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On nominal sets with support-preorder
A. Hosseinabadi, M. Haddadi∗, and Kh. Keshvardoost
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Abstract. Each nominal set 𝑋 can be equipped with a preorder relation ⪯ defined
by the notion of support, so-called support-preorder. This preorder also leads us to the
support topology on each nominal set. We study support-preordered nominal sets and
some of their categorical properties in this paper. We also examine the topological
properties of support topology, in particular separation axioms.

1 Introduction

Nominal set theory provides a mathematical framework for studying semantics,
modifying variables, and much more in computer science. Indeed, Fraenkel pre-
sented nominal sets in [3] as an alternative model of set theory in 1922. In
this context Mostowski studied further, which is why nominal sets are sometimes
referred to as Fraenkel-Mostowski sets. In the 1990s, Gabbay and Pitts [6] redis-
covered nominal sets for the computer science community, and this notion sparked
a lot of interest in semantics [1, 2, 4, 5].
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Every nominal set can be viewed as a preordered set equipped with the sup-
port preorder relation based on the notion of support. Here considering support-
preordered nominal sets, briefly sp-nominal sets, and the category spNom of
sp-nominal sets and sp-preserving equivariant maps between them, some categor-
ical properties in spNom including monics, epics, products and coproducts are
investigated. In particular, we find some conditions under which products and
coproducts in spNpm do exist. This preorder also provides a topological structure
on a nominal set which converts nominal sets to nominal spaces. Some topological
properties of nominal spaces such as separation axioms and compactness are also
studied.

2 Preliminaries

This section contains some necessary notions on nominal sets and topological
spaces needed throughout the paper from [8] and [7] respectively. For further
information on category theory, one may consult [1].

2.1 Nominal sets Suppose D is a set, then a permutation 𝜋 of D is a bijective
map from D to itself. The permutations of D with composition and identity form
a group, called the symmetric group on the set D and denoted by SymD. A
permutation 𝜋 ∈ SymD is finitary if the set {𝑑 ∈ D | 𝜋𝑑 ≠ 𝑑} is a finite subset
of D. It is clear that id ∈ SymD is finitary and that the composition and the
inverse of finitary permutations are finitary. Therefore, we get a subgroup of SymD
of finitary permutations, denoted by Perm(D). We fix a countable infinite set D
whose elements are denoted by 𝑎, 𝑏, 𝑐, ... and called atomic names. Let 𝑋 be a set
equipped with an action of the group Perm(D), Perm(D) × 𝑋 → 𝑋 mapping (𝜋, 𝑥)
to 𝜋𝑥. We call 𝑋 a Perm(D)-set, whenever for every 𝜋1, 𝜋2 ∈ Perm(D) and every
𝑥 ∈ 𝑋 we have:

(1) 𝜋1(𝜋2𝑥) = (𝜋1𝑜𝜋2)𝑥
(2) id 𝑥 = 𝑥.

A subset 𝑌 of a Perm(D)-set 𝑋 is called equivariant if 𝜋𝑦 ∈ 𝑌 , for all 𝜋 ∈
Perm(D) and 𝑦 ∈ 𝑌 . Perm(D)-sets are the objects of a category, denoted by
Perm(D)-Set whose morphisms are equivariant maps, i.e. maps subject to the rule
𝑓 (𝜋𝑥) = 𝜋 𝑓 (𝑥), for all 𝑥 ∈ 𝑋, 𝜋 ∈ Perm(D), whose compositions and identities
are as in the category Set of sets and maps.
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An element 𝑥 of a Perm(D)-set 𝑋 is called a zero element if 𝜋𝑥 = 𝑥, for all
𝜋 ∈ Perm(D). The set of all zero elements of the Perm(D)-set 𝑋 is denoted by
Z(𝑋). A Perm(D)-set all of whose elements are zero is called discrete.

Given a Perm(D)-set 𝑋 , a set of atomic names 𝐷 ⊆ D is a support for an
element 𝑥 ∈ 𝑋 if for all 𝜋 ∈ Perm(D) and for every 𝑑 ∈ 𝐷,

𝜋(𝑑) = 𝑑 ⇒ 𝜋𝑥 = 𝑥.

Given a Perm(D)-set 𝑋 , we say an element 𝑥 ∈ 𝑋 is finitely supported, if there is
some finite set of atomic names that is, a support for the element 𝑥.

Example 2.1. Given a Perm(D)-set 𝑋 , the power set of 𝑋 , P(𝑋), with the action

Perm(D) × P(𝑋) → P(𝑋)

(𝜋, 𝑆) ⇝ {𝜋𝑥 : 𝑥 ∈ 𝑆}
is a Perm(D)-set. A set of atomic names 𝐷 supports 𝑆 ∈ P(𝑋) if and only if

(∀𝜋 ∈ Perm(D)) ((∀𝑑 ∈ 𝐷) 𝜋(𝑑) = 𝑑) ⇒ (∀ 𝑥 ∈ 𝑆) 𝜋𝑥 ∈ 𝑆.

Definition 2.2. [8] A nominal set is a Perm(D)-set all of whose elements are
finitely supported. Nominal sets are the objects of a category, denoted by Nom,
whose morphisms are equivariant maps and whose compositions and identities are
as in the category of Perm(D)-Set.

Remark 2.3. Suppose 𝑋 is a nominal set and 𝑥 ∈ 𝑋 . Intersection of two fi-
nite supports of 𝑥 is a (finite) support of 𝑥, [8, Propositions 2.1 and 2.3].
So each 𝑥 ∈ 𝑋 has the least (finite) support which is denoted by supp

𝑋
𝑥,

and when there is no possibility of error, we denote it by supp 𝑥. In fact,
supp 𝑥 =

⋂{𝐶 : 𝐶 is a finite support of 𝑥}.
Definition 2.4. [8] We say that a set of atomic names 𝐴 ⊆ D strongly supports an
element 𝑥 of a nominal set 𝑋 if and only if

(∀𝜋 ∈ Perm(D)) ((∀𝑎 ∈ 𝐴)𝜋𝑎 = 𝑎) ⇔ 𝜋𝑥 = 𝑥.

A strong nominal set is a Perm(D)-set in which every element is strongly supported
by a finite set of atomic names.
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Example 2.5. (i) The set D is a nominal set with the natural action 𝜋𝑑 = 𝜋(𝑑).
(ii) The action of Perm(D) on D extends pointwise to action of Perm(D) on

tuples D𝑛 and D(𝑛) . So, the sets D𝑛 = {(𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ D𝑛 | 𝑑𝑖 ∈ D} and
D(𝑛) = {(𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ D𝑛 | 𝑑𝑖 ≠ 𝑑 𝑗 for 𝑖 ≠ 𝑗} are nominal sets.

Proposition 2.6: [8] Suppose X is a Perm(D)-set and 𝑥 ∈ 𝑋 . A subset 𝐴 ⊆ D
supports 𝑥 if and only if, for all 𝑑1, 𝑑2 ∈ D \ 𝐴, we have (𝑑1 𝑑2) · 𝑥 = 𝑥.

Notation 2.7. We will frequently write Pfs (𝑋) for the set consisting of all finitely
supported subsets of a given nominal set 𝑋 . By Fix𝐶 we mean the set {𝜋 ∈
Perm(D) | 𝜋𝑎 = 𝑎, for every 𝑎 ∈ 𝐶}, where 𝐶 ⊆ D. We also denote by Pf (D)
the set consisting of all finite subsets of D, and by Pcof (D) the set consisting of all
subsets of D with finite complement.

Lemma 2.8. Let 𝑋 be a nominal set and 𝑌, 𝑍 ∈ Pfs (𝑋). Then, 𝑌 ∪ 𝑍 and 𝑌 ∩ 𝑍
are finitely supported subsets of 𝑋 .

Proof. Suppose 𝐴 is a finite support of 𝑌 and 𝐵 is a finite support of 𝑍 . Take
𝜋 ∈ Fix (𝐴 ∪ 𝐵). Then, 𝜋𝑌 = 𝑌 and 𝜋𝑍 = 𝑍 . So, 𝜋(𝑌 ∩ 𝑍) = 𝑌 ∩ 𝑍 and
𝜋(𝑌 ∪ 𝑍) = 𝑌 ∪ 𝑍 .

Lemma 2.9. Let 𝑋 be a nominal set . Then, the following statements are equivalent.

(i) 𝑋 is discrete.
(ii) For all 𝑥, 𝑦 ∈ 𝑋 , supp 𝑥 = supp 𝑦.

Proof. (i) ⇒ (ii) It is clear.
(ii) ⇒ (i) On the contrary, suppose there exists 𝑥 ∈ 𝑋 with supp 𝑥 =

{𝑑1, 𝑑2, . . . , 𝑑𝑘} ≠ ∅. Take distinct elements 𝑑′1, 𝑑
′
2, . . . , 𝑑

′
𝑘 ∈ D with

{𝑑1, 𝑑2, . . . , 𝑑𝑘} ∩ {𝑑′1, 𝑑′2, . . . , 𝑑′𝑘} = ∅ and 𝜋 = (𝑑1 𝑑
′
1) (𝑑2 𝑑

′
2) · · · (𝑑𝑘 𝑑′𝑘). Then,

we have 𝜋𝑥 ∈ 𝑋 with supp 𝜋𝑥 ≠ supp 𝑥 which is a contradiction.

Remark 2.10. Every finite nominal set is discrete.

3 Support-Preordered nominal sets

Every nominal set can be considered as a preordered set, see Definition 3.1. We
direct our attention to the category spNom of support-preordered nominal sets, in
this section, with a view to investigating the properties of its objects and morphisms.
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Definition 3.1. By the support-preorder on a nominal set 𝑋 , we mean the binary
relation ⪯ on 𝑋 defined by:

𝑥 ⪯ 𝑦 ⇔ supp 𝑥 ⊆ supp 𝑦.

Since ⪯ is a preorder (i.e. reflexive and transitive), the pair (𝑋, ⪯) is called a
support-preordered nominal set or briefly sp-nominal set.

