φ(x)) = 0 and thus, (a⊕φ(a))∧ (x⊕φ(x)) = 0.
Analogously, (b⊕φ(b))∧(x⊕φ(x)) = 0. Therefore, x ∈ (⟨a⟩φ)′∩(⟨b⟩φ)′.

Lemma 3.15. Let x ∈ L. Then, the following holds:

(P20) x′′ ⊕ φ(x′′) = x⊕ φ(x).

Proof. We have x′′ ⊕ φ(x′′)
(SO21)

= x′′ ⊕ (φ(x))′′ = (x′′′ ⊙ (φ(x))′′′)′
(RL11)

=
(x′ ⊙ (φ(x))′)′ = x⊕ φ(x).

Theorem 3.16. In a state residuated lattice (L,φ), the following are equiv-
alent:

(i) (SI(L),∨,∧,′ , {0}, L) is a Boolean algebra;
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(ii) Every state ideal of (L,φ) is principal and for every x ∈ L, there is
n ∈ N∗, such that (x⊕φ(x))∧((n(x⊕φ(x)))′⊕φ((n(x⊕φ(x)))′)) = 0.

Proof. (i)⇒(ii). Assume that (SI(L),∨,∧,′ , {0}, L) is a Boolean algebra.
Then for every I ∈ SI(L), I ∨ I ′ = L, thus, 1 ∈ I ∨ I ′. But according to
Theorem 2.22 (4), I∨I ′ := ⟨I∪I ′⟩φ = {x ∈ L : x ≤ y⊕z, with y ∈ I and z ∈
I ′}. Hence, there are y ∈ I and z ∈ I ′ such that y ⊕ z = 1. We will prove
that I = ⟨y⟩φ. Since y ∈ I, it follows that ⟨y⟩φ ⊆ I. According to Corollary
3.4, I ′ = {a ∈ L : x ∧ n(a ⊕ φ(a)) = 0, for all x ∈ I and n ∈ N∗}. Thus,
x∧n(z⊕φ(z)) = 0, for all x ∈ I and n ∈ N∗. Then x⊙z ≤ x∧z = 0 for every

x ∈ I, that is x⊙ z = 0, for every x ∈ I. Hence, x′′ → z′
(RL11)

= (x⊙ z)′ = 1,
that is x′′ ≤ z′. Since y ⊕ z = 1, we obtain that n(y ⊕ φ(y)) ⊕ z = 1,
for every n ∈ N∗ (because y ⊕ z ≤ n(y ⊕ φ(y)) ⊕ z). Hence by (P1),
(n(y ⊕ φ(y)))′ → z′′ = 1, that is (n(y ⊕ φ(y)))′ ≤ z′′. It follows that

z′
(RL11)

= z′′′
(RL4)

≤ (n(y ⊕ φ(y)))′′
(P17)

= n(y ⊕ φ(y)). Hence z′ ≤ n(y ⊕ φ(y)).

Thus, we obtain that x
(RL9)

≤ x′′ ≤ z′ ≤ n(y ⊕ φ(y)), i.e., x ≤ n(y ⊕ φ(y)),
for every x ∈ I, that is, I ⊆ ⟨y⟩φ. Therefore, I = ⟨y⟩φ.

Now, let x ∈ L. Since (SI(L),∨,∧,′ , {0}, L) is a Boolean algebra, we
have L = ⟨x⟩φ ∨ (⟨x⟩φ)′ = {t ∈ L : t ≤ y ⊕ n(x ⊕ φ(x)), for some n ∈
N∗, y ∈ (⟨x⟩φ)′}. Hence, there exist y ∈ (⟨x⟩φ)′ and n ∈ N∗, such that
y ⊕ n(x ⊕ φ(x)) = 1. Since y ∈ (⟨x⟩φ)′, then by Proposition 3.14(1),
(x⊕φ(x))∧ (y⊕φ(y)) = 0. From y⊕n(x⊕φ(x)) = 1, we deduce that y′ →
(n(x⊕φ(x)))′′ = 1 which implies y′ ≤ (n(x⊕φ(x)))′′

(P17)
= n(x⊕φ(x)). Thus

by (RL4), (n(x⊕φ(x)))′ ≤ y′′, which implies φ((n(x⊕φ(x)))′)
(SO10)

≤ φ(y′′).

Hence (n(x⊕ φ(x)))′ ⊕ φ((n(x⊕ φ(x)))′)
(P6)

≤ y′′ ⊕ φ(y′′)
(P20)

= y ⊕ φ(y). It
follows that, (x⊕φ(x))∧ ((n(x⊕φ(x)))′⊕φ((n(x⊕φ(x)))′)) ≤ (x⊕φ(x))∧
(y⊕φ(y)) = 0. Therefore, (x⊕φ(x))∧((n(x⊕φ(x)))′⊕φ((n(x⊕φ(x)))′)) = 0.