It can be easily seen that the support-preorder is equivariant (or action preserv-
ing); meaning that:

𝑥1 ⪯ 𝑥2 ⇒ 𝜋𝑥1 ⪯ 𝜋𝑥2,

for each 𝑥1, 𝑥2 ∈ 𝑋, 𝜋 ∈ Perm(D).
Example 3.2. The support-preorder on

(i) the nominal set D is equality. Indeed, since supp 𝑑 = {𝑑}, for every 𝑑 ∈ D,
we have

𝑑 ⪯ 𝑑′ ⇔ {𝑑} ⊆ {𝑑′} (or equivalently 𝑑 = 𝑑′).
(ii) the nominal set Pf (D) is ⊆. Indeed, since supp 𝐴 = 𝐴, for every 𝐴 ∈ Pf (D),

we have
𝐴1 ⪯ 𝐴2 ⇔ 𝐴1 ⊆ 𝐴2,

for 𝐴1, 𝐴2 ∈ Pf (D).
(iii) the nominal set Pcof (D) is ⊇. Indeed, since supp 𝐴 = 𝐴𝑐, for every

𝐴 ∈ Pcof (D), we have
𝐴1 ⪯ 𝐴2 ⇔ 𝐴1 ⊇ 𝐴2,

for 𝐴1, 𝐴2 ∈ Pcof (D).
(iv) the nominal set Pfs (D) is defined as follows.

𝐴1 ⪯ 𝐴2 ⇔ 𝐴1 ⊆ 𝐴2 or 𝐴1 ⊇ 𝐴2 or 𝐴1 ∩ 𝐴2 = ∅ or 𝐴1 ∪ 𝐴2 = D

Indeed, when 𝐴1 ⪯ 𝐴2 in Pcof (D), one of the following four items may occur.

• If both 𝐴1, 𝐴2 are finite, then since supp 𝐴1 = 𝐴1 and supp 𝐴2 = 𝐴2, 𝐴1 ⪯ 𝐴2
if and only if 𝐴1 ⊆ 𝐴2.

• If both 𝐴1, 𝐴2 are cofinite, then since supp 𝐴1 = 𝐴𝑐1 , supp 𝐴2 = 𝐴𝑐2 , 𝐴1 ⪯ 𝐴2
if and only if 𝐴1 ⊇ 𝐴2.

• If 𝐴1 is finite and 𝐴2 is cofinite, then since supp 𝐴1 = 𝐴1 and supp 𝐴2 = 𝐴𝑐2 ,
𝐴1 ⪯ 𝐴2 if and only if 𝐴1 ∩ 𝐴2 = ∅.
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• If 𝐴1 is cofinite and 𝐴2 is finite, then since supp 𝐴1 = 𝐴𝑐1 and supp 𝐴2 = 𝐴2,
𝐴1 ⪯ 𝐴2 if and only if (𝐴𝑐1) ∩ (𝐴𝑐2) = ∅ if and only if 𝐴1 ∪ 𝐴2 = D.

Remark 3.3. Let 𝑋 be a nominal set. Then one can define the equivalence relation
∼ on 𝑋 obtained from ⪯ to be

𝑥 ∼ 𝑥′ ⇔ 𝑥 ⪯ 𝑥′ and 𝑥′ ⪯ 𝑥.

The quotient set 𝑋/∼ together with the canonical action over Perm(D), 𝜋(𝑥/∼) =
(𝜋𝑥)/∼, is a nominal set and we immediately get the following statements.

(i) supp (𝑥/∼) = supp 𝑥, for every 𝑥/∼∈ 𝑋/∼.
(ii) 𝑥/∼= {𝑦 ∈ 𝑋 | supp 𝑥 = supp 𝑦} is the equivalance class of 𝑥 ∈ 𝑋 .
(iii) The support-preoreder is a partial order if and only if 𝑥/∼= {𝑥}, for all

𝑥 ∈ 𝑋 .

Lemma 3.4. Let 𝑋 be an sp-nominal set and 𝑥, 𝑥′ ∈ 𝑋 . Then, there exists 𝜋 with
𝜋𝑥 ⪯ 𝑥′ or 𝜋𝑥′ ⪯ 𝑥.

Proof. Let supp 𝑥 = {𝑑1, . . . , 𝑑𝑘} and supp 𝑥′ = {𝑎1, . . . , 𝑎𝑚} with 𝑘 ≤ 𝑚.
Case (i) If supp 𝑥 ∩ supp 𝑥′ = ∅, then taking 𝜋 = (𝑑1 𝑎1) · · · (𝑑𝑘 𝑎𝑘) we obtain

supp 𝜋𝑥 = 𝜋supp 𝑥 = {𝑎1, . . . , 𝑎𝑘} ⊆ supp 𝑥′.
Case (ii) If supp 𝑥 ∩ supp 𝑥′ = {𝑎 𝑗+1, . . . , 𝑎𝑘}, then taking 𝜋 =

(𝑑1 𝑎1) · · · (𝑑 𝑗 𝑎 𝑗) we obtain supp 𝜋𝑥 = 𝜋supp 𝑥 = {𝑎1, . . . , 𝑎 𝑗 , . . . , 𝑎𝑚} ⊆
supp 𝑥′.

Definition 3.5. Suppose 𝑋 and 𝑌 are two sp-nominal sets. An equivariant map
𝑓 : 𝑋 → 𝑌 is called support-preorder preserving or for convenience sp-preserving
whenever 𝑓 (𝑥1) ⪯ 𝑓 (𝑥2), for all 𝑥1 ⪯ 𝑥2 ∈ 𝑋 .

Example 3.6. (i) The equivariant map 𝑓 : D2 → D(2) ∪ {\} defined by

𝑓 (𝑑1, 𝑑2) =
{
(𝑑1, 𝑑2) 𝑑1 ≠ 𝑑2

\ 𝑑1 = 𝑑2,

is sp-preserving.
(ii) The support map supp : 𝑋 → Pf (D), mapping 𝑥 ↦→ supp 𝑥, is sp-

preserving.
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It is worth noting that an equivariant map between nominal sets does not nec-
essarily preserve support-preorder, see Example 3.7. So we consider the category
of support-preordered nominal sets and sp-preserving maps between them denoted
by spNom.

Example 3.7. Considering the nominal sets D2 and D ∪ {\} we define the equiv-
ariant map 𝑓 : D2 −→ D ∪ {\} as follows.

𝑓 (𝑑, 𝑑′) =
{
\ 𝑑 ≠ 𝑑′

𝑑 𝑑 = 𝑑′.

For every 𝑑 ≠ 𝑑′ ∈ D, we have (𝑑, 𝑑) ⪯ (𝑑, 𝑑′) but 𝑓 (𝑑, 𝑑) ⪯̸ 𝑓 (𝑑, 𝑑′).

Definition 3.8. By a downward (upward) directed nominal set we mean a nominal
set (𝑋, ⪯) in which each pair of elements has a lower (upper) bound. More
explicitly, for every 𝑥1, 𝑥2 ∈ 𝑋 there exists 𝑥 ∈ 𝑋 with 𝑥 ⪯ 𝑥1 and 𝑥 ⪯ 𝑥2 (𝑥1 ⪯ 𝑥
and 𝑥2 ⪯ 𝑥).

Theorem 3.9. (i) The sp-nominal set (𝑋, ⪯) is downward directed if and only if
Z(𝑋) ≠ ∅.

(ii) The sp-nominal set (𝑋, ⪯) is upward directed if and only if the subset
𝐴 = {|supp 𝑥 | | 𝑥 ∈ 𝑋} of N0 has no upper bound.

Proof. (i) Suppose (𝑋, ⪯) is downward directed. Take 𝐴 = {|supp 𝑥 | | 𝑥 ∈
𝑋} ⊆ N ∪ {0}. By well-ordering principle, 𝐴 contains a least element and hence,
there exists 𝑥0 ∈ 𝑋 such that |supp 𝑥0 | is infimum in 𝐴. If supp 𝑥0 = ∅, then
𝑥0 ∈ Z(𝑋). Otherwise, supp 𝑥0 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, for some 𝑛 ∈ N. Then
we take {𝑑′1, 𝑑′2, . . . , 𝑑′𝑛} ⊆ D with {𝑑1, 𝑑2, . . . , 𝑑𝑛} ∩ {𝑑′1, 𝑑′2, . . . , 𝑑′𝑛} = ∅ and
consider the finite permutation 𝜋 = (𝑑1 𝑑

′
1) (𝑑2 𝑑

′
2) · · · (𝑑𝑛 𝑑′𝑛). Since supp 𝜋𝑥0 =

{𝑑′1, 𝑑′2, . . . , 𝑑′𝑛}, supp 𝜋𝑥0 ∩ supp 𝑥0 = ∅, and so 𝑥0 ≠ 𝜋𝑥0. By the assumptions,
there exists 𝑥1 ∈ 𝑋 with 𝑥1 ⪯ 𝑥0 and 𝑥1 ⪯ 𝜋𝑥0. Hence, supp 𝑥1 ⊆ supp 𝑥0 ∩
supp 𝜋𝑥0 = ∅ and so Z(𝑋) ≠ ∅.
Conversely, suppose \ ∈ Z(𝑋) ≠ ∅. Then clearly for each pair 𝑥1, 𝑥2 ∈ 𝑋 , \ ⪯ 𝑥1
and \ ⪯ 𝑥2.
(ii) Suppose 𝑋 is upward directed. We show that 𝐴 = {|supp 𝑥 | | 𝑥 ∈ 𝑋} has no
upper bound. On the contrary, let 𝐴 have an upper bound. Then since the set 𝐴𝑢𝑝,
consisting of the upper bounds of 𝐴, is a subset ofN, well-ordering principle implies
𝐴𝑢𝑝 has the least element 𝑛 which is the supremum of 𝐴. Now let 𝑛 = |supp 𝑥0 |,
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for some 𝑥0 ∈ 𝑋 and supp 𝑥0 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}. Then, analogous to the proof
(i), we take {𝑑′1, 𝑑′2, . . . , 𝑑′𝑛} ⊆ D with {𝑑1, 𝑑2, . . . , 𝑑𝑛} ∩ {𝑑′1, 𝑑′2, . . . , 𝑑′𝑛} = ∅ and
consider 𝜋𝑥0 ≠ 𝑥0 in which 𝜋 = (𝑑1 𝑑

′
1) (𝑑2 𝑑

′
2) · · · (𝑑𝑛 𝑑′𝑛). Now, by the hypothesis,

there exists 𝑥′ ∈ 𝑋 such that 𝑥0 ⪯ 𝑥′ and 𝜋𝑥0 ⪯ 𝑥′. Therefore, |supp 𝑥0 | < 𝑛 which
is a contradiction.
To prove the converse, suppose 𝑥1, 𝑥2 ∈ 𝑋 with supp 𝑥1 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}
and supp 𝑥2 = {𝑑′1, 𝑑′2, . . . , 𝑑′𝑚}. Since 𝐴 has no upper bound, there is
𝑥′ ∈ 𝑋 with |supp 𝑥′ | ⩾ 𝑚 + 𝑛. Suppose supp 𝑥′ = {𝑑′′1 , 𝑑′′2 , . . . , 𝑑′′𝑚+𝑛+𝑟 } in
which 𝑟 ⩾ 0. If supp 𝑥1 ∪ supp 𝑥2 ⊆ supp 𝑥′ then supp 𝑥1 ⊆ supp 𝑥′ and
supp 𝑥2 ⊆ supp 𝑥′ meaning that 𝑥1 ⪯ 𝑥′ and 𝑥2 ⪯ 𝑥′ which is the desired re-
sult. Otherwise, suppose (supp 𝑥1 ∪ supp 𝑥2) ∩ (supp 𝑥′) = {𝑠1, 𝑠2, . . . , 𝑠𝑡−1} and
(supp 𝑥1 ∪ supp 𝑥2) ∩ (supp 𝑥′)𝑐 = {𝑠𝑡 , 𝑠𝑡+1, . . . , 𝑠𝑙} with 𝑠𝑖 ∈ supp 𝑥1 ∪ supp 𝑥2.
We take 𝜋 = (𝑑′′𝑡 𝑠𝑡 ) (𝑑′′𝑡+1 𝑠𝑡+1) . . . (𝑑′′𝑙 𝑠𝑙). Since supp 𝜋 ∩ {𝑑′′1 , 𝑑′′2 , . . . , 𝑑′′𝑡−1} =
∅, we have 𝜋{𝑑′′1 , 𝑑′′2 , . . . , 𝑑′′𝑙 } ⊆ supp 𝜋𝑥′. Hence, supp 𝑥1 ∪ supp 𝑥2 =
{𝑑′′1 , 𝑑′′2 , . . . , 𝑑′′𝑡−1, 𝑠𝑡 , 𝑠𝑡+1, . . . , 𝑠𝑙} ⊆ supp 𝜋𝑥′. That is, 𝑥1 ⪯ 𝜋𝑥′ and 𝑥2 ⪯
𝜋𝑥′.

Definition 3.10. Let 𝑋 be an sp-nominal set and𝑌 ∈ Pfs (𝑋). Then we define𝑌↓ :=
{𝑥 ∈ 𝑋 | 𝑥 ⪯ 𝑦, for some 𝑦 ∈ 𝑌 } and 𝑌 ↑ := {𝑥 ∈ 𝑋 | 𝑦 ⪯ 𝑥, for some 𝑦 ∈ 𝑌 }. In
particular, we write 𝑥↓ and 𝑥↑ rather than 𝑌↓ and 𝑌 ↑, respectively, when 𝑌 ∈ Pfs (𝑋)
is a singleton set containing 𝑥.

Lemma 3.11. Let 𝑋 be an sp-nominal set and 𝑌, 𝑍 ∈ Pfs (𝑋). Then
(i) 𝑌↓ ∪ 𝑍↓ = (𝑌 ∪ 𝑍)↓ and 𝑌 ↑ ∪ 𝑍↑ = (𝑌 ∪ 𝑍)↑.
(ii) 𝑌↓, 𝑌 ↑ ∈ Pfs (𝑋), for every 𝑌 ∈ Pfs (𝑋).
(iii) the set 𝐿↓𝑋 := {𝑌↓, ∅, 𝑋 | 𝑌 ∈ Pfs (𝑋)} is a bounded lattice.
(iv) the set 𝐿↑𝑋 := {𝑌 ↑, ∅, 𝑋 | 𝑌 ∈ Pfs (𝑋)} is a bounded lattice.

Proof. (i) One can easily check.
(ii) We show that supp𝑌 is a support for 𝑌↓ and 𝑌 ↑, for each 𝑌 ∈ Pfs (𝑋). Indeed,
if 𝐴 = supp𝑌 , then for every 𝜋 ∈ Fix 𝐴 we have

𝜋𝑌 ↑ = 𝜋{𝑥 ∈ 𝑋 | supp 𝑦 ⊆ supp 𝑥, for some 𝑦 ∈ 𝑌 }
= {𝜋𝑥 ∈ 𝑋 | supp 𝜋𝑦 ⊆ supp 𝜋𝑥, for some 𝜋𝑦 ∈ 𝜋𝑌 }
= {𝑥′ ∈ 𝑋 | supp 𝑦′ ⊆ supp 𝑥′, for some 𝑦′ ∈ 𝜋𝑌 = 𝑌 }
= 𝑌 ↑.
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Analogously, 𝜋𝑌↓ = 𝑌↓.
(iii) We show that 𝐿↓𝑋 is closed under finite intersections and unions. Let

𝑌, 𝑍 ∈ Pfs (𝑋). Then, by Lemma 2.8, 𝑌 ∪ 𝑍,𝑌 ∩ 𝑍 ∈ Pfs (𝑋). Also, applying (i),
we have (𝑌 ∪ 𝑍)↓ = 𝑌↓ ∪ 𝑍↓ and 𝑌↓ ∩ 𝑍↓ = (𝑌 ∩ 𝑍)↓.

(iv) The proof is similar to (iii).

Theorem 3.12. If the sp-nominal set (𝑋, ⪯) is a lattice, then 𝑋 is isomorphic to a
subnominal set of Pf (D).

Proof. Suppose (𝑋, ⪯) is a lattice. Then, for every 𝑥, 𝑥′ ∈ 𝑋 with supp 𝑥 = supp 𝑥′,
we have 𝑥 ⪯ 𝑥′ and 𝑥′ ⪯ 𝑥. Since 𝑋 is a lattice, 𝑥 = 𝑥′. Hence, the equivariant
map supp : 𝑋 → Pf (D) defined by 𝑥 ↦→ supp 𝑥 is injective.

Lemma 3.13. Suppose 𝑋 and 𝑌 are two sp-nominal sets, 𝑓 : 𝑋 → 𝑌 is an
sp-preserving map, and 𝑥 ∈ 𝑋 with supp 𝑓 (𝑥) ≠ ∅. Then, supp 𝑓 (𝑥) = supp 𝑥.

Proof. First we note that since 𝑓 is equivariant, supp 𝑓 (𝑥) ⊆ supp 𝑥 and hence,
supp 𝑥 ≠ ∅ follows from supp 𝑓 (𝑥) ≠ ∅, for an arbitrary 𝑥 ∈ 𝑋 with supp 𝑓 (𝑥) ≠ ∅.
One can suppose supp 𝑥 = {𝑑1, 𝑑2, . . . , 𝑑𝑘}. Since, by the assumption, supp 𝑓 (𝑥) ≠
∅, we choose an element 𝑑 ∈ supp 𝑓 (𝑥) ⊆ supp 𝑥. Now, for every 𝑑𝑖 ∈ supp 𝑥
with 𝑑𝑖 ≠ 𝑑, we have supp (𝑑𝑖 𝑑)𝑥 = supp 𝑥. So, (𝑑𝑖 𝑑)𝑥 ⪯ 𝑥. Since 𝑓 is
order-preserving, 𝑓 ((𝑑𝑖 𝑑)𝑥) ⪯ 𝑓 (𝑥). Thus, supp (𝑑𝑖 𝑑) 𝑓 (𝑥) ⊆ supp 𝑓 (𝑥) and
so 𝑑𝑖 ∈ supp 𝑓 (𝑥), for all 𝑑𝑖 ∈ supp 𝑥. That is, supp 𝑥 ⊆ supp 𝑓 (𝑥) and so
supp 𝑓 (𝑥) = supp 𝑥.

Corollary 3.14. (i) If (𝑋, ⪯) is an sp-nominal set with Z(𝑋) = ∅, then id𝑋 is the
only sp-preserving map over 𝑋 .

(ii) The category spNom is not connected.
(iii) Let 𝑓 , 𝑔 : 𝑋 → 𝐴 be two parallel sp-preserving maps with Z(𝐴) = ∅ and

the support map supp
𝐴

: 𝐴→ Pf (D) be injective. Then, 𝑓 = 𝑔.

Proof. (i) Let 𝑓 : 𝑋 → 𝑋 be an sp-preserving map. Then, since Z(𝑋) = ∅,
applying Lemma 3.13, supp 𝑓 (𝑥) = supp 𝑥, for all 𝑥 ∈ 𝑋 . Now, since ⪯ is
antisymmetric, 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 .

(ii) By Lemma 3.13, there exists no sp-preserving map from D(2) to D.
(iii) Let 𝑥 ∈ 𝑋 . Then, by Lemma 3.13, supp 𝑓 (𝑥) = supp 𝑥 = supp 𝑔(𝑥). Now,

since supp
𝐴

is injective, 𝑓 (𝑥) = 𝑔(𝑥).
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Lemma 3.15. Let 𝐴 and 𝑋 be two sp-nominal sets with Z(𝐴) = ∅. Then,
(i) given a map 𝑓 : 𝑋 → 𝐴, if 𝑓 is an sp-preserving map, then for all

𝑥 ∈ 𝑋 we have supp 𝑥 = supp 𝑓 (𝑥). The converse is stablished if the support map
supp

𝐴
: 𝐴→ Pf (D) is injective.

(ii) if 𝑓 : 𝑋 → 𝐴 is an sp-preserving map and supp
𝑋

: 𝑋 → Pf (D) is injective,
then 𝑓 is injective.

Proof. (i) Follows immidiately from Lemma 3.13. For the converse, it is clear
that 𝑓 is sp-preserving. We show that 𝑓 is equivariant. Indeed, since by the
assumption, 𝜋supp 𝑓 (𝑥) = 𝜋supp 𝑥 = supp 𝜋𝑥 = supp 𝑓 (𝜋𝑥) and supp

𝐴
is injective,

𝜋 𝑓 (𝑥) = 𝑓 (𝜋𝑥).
(ii) Let 𝑓 (𝑥) = 𝑓 (𝑥′) with 𝑥, 𝑥′ ∈ 𝑋 . Then, by Lemma 3.13, we have supp 𝑥 =

supp 𝑓 (𝑥) = supp 𝑓 (𝑥′) = supp 𝑥′. Now, since supp
𝑋

is injective, 𝑥 = 𝑥′.

Theorem 3.16. Let 𝑋 be an sp-nominal set and Z(𝑋) = ∅. Then any 𝜌 ∈ 𝐶𝑜𝑛(𝑋)
withZ(𝑋/𝜌) = ∅whose canonical map, 𝜋 : 𝑋 → 𝑋/𝜌, 𝑥 ↦→ 𝑥/𝜌, is sp-preserving,
is a subset of ∼.