(ii)⇒(i). By Remark 3.12, (SI(L),∨,∧,′ , {0}) is a Heyting algebra.
In order to prove that (SI(L),∨,∧,′ , {0}, L) is a Boolean algebra, it is
enough to prove that for every I ∈ SI(L), we have I ′ = {0} ⇔ I = L
( according to [1]). Let I ∈ SI(L) with I ′ = {0}. By the hypothesis,
every state ideal is principal. Hence, there is x ∈ L such that I = ⟨x⟩φ.
Thus, (⟨x⟩φ)′ = {0}. Moreover, there is n ∈ N∗ such that (x ⊕ φ(x)) ∧
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((n(x⊕φ(x)))′⊕φ((n(x⊕φ(x)))′)) = 0. By proposition 3.14 (1), it follows
that (n(x ⊕ φ(x)))′ ∈ (⟨x⟩φ)′ = {0}. Thus, (n(x ⊕ φ(x)))′ = 0, that is

n(x⊕ φ(x))
(P17)

= (n(x⊕ φ(x)))′′ = 1. Since n(x⊕ φ(x)) ∈ ⟨x⟩φ, we deduce
that 1 ∈ ⟨x⟩φ = I. Therefore, I = ⟨x⟩φ = L.

4 Prime state ideals in state residuated lattices

In this section, we introduce the notion of prime state ideals in a state
residuated lattice, illustrate with some examples and lay out some char-
acterizations of prime state ideals. The prime state ideal theorem is set
forth.

Definition 4.1. Let P be a proper state ideal of (L,φ). P is said to be
prime if for all P1, P2 ∈ SI(L), P = P1 ∩ P2 implies P = P1 or P = P2.

The following result is a characterization of a prime state ideal.

Proposition 4.2. Let P be a proper state ideal of (L,φ). Then the following
are equivalent:

1. P is prime

2. For all P1, P2 ∈ SI(L), if P1 ∩ P2 ⊆ P , then P1 ⊆ P or P2 = P ;

3. For all a, b ∈ L, if (a⊕ φ(a)) ∧ (b⊕ φ(b)) ∈ P , then a ∈ P or b ∈ P .

Proof. (1) ⇒ (2) Let P1, P2 ∈ SI(L) such that P1 ∩ P2 ⊆ P . Then, (P1 ∩
P2) ∨ P = P . From Proposition 3.1, the lattice (SI(L),⊆) is Brouwerian,
so it is distributive. It follows that (P1 ∨ P ) ∩ (P2 ∨ P ) = P . Now by (1),
P is prime so, P1 ∨ P = P or P2 ∨ P = P . Thus, P1 ⊆ P or P2 ⊆ P .

(2)⇒ (1) Let P1, P2 ∈ SI(L) such that P = P1∩P2. Then, P1∩P2 ⊆ P .
By the hypothesis, P1 ⊆ P or P2 = P . If P1 ⊆ P , then, P = P1 ∩ P2 ⊆
P1 ⊆ P . Hence, P1 = P . By similar way, if P2 ⊆ P , we get P2 = P .

(1) ⇒ (3). Let a, b ∈ L. Suppose that (a ⊕ φ(a)) ∧ (b ⊕ φ(b)) ∈ P . Set
P1 = ⟨P, a⟩φ and P2 = ⟨P, b⟩φ. Obviously, P ⊆ P1 ∩ P2. Let x ∈ P1 ∩ P2,
then by Theorem 2.22 (3), there are l, k ∈ P and m,n ≥ 1 such that
x ≤ k⊕m(a⊕φ(a)) and x ≤ l⊕n(b⊕φ(b)). Then by the property of joins,
we have
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x ≤ (k⊕m(a⊕φ(a)))∧ (l⊕n(b⊕φ(b)))
(P19)

≤ ((k⊕m(a⊕φ(a)))′′∧ l′′)⊕
((k ⊕m(a⊕ φ(a)))′′ ∧ (n(b⊕ φ(b)))′′)

(P13),(P17)

≤ ((k ⊕m(a⊕ φ(a))) ∧ l′′)⊕
((k⊕m(a⊕φ(a)))∧n(b⊕φ(b)))

(P19)

≤ (k′′∧ l′′′′)⊕(m(a⊕φ(a))′′∧ l′′′′)⊕(k′′∧
(n(b⊕φ(b)))′′⊕ (m(a⊕φ(a))′′∧ (n(b⊕φ(b)))′′

(P13),(RL11)

≤ (k′′∧ l′′)⊕ (m(a⊕
φ(a))∧ l′′)⊕(k′′∧(n(b⊕φ(b)))⊕(m(a⊕φ(a))∧(n(b⊕φ(b)))

(P18)

≤ (k′′∧ l′′)⊕
(m(a⊕φ(a))∧ l′′)⊕ (k′′∧ (n(b⊕φ(b)))⊕mn((a⊕φ(a))′′∧ (b⊕φ(b))′′)

(P19)

≤
(k′′∧l′′)⊕(m(a⊕φ(a))∧l′′)⊕(k′′∧(n(b⊕φ(b)))⊕mn((a⊕φ(a))∧(b⊕φ(b))).