Proof. Suppose Z(𝑋) = ∅, and 𝜌 ∈ 𝐶𝑜𝑛(𝑋) \ {∇} such that the canonical map
𝑋 → 𝑋/𝜌, 𝑥 ↦→ 𝑥/𝜌 is sp-preserving. Then, by Lemma 3.13, supp 𝑥 = supp 𝑥/𝜌,
for every 𝑥 ∈ 𝑋 . If (𝑥, 𝑥′) ∈ 𝜌 then 𝑥/𝜌 = 𝑥′/𝜌. Hence, supp 𝑥 = supp 𝑥′; that is,
𝑥 ∼ 𝑥′. So 𝜌 ⊆∼.

Theorem 3.17. Let 𝑋 be an sp-nominal set. Then,
(i) for each 𝑥 ∈ 𝑋 , 𝑥↓ ≠ ∅ (𝑥↑ ≠ ∅).
(ii) if 𝑦 ∈ 𝑥↓ (𝑦 ∈ 𝑥↑) and 𝑧 ⪯ 𝑦 (𝑦 ⪯ 𝑧), then 𝑧 ∈ 𝑥↓ (𝑧 ∈ 𝑥↑).
(iii) for all 𝑥 ≠ 𝑦, if 𝑥 ∈ 𝑦↑ (𝑥 ∈ 𝑦↓), then 𝑥↑ ⊆ 𝑦↑ and 𝑥↓ ⊆ 𝑦↓.
(iv) the sets 𝑥↓ and 𝑥↑ are finitely supported subsets of 𝑋 and supp 𝑥 is a finite

support for them.
(v) for all 𝜋 ∈ Perm(D), we have 𝜋𝑥↓ = (𝜋𝑥)↓ and 𝜋𝑥↑ = (𝜋𝑥)↑.
(vi) the set S = {𝑥↓, 𝑥↑ | 𝑥 ∈ 𝑋} is a nominal subset of Pfs (𝑋).

Proof. (i) For each 𝑥 ∈ 𝑋 , 𝑥 ∈ 𝑥↓ (𝑥 ∈ 𝑥↑).
(ii) and (iii) follow from the fact that the relation “⪯” is transitive.
(iv) Applying Proposition 2.6, assume 𝑎, 𝑏 ∉ supp 𝑥. We show (𝑎 𝑏)𝑥↓ = 𝑥↓.

Let 𝑦 ∈ 𝑥↓. Then, supp 𝑦 ⊆ supp 𝑥 and so, for all 𝑎, 𝑏 ∉ supp 𝑥, we have (𝑎 𝑏)𝑦 = 𝑦.
Thus, (𝑎 𝑏)𝑥↓ = 𝑥↓. Analogously, supp 𝑥 is a finite support for 𝑥↑.
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(v) Since ⪯ is equivariant, we have

𝑦 ∈ (𝜋𝑥)↓ ⇔ 𝑦 ⪯ 𝜋𝑥

⇔ 𝜋−1𝑦 ⪯ 𝑥
⇔ 𝑦 ∈ 𝜋𝑥↓.

Analogously, 𝜋𝑥↑ = (𝜋𝑥)↑.
(vi) By (vi) and (v), S is an equivariant subset of Pfs (𝑋) and so it is a nominal

set.

Proposition 3.18: Let 𝑋 be an sp-nominal set and 𝑥 ∈ 𝑋 . Then,
(i) 𝑋 \ 𝑥↓ is a finitely supported subset of 𝑋 and supp (𝑋 \ 𝑥↓) ⊆ supp 𝑥.
(ii) 𝑋 \ 𝑥↓ =

⋃
𝑡∈𝑋\𝑥↓

𝑡↑.
(iii) 𝑋 \ 𝑥↑ = ⋃

𝑡∈𝑋\𝑥↑
𝑡↓.

Proof. (i) By Proposition 2.6, we show that, for every 𝑎, 𝑏 ∉ supp 𝑥 and 𝑡 ∈ 𝑋 \ 𝑥↓,
(𝑎 𝑏)𝑡 ∈ 𝑋 \ 𝑥↓. On the contrary, suppose (𝑎 𝑏)𝑡 ∈ 𝑥↓. Then (𝑎 𝑏)𝑡 ⪯ 𝑥 and hence,
𝑡 ⪯ (𝑎 𝑏)𝑥. Since 𝑎, 𝑏 ∉ supp 𝑥, 𝑡 ⪯ 𝑥 which is a contradiction.

(ii) For the nontrivial part, let 𝑦 ∈ ⋃
𝑡∈𝑋\𝑥↓

𝑡↑. Then, there exists 𝑡 ∈ 𝑋 \ 𝑥↓
with 𝑦 ∈ 𝑡↑. Now, if 𝑦 ∈ 𝑥↓, then 𝑦 ⪯ 𝑥 and we get 𝑡 ⪯ 𝑦 ⪯ 𝑥, which contradicts
𝑡 ∈ 𝑋 \ 𝑥↓.

(iii) The proof is similar to (ii).

Theorem 3.19. If 𝑓 : 𝑋 → 𝑌 is an sp-preserving map, then
(i) 𝑓 (𝑥↓) ⊆ 𝑓 (𝑥)↓.
(ii) 𝑓 (𝑥↑) ⊆ 𝑓 (𝑥)↑.
(iii) 𝜋 𝑓 (𝑥↓) = 𝑓 (𝜋𝑥↓).
(iv) 𝑓 (𝑥↓) = 𝑓 (𝑥)↓, if 𝑓 is surjective and Z(𝑌 ) = ∅.
(v) 𝑓 (𝑥↑) = 𝑓 (𝑥)↑, if 𝑓 is surjective and 𝑓 (𝑥) ∉ Z(𝑌 ).

Proof. (i) Let 𝑦 ∈ 𝑓 (𝑥↓). Then, there exists 𝑡 ∈ 𝑥↓ with 𝑓 (𝑡) = 𝑦. Since 𝑡 ⪯ 𝑥 and
𝑓 is sp-preseving, 𝑦 = 𝑓 (𝑡) ⪯ 𝑓 (𝑥).

(ii) Analogous to (i) one can prove (ii).
(iii) Let 𝑦 ∈ 𝜋 𝑓 (𝑥↓). Then, 𝜋−1𝑦 ∈ 𝑓 (𝑥↓) and so there exists 𝑡 ∈ 𝑥↓ with

𝑓 (𝑡) = 𝜋−1𝑦. Now, we have 𝜋𝑡 ⪯ 𝜋𝑥 and 𝑦 = 𝑓 (𝜋𝑡). Thus, 𝑦 ∈ 𝑓 (𝜋𝑥↓).
Analogously, we have 𝑓 (𝜋𝑥↓) ⊆ 𝜋 𝑓 (𝑥↓).
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(iv) By (i), it is enough to show that 𝑓 (𝑥)↓ ⊆ 𝑓 (𝑥↓). Let 𝑡 ∈ 𝑓 (𝑥)↓. Then,
there exists 𝑥′ ∈ 𝑋 with 𝑓 (𝑥′) = 𝑡. So, 𝑓 (𝑥′) ⪯ 𝑓 (𝑥). Now since, by Lemma 3.13,
supp 𝑓 (𝑥′) = supp 𝑥′ and supp 𝑓 (𝑥) = supp 𝑥, we have 𝑥′ ⪯ 𝑥.

(v) Analogous to (iv) one can prove (v).

Lemma 3.20. Let 𝑓 : 𝑋 → 𝑌 be an sp-preseving equivariant map between sp-
nominal sets 𝑋 and 𝑌 , and 𝑎 ∈ 𝑌 . Then,

(i) supp 𝑎 supports 𝑓 −1(𝑎↓) and 𝑓 −1(𝑎↓) =
⋃

𝑓 (𝑥) ∈𝑎↓
𝑥↓.

(ii) supp 𝑎 supports 𝑓 −1(𝑎↑) and 𝑓 −1(𝑎↑) = ⋃
𝑓 (𝑥) ∈𝑎↑

𝑥↑.

Proof. (i) First, we show that supp 𝑎 is a finite support for 𝑓 −1(𝑎↓). Let 𝑑, 𝑑′ ∉
supp 𝑎. Then,

(𝑑 𝑑′) 𝑓 −1(𝑎↓) = 𝑓 −1((𝑑 𝑑′)𝑎↓) = 𝑓 −1(𝑎↓).
Now, we prove that 𝑓 −1(𝑎↓) =

⋃
𝑓 (𝑥) ∈𝑎↓

𝑥↓. Let 𝑡 ∈ 𝑓 −1(𝑎↓). Then, 𝑓 (𝑡) ∈ 𝑎↓.
Since 𝑡 ∈ 𝑡↓, 𝑡 ∈ ⋃

𝑓 (𝑥) ∈𝑎↓
𝑥↓. To prove the other side, let 𝑥′ ∈ ⋃

𝑓 (𝑥) ∈𝑎↓
𝑥↓. Then,

there exists 𝑡 ∈ 𝑋 with 𝑓 (𝑡) ∈ 𝑎↓ and 𝑥′ ⪯ 𝑡. So, supp 𝑓 (𝑡) ⊆ supp 𝑎 and
supp 𝑥′ ⊆ supp 𝑡. Since 𝑓 is order-preserving, supp 𝑓 (𝑥′) ⊆ supp 𝑓 (𝑡) and so
supp 𝑓 (𝑥′) ⊆ supp 𝑎. Thus, 𝑓 (𝑥′) ⪯ 𝑎 and so 𝑥′ ∈ 𝑓 −1(𝑎↓).

(ii) Is analogous to (i).

4 Some categorical properties of the category spNom

In the category spNom of sp-nominal sets the class of monics (left cancellable sp-
preserving maps) and the class of monomorphisms (injective sp-preserving maps)
do not coincide, see the following example, while epics are exactly surjectives, by
Theorem 4.2.

Example 4.1. The sp-preserving map 𝑓 : D2 → D
(2) ∪ {\} in Example 3.6 is

monic while it is not injective. Indeed, since 𝑓 is identity on D(2) and 𝑓 (𝑑, 𝑑) = \,
𝑓 is not injective. We show that 𝑓 is monic. To do so, take 𝑔1, 𝑔2 : 𝑋 → D2

to be sp-preserving maps with 𝑓 𝑔1 = 𝑓 𝑔2. Since Z(D2) = ∅, supp 𝑔1(𝑥) ≠ ∅
and supp 𝑔2(𝑥) ≠ ∅, for every 𝑥 ∈ 𝑋 . So, by Lemma 3.13, we have supp 𝑔1(𝑥) =
supp 𝑥 = supp 𝑔2(𝑥). Notice that, 𝑔𝑖 (𝑥) ∈ D2 implies that 𝑔𝑖 (𝑥) = (𝑑, 𝑑) or
𝑔𝑖 (𝑥) = (𝑑, 𝑑′), where 𝑖 = 1, 2 and 𝑑 ≠ 𝑑′. We have the following cases;
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Case (1): If 𝑓 𝑔1(𝑥) = 𝑓 𝑔2(𝑥) = \, then 𝑔1(𝑥) = (𝑑, 𝑑) and 𝑔2(𝑥) = (𝑑′, 𝑑′). Since
{𝑑} = supp 𝑔1(𝑥) = supp 𝑔2(𝑥) = {𝑑′}, 𝑑 = 𝑑′. So, in this case, 𝑔1(𝑥) = 𝑔2(𝑥).
Case (2): If 𝑓 𝑔1(𝑥) = 𝑓 𝑔2(𝑥) ≠ \, then 𝑔1(𝑥), 𝑔2(𝑥) ∈ D(2) . Now since 𝑓 𝑔1(𝑥) =
𝑔1(𝑥) and 𝑓 𝑔2(𝑥) = 𝑔2(𝑥), 𝑔1(𝑥) = 𝑔2(𝑥). Thus, 𝑔1 = 𝑔2.

Theorem 4.2. In the category spNom epics are exactly surjectives.

Proof. Let 𝑓 : 𝑋 → 𝑌 be an epic sp-preserving map. We show 𝑓 is surjective. On
the contrary suppose 𝑓 is not surjective. Hence, 𝑌 \ 𝐼𝑚( 𝑓 ) ≠ ∅. We define the
sp-preserving maps 𝑔1, 𝑔2 : 𝑌 → 𝑌 ∪ {\1, \2, \3} to be

𝑔1(𝑦) =


𝑦 when 𝑦 ∈ 𝐼𝑚( 𝑓 ) and 𝑦↑ ⊆ 𝐼𝑚( 𝑓 )
\3 when 𝑦 ∈ 𝐼𝑚( 𝑓 ) and 𝑦↑ ⊈ 𝐼𝑚( 𝑓 )
\1 otherwise

𝑔2(𝑦) =


𝑦 when 𝑦 ∈ 𝐼𝑚( 𝑓 ) and 𝑦↑ ⊆ 𝐼𝑚( 𝑓 )
\3 when 𝑦 ∈ 𝐼𝑚( 𝑓 ) and 𝑦↑ ⊈ 𝐼𝑚( 𝑓 )
\2 otherwise

Since 𝑔1𝑜 𝑓 = 𝑔2𝑜 𝑓 , 𝑔1 = 𝑔2 and hence, for each 𝑦 ∈ 𝑌 \ 𝐼𝑚( 𝑓 ), 𝑔1(𝑦) = 𝑔2(𝑦).
Therefore, \1 = \2, which is a contradiction.

Theorem 4.3. The category spNom is not regular.

Proof. We show that the sp-preserving map 𝑓 : D2 → D(2)∪{\}, given in Example
3.6, is not an equalizer while, by Example 4.1, it is monic. On the contrary,
suppose there exist 𝑌 ∈ spNom and two parallel sp-preserving maps 𝑔1, 𝑔2 such
that 𝑓 is an equalizer of 𝑔1, 𝑔2 : D(2) ∪ {\} → 𝑌 . Since 𝑔1𝑜 𝑓 = 𝑔2𝑜 𝑓 , we have
𝑔1𝑜 𝑓 (𝑑, 𝑑) = 𝑔2𝑜 𝑓 (𝑑, 𝑑), for every 𝑑 ∈ D. Therefore, 𝑔1(\) = 𝑔2(\). Now we
consider the zero map ℎ : {\1} → D(2) ∪ {\}, \1 ↦→ \. Since 𝑔1𝑜ℎ = 𝑔2𝑜ℎ, by
universal property of equalizer, there is a unique sp-preserving map 𝜑 : {\1} → D2,
which commutes the desired diagrams and this contradicts the fact that D2 has no
zero element.

Corollary 4.4. The category spNom is not balanced.

Proof. Consider 𝑓 : D2 → D(2) ∪ {\}, given in Example 3.6. By Example 4.1, 𝑓
is monic. Since 𝑓 is surjective, 𝑓 is epic. Therefore, 𝑓 is a bimorphism. But, since
𝑓 is not injective, it is not an isomorphism.
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In general the category spNom does not contains all of the products and
coproducts as seen in Examples 4.5 and 4.18. Here we charactrize conditions
under which products and coproducts exist.

Example 4.5. Let 𝑋1 = 𝑋2 = D. We show that there exists no coproduct of 𝑋1
and 𝑋2 in the category spNom. On the contrary, suppose that (𝑋, 𝛼1, 𝛼2) is the
coproduct of 𝑋1 and 𝑋2. Take the singleton sp-nominal set 𝑍 = {\} in which \ ∉ D
and consider the sp-preserving maps 𝑧, ] : D→ 𝑍 ¤∪D, and ]1, ]2 : D→ D × {1, 2}
defined by 𝑧(𝑑) := \, ](𝑑) := 𝑑, ]1(𝑑) := (𝑑, 1), and ]2(𝑑) := (𝑑, 2), for all 𝑑 ∈ D.
Then, since 𝑋 is coproduct, there exist unique sp-preserving maps 𝜑 and 𝜓 such
that the following diagrams commute.

D
𝛼1 //

]1
$$

𝑋

𝜑

��

D
𝛼2oo

]2
zz

D
𝛼1 //

]
!!

𝑋

𝜓

��

D
𝛼2oo

𝑧
}}

D × {1, 2} 𝑍 ¤∪D

(∗) (∗∗)

According to Diagram (∗), 𝜑(𝛼2(𝑑)) = ]2(𝑑) = (𝑑, 2) and 𝜑(𝛼1(𝑑)) = ]1(𝑑) =
(𝑑, 1), for every 𝑑 ∈ D, meaning that 𝛼1 and 𝛼2 are non-zero sp-preserving maps.
So, by Lemma 3.13, supp𝛼1(𝑑) = supp𝛼2(𝑑) = {𝑑}. By Diagram (∗∗), we
have 𝜓(𝛼2(𝑑)) = \ and 𝜓(𝛼1(𝑑)) = ](𝑑) = 𝑑. Now, supp𝛼1(𝑑) = supp𝛼2(𝑑)
implies that 𝛼1(𝑑) ⪯ 𝛼2(𝑑). Now, since 𝜓 is order preserving, 𝑑 = 𝜓(𝛼1(𝑑)) ⪯
𝜓(𝛼2(𝑑)) = \ which is a contradiction.

The following theorem determines which family of sp-nominal sets has co-
product.

Theorem 4.6. The coproduct of a family of sp-nominal sets (𝑋𝑖)𝑖∈𝐼 exists if and
only if all 𝑋𝑖’s are discrete except probably one.

Proof. (⇐) If 𝑋𝑖’s are all discrete, then one can easily see that the coproduct
is the disjoint union of 𝑋𝑖’s. Now let 𝑋𝑡 be the non-discrete member of the
family. Then we have 𝑋 𝑗 = Z(𝑋 𝑗), for all 𝑗 ≠ 𝑡 and for every sp-nominal set
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(𝐵, (𝛽𝑖 : 𝑋𝑖 → 𝐵)𝑖∈𝐼 ), we have the following commutative diagram

𝑋𝑡
]𝑡 //

𝛽𝑡
&&

⋃
𝑖∈𝐼 (𝑋𝑖 × {𝑖})

𝜑

��

𝑋 𝑗
] 𝑗
oo

𝛽 𝑗
xx

𝐵

in which ]𝑖 : 𝑋𝑖 →
⋃
𝑖∈𝐼 (𝑋𝑖 × {𝑖}) maps every 𝑥 ∈ 𝑋𝑖 to (𝑥, 𝑖), for every 𝑖 ∈ 𝐼, and

𝜑 is uniquely defined by 𝜑((𝑥, 𝑖)) = 𝛽𝑖 (𝑥), for every (𝑥, 𝑖) ∈ ⋃
𝑖∈𝐼 (𝑋𝑖 × {𝑖}). So⋃

𝑖∈𝐼 (𝑋𝑖 × {𝑖}) is the coproduct.
(⇒) Suppose (𝑋, (𝛼𝑖)𝑖∈𝐼 ) is the coproduct of (𝑋𝑖)𝑖∈𝐼 and there exists some

𝑡 ∈ 𝐼 such that 𝑋𝑡 is non-discrete. We show that 𝑋𝑖’s are discrete, for all 𝑖 ≠ 𝑡.
Since 𝑋𝑡 is non-discrete, there exists a non-zero element 𝑥𝑡 ∈ 𝑋𝑡 . On the contrary,
suppose 𝑋 𝑗 is non-discrete, for some 𝑗 ∈ 𝐼, with 𝑗 ≠ 𝑡. Suppose 𝑥 𝑗 ∈ 𝑋 𝑗 \Z(𝑋 𝑗).
Since (𝑋, (𝛼𝑖)𝑖∈𝐼 ) is coproduct, we have the following commutative diagrams;

𝑋𝑡
𝛼𝑡 //

]𝑡
''

𝑋

𝜑

��

𝑋𝑖
𝛼𝑖oo

]𝑖
vv⋃

𝑖∈𝐼 (𝑋𝑖 × {𝑖}) (∗)

𝑋𝑡
𝛼𝑡 //

ℎ𝑡 ''

𝑋

𝜓

��

𝑋𝑖
𝛼𝑖oo

ℎ𝑖vv⋃
𝑖∈𝐼 (𝑋𝑖 × {𝑖}) ∪ {\} (∗∗)

where ]𝑖’s are inclusions, ℎ𝑖 = ]𝑖 , for all 𝑖 ≠ 𝑡, and ℎ𝑡 is the zero map. According to
Diagram (∗), 𝜑(𝛼𝑡 (𝑥𝑡 )) = (𝑥𝑡 , 𝑡) and 𝜑(𝛼 𝑗 (𝑥 𝑗)) = (𝑥 𝑗 , 𝑗). So, 𝛼𝑡 (𝑥𝑡 ) and 𝛼 𝑗 (𝑥 𝑗)
are non-zero. Applying Lemma 3.13, supp𝛼𝑡 (𝑥𝑡 ) = supp 𝑥𝑡 and supp𝛼 𝑗 (𝑥 𝑗) =
supp 𝑥 𝑗 . By Diagram (∗∗), we have 𝜓(𝛼𝑡 (𝑥𝑡 )) = \ and 𝜓(𝛼 𝑗 (𝑥 𝑗)) = (𝑥 𝑗 , 𝑗).
By Lemma 3.4, there exists 𝜋 with 𝜋𝛼 𝑗 (𝑥 𝑗) ⪯ 𝛼𝑡 (𝑥𝑡 ) or 𝜋𝛼𝑡 (𝑥𝑡 ) ⪯ 𝛼 𝑗 (𝑥 𝑗). If
𝛼 𝑗 (𝜋𝑥 𝑗) ⪯ 𝛼𝑡 (𝑥𝑡 ), then we have (𝜋𝑥 𝑗 , 𝑗) = ℎ 𝑗 (𝜋𝑥 𝑗) = 𝜓(𝛼 𝑗 (𝜋𝑥 𝑗)) ⪯ 𝜓(𝛼𝑡 (𝑥𝑡 )) =
ℎ𝑡 (𝑥𝑡 ) = \ which is a contradiction. If 𝜋𝛼𝑡 (𝑥𝑡 ) ⪯ 𝛼 𝑗 (𝑥 𝑗), we can then make a
similar diagram to (∗∗), by exchanging the definitions of ℎ 𝑗 and ℎ𝑡 in Diagram
(∗∗), and get a contradiction using a similar argument.