But (k′′ ∧ l′′), (l′′ ∧m(a⊕φ(a))), (k′′ ∧n(b⊕φ(b))),mn((a⊕φ(a))∧ (b⊕
φ(b))) ∈ P . Thus x ∈ P . Hence P = P1 ∩ P2. Therefore by (1), P = P1 or
P = P2, that is, a ∈ P or b ∈ P .

(3) ⇒ (1) Let P1, P2 ∈ SI(L) such that P = P1 ∩ P2. Suppose that
P ̸= P1 and P ̸= P2 and let a ∈ P1\P and b ∈ P2\P . Then, (a ⊕ φ(a)) ∧
(b⊕ φ(b)) ∈ P1 ∩ P2 = P , that is a contradiction. Thus P = P1 or P = P2.
Therefore, P is a prime state ideal of (L,φ).

We denote the set of all prime state ideals of (L,φ) by Spectφ(L).

Example 4.3. Let L = [0, 1] be the unit interval. Define the algebraic
structure L = (L,∧,∨,⊙,→, 0, 1) such that for all x, y ∈ I,

x∧y = min{x, y}, x∨y = max{x, y}, x⊙y =

{
0, if x + y≤ 1

2
min{x, y}, othewise.

and x→ y =

{
1, if x ≤y
max{1

2 − x, y}, othewise.

Then, L is a residuated lattice [28]. From Remark 2.19, (L, idL) is a state
residuated lattice.

One can check that the subsets L, Ia = [0, a], Ja = [0, a), J = [0, 1
4) and

I = {0} (with a ∈ (0, 1
4)) are the only ideals of L. Therefore, they are state

ideals of (L, idL).
J = [0, 1

4) is a prime state ideal of (L, idL).

The following example gives a prime state ideal of a state residuated
lattice which is not a prime ideal.
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Example 4.4. Let L = {0, a, b, c, d, 1} be a poset with Hasse digram and
Cayley tables as follows:

1

d b

c a

0

Figure 1: Hasse diagram of a SRL that admits a prime state ideal which is
not a prime ideal.

⊙ 0 a b c d 1

0 0 0 0 0 0 0

a 0 0 a 0 0 a

b 0 a b 0 a b

c 0 0 0 c c c

d 0 0 a c c d

1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 1 d 1 1

b c d 1 c d 1

c b b b 1 1 1

d a b b d 1 1

1 0 a b c d 1

Table 1: Cayley tables of the operations ⊙ and → of a SRL that admits a
prime state ideal which is not a prime ideal.

Then (L,∧,∨,⊙,→, 0, 1) is a residuated lattice. The ideals of L are
{0},{0, c}, {0, a, b} and L. Now we define a map τ on L as follows:

φ(x) =

{
0, if x ∈ {0, a, b};
1, if x ∈ {c, d, 1}.

One can easily check that (L,φ) is a state residuated lattice. The ideals
of L are {0},{0, c}, {0, a, b} and L. In addition, the state ideals of (L,φ)
are {0}, {0, a, b} and L. We have {0} = {0, c} ∩ {0, a, b} but {0} ̸= {0, c}
and {0} ≠ {0, a, b}, so the ideal {0} is not a prime ideal of L. However, still
as a state ideal (L,φ) and according to Proposition 4.2 (1), {0} is a prime
state ideal of (L,φ).
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Now, we establish our main theorem.

Theorem 4.5. (prime state ideal theorem)

Let F be a filter in the lattice (L,⊆), and I be a state ideal of (L,φ)
such that I ∩F = ∅. Then, there is a prime state ideal P of (L,φ) such that
I ⊆ P and P ∩ F = ∅.

Proof. Let us consider the set k(I) = {J : J ∈ SI(L), I ⊆ J and J∩F = ∅}.
We have I ∈ SI(L), I ⊆ I and I ∩ F = ∅. Then I ∈ k(I), that is k(I) ̸= ∅.
On can easily prove that the set k(I) is inductively ordered by inclusion
and, by Zorn’s lemma, it has a maximal element P . We will prove that
P ∈ Spectφ(L). Since P ∈ k(I), we deduce that P is a proper state ideal
and P ∩F = ∅. Let a, b ∈ L such that (a⊕φ(a))∧ (b⊕φ(b)) ∈ P . Suppose
that a ̸∈ P and b ̸∈ P and consider the sets ⟨P, a⟩φ and ⟨P, b⟩φ. Then, P is
strictly contained in ⟨P, a⟩φ and ⟨P, b⟩φ and the maximality of P implies that
⟨P, a⟩φ ̸∈ k(I) and ⟨P, b⟩φ ̸∈ k(I). Thus, ⟨P, a⟩φ∩F ̸= ∅ and ⟨P, b⟩φ∩F ̸= ∅.
Let x ∈ ⟨P, a⟩φ ∩ F and y ∈ ⟨P, b⟩φ ∩ F ̸= ∅. According to Theorem 2.22
(3), there are k, l ∈ P and m,n ≥ 1 such that x ≤ k ⊕ m(a ⊕ φ(a)) and
y ≤ l ⊕ n(b⊕ φ(b)). Then,

x∧ y ≤ (k⊕m(a⊕φ(a)))∧ (l⊕n(b⊕φ(b)))
(P19)

≤ ((k⊕m(a⊕φ(a)))′′ ∧
l′′)⊕((k⊕m(a⊕φ(a)))′′∧(n(b⊕φ(b)))′′)

(P13),(P17)

≤ ((k⊕m(a⊕φ(a)))∧l′′)⊕
((k⊕m(a⊕φ(a)))∧n(b⊕φ(b)))

(P19)

≤ (k′′∧ l′′′′)⊕(m(a⊕φ(a))′′∧ l′′′′)⊕(k′′∧
(n(b⊕φ(b)))′′⊕ (m(a⊕φ(a))′′∧ (n(b⊕φ(b)))′′

(P13),(RL11)

≤ (k′′∧ l′′)⊕ (m(a⊕
φ(a))∧ l′′)⊕(k′′∧(n(b⊕φ(b)))⊕(m(a⊕φ(a))∧(n(b⊕φ(b)))

(P18)

≤ (k′′∧ l′′)⊕
(m(a⊕φ(a))∧ l′′)⊕ (k′′∧ (n(b⊕φ(b)))⊕mn((a⊕φ(a))′′∧ (b⊕φ(b))′′)

(P19)

≤
(k′′∧l′′)⊕(m(a⊕φ(a))∧l′′)⊕(k′′∧(n(b⊕φ(b)))⊕mn((a⊕φ(a))∧(b⊕φ(b))).

But (k′′∧l′′), (l′′∧m(a⊕φ(a))), (k′′∧n(b⊕φ(b))),mn((a⊕φ(a))∧(b⊕φ(b))) ∈
P . Hence x ∧ y ∈ P . On the other hand, since F is a filter of the lattice
(L,⊆), we deduce that x ∧ y ∈ F , and therefore P ∩ F ̸= ∅, which is a
contradiction. Thus P ∈ Spectφ(L).

Proposition 4.6. Let I be a proper state ideal of (L,φ). Then, there is a
maximal state ideal I0 of (L,φ) such that I ⊆ I0.
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Proof. Let us consider the set

LI = {J : J is a proper state ideal containing I}.

We have I is a proper state ideal of (L,φ) and I ⊆ I. So I ∈ LI , that is
LI ̸= ∅. On can prove that LI is inductively ordered by inclusion. So, by
Zorn’s lemma, LI has a maximal element I0. We are going to prove that
I0 is a maximal state ideal of (L,φ). Indeed, if I1 is a proper state ideal
of (L,φ) such that I0 ⊆ I1, then I1 ∈ LI and the maximality of I0 implies
that I1 = I0

Proposition 4.7. Let a ∈ L, a > 0. Then, there is a prime state ideal P
of (L,φ) so that a ̸∈ P .

Proof. Since {0} is a state ideal and {0} ∩ [a) = ∅ (where [a) is the filter
generated by {a} in the lattice (L,⊆)). Hence by Theorem 4.5, there exists
a prime state ideal P such that P ∩ ⟨a⟩ = ∅. Thus a ̸∈ P .

Conclusion

This work was devoted to the prime state ideals theorem in the framework
of state residuated lattices. We have investigated the lattice of state ideals
SI(L) of a SRL and obtained that it is a coherent frame. Moreover, we have
described the set of compact elements of the sublattice SI(L). Furthermore,
We have characterized the SRL for which the lattice SI(L) is a Boolean
algebra. In addition, we have proved the prime state ideal theorem and gave
some related properties. In the same view as the work in [16], we will study
the lattice of L-fuzzy state ideals in state residuated lattices. Analogously
to the papers [6, 19, 27] , another direction will consist of investigating
other types of state ideals namely obstinate, maximal, Boolean, primary,
implicative and integral state ideals in state residuated lattices.
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