Now we examine the existence of products, but first take note the following
corollary of Lemma 3.13.
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Corollary 4.7. If 𝑓 : 𝑋 → 𝐴 is an sp-preserving map between sp-nominal sets
with Z(𝐴) = ∅, then the following diagram is commutative.

𝑋
𝑓
//

supp
𝑋

��

𝐴

supp
𝐴||

Pf (D)

Lemma 4.8. Let (𝑃, (𝑝𝑖 : 𝑃 → 𝐴𝑖)𝑖∈𝐼 ) be a product of a family (𝐴𝑖)𝑖∈𝐼 with
Z(𝐴𝑖) = ∅ in the category spNom which is not empty. Then

(i) for all 𝑖, the following diagram is commutative.

𝑃
𝑝𝑖

//

supp
𝑃

��

𝐴𝑖

supp
𝐴𝑖||

Pf (D)

(ii) for every sp-nominal set 𝑋 with the commutative diagram

𝑋
𝑞𝑖

//

supp
𝑋

��

𝐴𝑖

supp
𝐴𝑖||

Pf (D)

there exists a unique sp-preserving ℎ : 𝑋 → 𝑃 with the following commutative
diagram.

𝑋
ℎ //

supp
𝑋

��

𝑃

supp𝑃
||

Pf (D)

Proof. (i) Follows by Corollary 4.7.
(ii) First we note that since Z(𝐴𝑖) = ∅, for each 𝑖 ∈ 𝐼, by (i), Z(𝑃) = ∅. Now

for every sp-nominal set 𝑋 with a family of sp-preserving maps (𝑞𝑖 : 𝑋 → 𝐴𝑖),
by the universal property of product, one can get a unique sp-preserving map
ℎ : 𝑋 → 𝑃 with 𝑝𝑖ℎ = 𝑞𝑖 , for every 𝑖 ∈ 𝐼. Now the result follows from (i).
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Theorem 4.9. Let 𝐴 be an sp-nominal set with Z(𝐴) = ∅ and supp
𝐴

is injetive.
Then, product of 𝐴 and 𝐴 is (𝐴, id𝐴, id𝐴).
Proof. Consider 𝑋 ∈ spNom together with the sp-preserving maps 𝑓1, 𝑓2 : 𝑋 → 𝐴.
By Corollary 3.14 (iii), we have 𝑓1 = 𝑓2. So we get the unique sp-preserving map
𝑓 = 𝑓1 : 𝑋 → 𝐴 with 𝑓 ◦ id𝐴 = 𝑓1 = 𝑓2.

Example 4.10. The product of the sp-nominal sets D and D is (D, idD, idD).
Lemma 4.11. Let 𝑓 : 𝑋 → D(𝑛) be an sp-preserving map. Then,

(i) for every 𝑥 ∈ 𝑋 , |supp 𝑥 | = 𝑛.
(ii) 𝑋 is isomorphic to D(𝑛) , if 𝑋 = Perm(D)𝑥, for some 𝑥 ∈ 𝑋 .
(iii) 𝑋 is isomorphic to a disjoint union of D(𝑛) .

Proof. (i) Since Z(D(𝑛) ) = ∅, by Lemma 3.13, supp 𝑥 = supp 𝑓 (𝑥) =
supp (𝑑1, . . . , 𝑑𝑛) = {𝑑1, . . . , 𝑑𝑛}.

(ii) We show that 𝑓 is bijective. But first we note that 𝑓 (𝜋𝑥) = (𝜋𝑑1, . . . , 𝜋𝑑𝑛),
for every 𝜋 ∈ Perm(D), in which (𝑑1, . . . , 𝑑𝑛) = 𝑓 (𝑥). Now let 𝑓 (𝜋𝑥) = 𝑓 (𝛿𝑥).
Then (𝜋𝑑1, . . . , 𝜋𝑑𝑛) = (𝛿𝑑1, . . . , 𝛿𝑑𝑛), and hence, 𝜋−1𝛿 ∈ Fix ({𝑑1, . . . , 𝑑𝑛}) =
Fix (supp 𝑥). Therefore, 𝜋−1𝛿𝑥 = 𝑥 and hence, 𝛿𝑥 = 𝜋𝑥. The map 𝑓 is also onto,
since for every {𝑏1, . . . , 𝑏𝑛} ∈ D(𝑛) , 𝑓 ((𝑑1𝑏1)𝑥, · · · , (𝑑𝑛𝑏𝑛)𝑥) = (𝑏1, . . . , 𝑏𝑛).

(iii) Since 𝑋 as a nominal set is the disjoint union of its orbits, by (ii), we are
done.

We mention the following remark and terminology used in Theorem 4.13 with
considering ¤⋃

𝑖∈𝐼D
(𝑛) = D(𝑛) × 𝐼.

Remark 4.12. (i) If 𝑃 is the product of a family of (D(𝑛) )𝑖∈𝐼 , then 𝑃 is a disjoint
union of D(𝑛) ’s, by Lemma 4.11 (iii).

(ii) Since the nominal set D(𝑛) is transitive, for every two ele-
ments (𝑑1, 𝑑2, . . . , 𝑑𝑛), (𝑏1, 𝑏2, . . . , 𝑏𝑛) ∈ D(𝑛) we have (𝑏1, 𝑏2, . . . , 𝑏𝑛) =
(𝑑1 𝑏1) (𝑑2 𝑏2) · · · (𝑏𝑛 𝑑𝑛) (𝑑1, 𝑑2, . . . , 𝑑𝑛), every equivariant map 𝜎 : D(𝑛) →
D(𝑛) is bijective and, by [8, Lemma 2 · 12], it is sp-preserving.

(iii) Since the nominal set D(𝑛) is cyclic, the set 𝑆 = {𝜎 : D(𝑛) → D(𝑛) :
𝜎 is equivariant} has 𝑛! elements, and so one can cosider S={𝜎1, . . . , 𝜎𝑛!}.

(iv) We define 𝜑 : ¤⋃
𝑖∈𝐼D

(𝑛) → D(𝑛) by 𝜑((𝑑1, . . . , 𝑑𝑛), 𝑖) :=
(𝑑𝜎𝑖 (1) , . . . , 𝑑𝜎𝑖 (𝑛) ) and denote it by 𝜑((𝑑1, . . . , 𝑑𝑛), 𝑖) = 𝜎𝑖 (𝑑1, . . . , 𝑑𝑛), where
𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑛!} and 𝜎𝑖 ∈ 𝑆. One can easily check that 𝜑 is sp-preserving
map.
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(v) It is clear that 𝜋1 : D(𝑛) × 𝐼 → D(𝑛) by 𝜋1((𝑑1, . . . , 𝑑𝑛), 𝑖) = (𝑑1, . . . , 𝑑𝑛),
for all 𝑖 ∈ 𝐼, is an sp-preserving map.

(vi) The map 𝑓 : D(𝑛) × 𝐽 → D(𝑛) is an sp-preserving if and only if there exists
𝜎 ∈ 𝑆 with 𝑓 ((𝑑1, . . . , 𝑑𝑛), 𝑗) = 𝜎(𝑑1, . . . , 𝑑𝑛).

Theorem 4.13. The triple (𝑃 = ¤⋃
𝑖∈𝐼D

(𝑛) , 𝜋1, 𝜑) is the product of D(𝑛) and D(𝑛) ,
where 𝜑, 𝜋1 are defined in Remark 4.12 (iv, v) and 𝐼 = {1, 2, . . . , 𝑛!}.

Proof. Consider (𝑋, 𝑓 , 𝑔), in which 𝑋 is an sp-nominal set and 𝑓 , 𝑔 : 𝑋 → D(𝑛)

are sp-preserving maps. Then, by Lemma 4.11 (iii) and since D(𝑛) is cyclic,
𝑋 = ¤⋃

𝐽
Perm(D)𝑥 𝑗 . If 𝑓 (𝑥 𝑗) = (𝑏1, . . . , 𝑏𝑛) and 𝑔(𝑥 𝑗) = (𝑐1, . . . , 𝑐𝑛), for each

𝑗 ∈ 𝐽, then since, by Lemma 3.13, we have {𝑏1, · · · , 𝑏𝑛} = supp 𝑓 (𝑥 𝑗) = supp 𝑥 𝑗 =
supp 𝑔(𝑥 𝑗) = {𝑐1, . . . , 𝑐𝑛}, there exists 𝜎𝑘 𝑗 ∈ 𝑆 with 𝜎𝑘 𝑗 𝑓 |Perm(D)𝑥 𝑗

= 𝑔 |Perm(D)𝑥 𝑗
.

Now we consider ℎ : 𝑋 → 𝑃 to be the equivariant map defined by ℎ(𝑥 𝑗) =
( 𝑓 (𝑥 𝑗), 𝑘 𝑗). Then we have 𝑓 = 𝜋1ℎ and 𝜑ℎ = 𝑔, means the desired diagrams
commutes. Also uniqueness follows from the definition of ℎ.

Remark 4.14. (i) For given sp-nominal sets 𝑋 and𝑌 with Z(𝑋) = Z(𝑌 ) = ∅, if 𝑃
is the non-empty product of 𝑋 and 𝑌 then applying Lemma 3.13, for every 𝑡 ∈ 𝑃,
there exist 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 with supp 𝑡 = supp 𝑥 = supp 𝑦. Note that, the product
of cyclic nominal sets Perm(D)𝑥 and Perm(D)𝑥′ with |supp 𝑥 | ≠ |supp 𝑥′ | is empty
nominal set.

(ii) Conisder sp-nominal sets 𝑋 = Perm(D)𝑥 and 𝑋 ′ = Perm(D)𝑥′∪{\} where
𝑥, 𝑥′ are non-zero and |supp 𝑥 | ≠ |supp 𝑥′ |. If 𝑓 : 𝑌 → 𝑋 and 𝑔 : 𝑌 → 𝑋 ′ are
sp-preserving maps, then applying Lemma 3.13, one can see that 𝑔 must be a zero
map.

(iii) Suppose 𝑋 and 𝑌 are two non-discrete sp-nominal sets with |supp 𝑥 | ≠
|supp 𝑦 |, for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Let 𝑝, 𝑞 : 𝑍 → 𝑋 ¤∪𝑌 be two sp-preserving maps.
Then, 𝑝(𝑧) ∈ 𝑋 ⇔ 𝑞(𝑧) ∈ 𝑋 .

Example 4.15. The product ofD(𝑛) andD(𝑘 )∪{\}, with 𝑘 ≠ 𝑛, is (D(𝑛) , 𝑧, idD(𝑛) ),
in which z : D(𝑛) → D(𝑘 ) ∪ {\} defined by 𝑧((𝑑1, 𝑑2, . . . , 𝑑𝑛)) = \, for all
(𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ D(𝑛) . Since, for any 𝑋 ∈ spNom together with sp-preserving
maps 𝑓1 : 𝑋 → D(𝑛) , and 𝑓2 : 𝑋 → D(𝑘 ) ∪ {\}, by Remark 4.14 (ii), 𝑓2 is a zero
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map, and we have the following commutative diagram.

𝑋

D(𝑛) D(𝑛) D(𝑘 ) ∪ {\}
𝑓 1 𝑓2

𝑓1

id
D(𝑛)

𝑧

Theorem 4.16. Suppose 𝑋 and𝑌 are two sp-nominal sets with |supp 𝑥 | ≠ |supp 𝑦 |,
for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Let Z(𝑋) = Z(𝑌 ) = ∅ and (𝑃, 𝑝1, 𝑝2) be the product of
𝑋 and 𝑋 and (𝑄, 𝑞1.𝑞2) be the product of 𝑌 and 𝑌 . Then, 𝑃 ¤∪𝑄 is the product of
𝑋 ¤∪𝑌 and 𝑋 ¤∪𝑌 .

Proof. Consider the diagram

𝑍

𝑋 ¤∪𝑌 𝑃 ¤∪𝑄 𝑋 ¤∪𝑌,

𝑔 𝑓

𝑞 𝑝

in which 𝑝(𝑎) =
{
𝑝1(𝑎) 𝑎 ∈ 𝑃
𝑞1(𝑎) 𝑎 ∈ 𝑄 and 𝑞(𝑎) =

{
𝑝2(𝑎) 𝑎 ∈ 𝑃
𝑞2(𝑎) 𝑎 ∈ 𝑄 . Then the follow-

ing cases may occur.
Case (1): If 𝑓 (𝑍) ⊆ 𝑋 , then by Remark 4.14 (iii), 𝑔(𝑍) ⊆ 𝑋 and we get the
commutative diagram

𝑍

𝑋 𝑃 𝑋

𝑔 𝑓∃!ℎ1

𝑞1 𝑝1
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by the universal property of product which implies the commutative diagram

𝑍

𝑋 ¤∪𝑌 𝑃 ¤∪𝑄 𝑋 ¤∪𝑌 .

𝑔 𝑓
∃!ℎ

𝑞 𝑝

in which ℎ = ℎ1.
Case (2): If 𝑓 (𝑍) ⊆ 𝑌 , then 𝑔(𝑧) ⊆ 𝑌 , by Remark 4.14 (iii), and the result is proved
analogous to Case (1).
Case (3): If 𝑓 (𝑍) ∩ 𝑋 ≠ ∅ and 𝑓 (𝑍) ∩ 𝑌 ≠ ∅, then we have 𝑍 = 𝑍1 ¤∪𝑍2 in which
𝑍1 = {𝑧 ∈ 𝑍 | 𝑓 (𝑧) ∈ 𝑋} and 𝑍2 = {𝑧 ∈ 𝑍 | 𝑓 (𝑧) ∈ 𝑌 }. Therefore, we get
ℎ1 : 𝑍1 → 𝑃, by Case (1) and ℎ2 : 𝑍2 → 𝑄 by Case (2). Now we define the
sp-preserving map. Therefore, ℎ : 𝑍 → 𝑃 ¤∪𝑄 by

ℎ(𝑧) =
{
ℎ1(𝑧) 𝑧 ∈ 𝑍1

ℎ2(𝑧) 𝑧 ∈ 𝑍2,

which commutes the desired diagram.

Corollary 4.17. (i) The product of D2 and D2 exists.
(ii) The product of D3 and D3 exists.
(iii) The product of D𝑛 and D𝑛 exists.
(iv) The product of D𝑛 and D(𝑘 ) with 𝑘 ≤ 𝑛 exists.
(v) The product of D𝑛 and D𝑘 with 𝑘 ≤ 𝑛 exists.

Proof. (i) Notice that, D2 = {(𝑑, 𝑑) | 𝑑 ∈ D} ¤∪D(2) where {(𝑑, 𝑑) | 𝑑 ∈ D} � D.
Let 𝑋 = {(𝑑, 𝑑) | 𝑑 ∈ D} and 𝑌 = D(2) . By Theorem 4.13, the product of 𝑋 and
𝑋 , and the product of 𝑌 and 𝑌 exist. So, applying Theorem 4.16, the product of
D2 and D2 exists. Indeed, the product D2 and D2 is (D(2) × {1, 2} ∪ D, 𝜌1, 𝜌2) in
which 𝜌 𝑗 (𝑑) = (𝑑, 𝑑), for 𝑗 = 1, 2 and

𝜌 𝑗 ((𝑑1, 𝑑2), 𝑖) =


(𝑑1, 𝑑2) 𝑖 = 1, 2, 𝑗 = 1
(𝑑1, 𝑑2) 𝑖 = 1, 𝑗 = 2
(𝑑2, 𝑑1) 𝑖 = 2, 𝑗 = 2.
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(ii) We have

D3 = {(𝑑, 𝑑, 𝑑) | 𝑑 ∈ D} ¤∪{(𝑑, 𝑑, 𝑑′) | 𝑑 ≠ 𝑑′ ∈ D} ¤∪{(𝑑, 𝑑′, 𝑑) | 𝑑 ≠ 𝑑′ ∈ D}

¤∪{(𝑑′, 𝑑, 𝑑) | 𝑑 ≠ 𝑑′ ∈ D} ¤∪D(3) .

So, D3 � D ¤∪(D(2) × {1, 2, 3}) ¤∪D(3) . By Theorem 4.13, the product of D(𝑖) and
D(𝑖) exists, for 𝑖 = 1, 2, 3. So, applying Theorem 4.16, the product of D3 and D3

exists. Indeed, the product of D3 and D3 is (( ¤∪6
𝑖=1D

(3) × {𝑖}) ∪ ( ¤∪9
𝑖=1D

(2) × {𝑖}) ∪
D, 𝜌1, 𝜌2), in which



𝜌1(𝑑) = (𝑑, 𝑑, 𝑑)
𝜌1((𝑑1, 𝑑2), 𝑖) = ((𝑑1, 𝑑2), 𝑗) 𝑗 ∈ {1, 2, 3}, 𝑖 ∈ {1, . . . , 6}
𝜌1((𝑑1, 𝑑2, 𝑑3), 𝑖) = (𝑑1, 𝑑2, 𝑑3) 𝑖 ∈ {1, . . . , 6}

and



𝜌2(𝑑) = (𝑑, 𝑑, 𝑑)
𝜌2((𝑑1, 𝑑2), 𝑖) = ((𝑑𝜎

𝑖 (1) , 𝑑𝜎𝑖 (2) ), 𝑗) 𝑗 ∈ {1, 2, 3}, 𝜎𝑖 ∈ 𝑆2

𝜌2((𝑑1, 𝑑2, 𝑑3), 𝑖) = (𝑑𝜎
𝑖 (1) , 𝑑𝜎𝑖 (2) , 𝑑𝜎𝑖 (3) ) 𝜎𝑖 ∈ 𝑆3

(iii) Similar to (i) and (ii), follows by Theorems 4.13 and 4.16.
(iv) Note that, D𝑛 is isomorphic to a disjoint union of D(𝑖) ’s where 𝑖 =

1, 2, 3, . . . , 𝑛. Let D𝑛 = ¤⋃
𝑖
(D(𝑖) × 𝐼𝑖). By Remark 4.14(i), D(𝑘 ) and D(𝑖) when

𝑖 ≠ 𝑘 have no product. So, the product of D(𝑘 ) and D𝑛 is equal to the product of
D(𝑘 ) and D(𝑘 ) × 𝐼𝑘 which exists by Theorems 4.16 and 4.13.

(v) Suppose D𝑘 = ¤⋃
𝑖
(D(𝑖) × 𝐼𝑖 ). By (iv), the product of D𝑛 and D(𝑖) exists.

So, applying Theorems 4.16 and 4.13 we get the result.

Example 4.18. Let 𝑋1 = D and 𝑋2 = D∪{\}. We show that there exists no product
of 𝑋1 and 𝑋2 in the category spNom. On the contrary, suppose that (𝑃, 𝜌1, 𝜌2) is
the product of 𝑋1 and 𝑋2. Then, by the universal property of product, we have the
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following commutative diagrams

D
id

~~

𝜑

��

]

$$

D 𝑃𝜌1
oo

𝜌2
// D ∪ {\}

(∗)

D
id

}}

𝜓

��

z

$$

D 𝑃𝜌1
oo

𝜌2
// D ∪ {\}

(∗∗)

in which ] is inclusion and z is the zero sp-preserving map. By Diagram (∗)
we have 𝜌1(𝜑(𝑑)) = id(𝑑) = 𝑑 and 𝜌2(𝜑(𝑑)) = ](𝑑) = 𝑑, for every 𝑑 ∈ D,
meaning that 𝜌1 and 𝜌2 are non-zero sp-preserving maps. So, by Lemma 3.13,
supp 𝜌1(𝜑(𝑑)) = supp 𝜌2(𝜑(𝑑)) = {𝑑}. By Diagram (∗∗), we have 𝜌2(𝜓(𝑑)) = \
and 𝜌1(𝜓(𝑑)) = id(𝑑) = 𝑑. Since, supp 𝜑(𝑑) = supp𝜓(𝑑), 𝜑(𝑑) ⪯ 𝜓(𝑑). But
𝜌2(𝜑(𝑑)) ⪯̸ 𝜌2(𝜓(𝑑)) which is a contradiction.

Theorem 4.19. Let 𝑋 and𝑌 be strong nominal sets andZ(𝑋) = Z(𝑌 ) = ∅. Also let
𝑋 = ¤⋃

𝑖∈𝐼Perm(D)𝑥𝑖 and 𝑌 = ¤⋃
𝑗∈𝐽Perm(D)𝑦 𝑗 . Then 𝑃 = (( ¤⋃𝑖∈𝐼 (Perm(D)𝑥𝑖 ×

{𝑦 ∈ 𝑌 | supp 𝑦 = supp 𝑥𝑖}), 𝜌1, 𝜌2), with the action 𝜋(𝑥, 𝑦) = (𝜋𝑥, 𝑦), for all
𝜋 ∈ Perm(D) and (𝑥, 𝑦) ∈ 𝑃, is the product of 𝑋 and 𝑌 in spNom, in which
𝜌1 is projection map on the first component and 𝜌2 : 𝑃 → 𝑌 is defined by
𝜌2(𝜋𝑥𝑖 , 𝑦) = 𝜋𝑦.

Proof. First we note that supp (𝑥, 𝑦) = supp 𝑥, for every (𝑥, 𝑦) ∈ 𝑃. Hence, 𝑃 is
a nominal set and 𝜌1 is an sp-preserving map. Also 𝜌2 is well-defined, since if
(𝜋𝑥𝑖 , 𝑦) = (𝜋1𝑥𝑖 , 𝑦) with supp 𝑥𝑖 = supp 𝑦. Hence, 𝜋−1

1 𝜋𝑥𝑖 = 𝑥𝑖 . Since supp 𝑥𝑖 =
supp 𝑦, by [8, Theorem 2.7], 𝜋−1

1 𝜋𝑦 = 𝑦. So 𝜌2 is well-defined. The map 𝜌2 is
also sp-preserving. Indeed, if (𝜋𝑥𝑖 , 𝑦) ⪯ (𝜋1𝑥 𝑗 , 𝑦

′), for some (𝜋𝑥𝑖 , 𝑦), (𝜋1𝑥 𝑗 , 𝑦
′) ∈

𝑃, then supp 𝜋𝑥𝑖 ⊆ supp 𝜋1𝑥 𝑗 . Since supp 𝑥𝑖 = supp 𝑦 and supp 𝑥 𝑗 = supp 𝑦′,
𝜋supp 𝑦 ⊆ 𝜋1supp 𝑦′ and we get the result.

Now consider 𝑁 ∈spNom together with sp-preserving maps 𝑓1 : 𝑁 → 𝑋 and
𝑓2 : 𝑁 → 𝑌 . Since Z(𝑋) = Z(𝑌 ) = ∅, by Lemma 3.13, supp 𝑛 = supp 𝑓1(𝑛) =
supp 𝑓2(𝑛), for all 𝑛 ∈ 𝑁 . Define 𝜑 : 𝑁 → 𝑃 by 𝑛 ↦→ ( 𝑓1(𝑛), 𝜋−1 𝑓2(𝑛)) in which
𝑓1(𝑛) = 𝜋𝑥𝑖 , for some 𝜋 ∈ Perm(D) and 𝑖 ∈ 𝐼. Since supp 𝑥𝑖 = 𝜋−1supp 𝑓2(𝑛), we
have (𝑥𝑖 , 𝜋−1 𝑓2(𝑛)) ∈ 𝑃, and hence 𝜑(𝑛) = (𝜋𝑥𝑖 , 𝜋−1 𝑓2(𝑛)) = 𝜋(𝑥𝑖 , 𝜋−1 𝑓2(𝑛)) ∈
𝑃. Since 𝑓1 preserves support-preorder, so is 𝜑. The map 𝜑 is equivariant, because
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for every 𝜋 ∈ Perm(D) and 𝑛 ∈ 𝑁 we have

𝜑(𝜋1𝑛) = ( 𝑓1(𝜋1𝑛), (𝜋1𝜋)−1 𝑓2(𝜋1𝑛))
= (𝜋1 𝑓1(𝑛), 𝜋−1𝜋−1

1 𝑓2(𝜋1𝑛))
= (𝜋1 𝑓1(𝑛), 𝜋−1𝜋−1

1 𝜋1 𝑓2(𝑛))
= (𝜋1 𝑓1(𝑛), 𝜋−1 𝑓2(𝑛))
= 𝜋1( 𝑓1(𝑛), 𝜋−1 𝑓2(𝑛))
= 𝜋1𝜑(𝑛).

Also 𝜌1𝑜𝜑(𝑛) = 𝑓1(𝑛) and 𝜌2𝑜𝜑(𝑛) = 𝜌2( 𝑓1(𝑛), 𝜋−1 𝑓2(𝑛)) = 𝜋𝜋−1 𝑓2(𝑛) = 𝑓2(𝑛).
One can easily check that 𝜑 is the unique sp-preserving map with 𝜌1𝜑 = 𝑓1 and
𝜌2𝜑 = 𝑓2.

Given arbitrary 𝑋1, 𝑋2 ∈ spNom, if at least one of 𝑋1 or 𝑋2 is discrete then one
can easily see the product of 𝑋1 and 𝑋2 is (𝑋1 × 𝑋2, 𝜋1, 𝜋2). In the following we
characterize conditions under which the product of non-discrete sp-nominal sets
exists.

Theorem 4.20. The product of non-discrete nominal sets 𝑋 and 𝑌 exists if and
only if at least one of 𝑋 or 𝑌 has no zero element, and if one of 𝑋 or 𝑌 has some
zero element(s), the condition {supp 𝑥 | 𝑥 ∈ 𝑋} ∩ {supp 𝑦 | 𝑦 ∈ 𝑌 } = ∅ is required
for the product to exist.

Proof. (⇒) Suppose Z(𝑋) ≠ ∅. We show that the existence of product implies
Z(𝑌 ) = ∅. On the contrary, suppose thatZ(𝑌 ) ≠ ∅ and \1 ∈ Z(𝑋) and \2 ∈ Z(𝑌 ),
and (𝑃, 𝜌1, 𝜌2) is the product of 𝑋 and 𝑌 in spNom. Consider the sp-preserving
maps z1 : 𝑋 → 𝑌 defined by z1(𝑥) = \2, for all 𝑥 ∈ 𝑋 , and z2 : 𝑌 → 𝑋 defined by
z2(𝑦) = \1, for all 𝑦 ∈ 𝑌 . Then, by the universal property of product, we have the
following commutative diagrams.

𝑋
id

��

∃!𝜑
��

z1

��

𝑋 𝑃𝜌1
oo

𝜌2
// 𝑌

𝑌
z2

��

∃!𝜓
��

id

��

𝑋 𝑃𝜌1
oo

𝜌2
// 𝑌

Then since 𝜌1(𝜑(𝑥)) = id(𝑥) = 𝑥, for every 𝑥 ∈ 𝑋 , we have 𝜌1 is a non-
zero sp-preserving map. Analogously, one can see that 𝜌2 is a non-zero sp-
preserving map. By the assumption we can take 𝑥 ∈ 𝑋 \ Z(𝑋) and 𝑦 ∈ 𝑌 \ Z(𝑌 ).
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Suppose |supp 𝑥 | ≤ |supp 𝑦 |. It can be assumed supp 𝑥 ⊆ supp 𝑦 without loss
of generality. So, by Lemma 3.13, supp 𝜌1(𝜑(𝑥)) = supp 𝜑(𝑥) = supp 𝑥 and
supp 𝜌2(𝜓(𝑦)) = supp𝜓(𝑦) = supp 𝑦. Hence, 𝜑(𝑥) ⪯ 𝜓(𝑦). But, by the above
commutative diagrams, 𝜌1(𝜑(𝑥) ⪯̸ 𝜌1(𝜓(𝑦)) which is a contradiction. Hence,
Z(𝑌 ) = ∅.

Now we show that in the case Z(𝑋) ≠ ∅, Z(𝑌 ) = ∅, the existence of product
implies {supp 𝑥 | 𝑥 ∈ 𝑋} ∩ {supp 𝑦 | 𝑦 ∈ 𝑌 } = ∅. On the contrary, suppose that
there are 𝑥1 ∈ 𝑋 and 𝑦1 ∈ 𝑌 with supp 𝑥1 = supp 𝑦1. Since Z(𝑌 ) = ∅, 𝑥1 ∉ Z(𝑋).
Consider the sp-preserving maps 𝑧, 𝑓 : 𝑌 → 𝑋 defined by 𝑧(𝑦) = \1, for all 𝑦 ∈ 𝑌 ,
and

𝑓 (𝑦) =
{
𝜋𝑥1 when 𝑦 = 𝜋𝑦1 ∈ Perm(D)𝑦1

\1 otherwise

Then since 𝑃 is product, we get the following commutative diagrams

𝑌
𝑧

��

∃!𝜑
��

id

��

𝑋 𝑃𝜌1
oo

𝜌2
// 𝑌

𝑌
𝑓

��

∃!𝜓
��

id

��

𝑋 𝑃𝜌1
oo

𝜌2
// 𝑌

which implies 𝜌2(𝜑(𝑦1)) = id(𝑦1) = 𝑦1 and 𝜌1(𝜓(𝑦1)) = 𝑓 (𝑦1) = 𝑥1. Since
𝜌1(𝜑(𝑦1)) = \1 and 𝜌1(𝜓(𝑦1)) = 𝑥1, 𝜓(𝑦1) ≠ 𝜑(𝑦1). So, by Lemma 3.13,
supp 𝜌2(𝜑(𝑦1)) = supp 𝜑(𝑦1) = supp 𝑦1 and supp 𝜌1(𝜓(𝑦1)) = supp𝜓(𝑦1) =
supp 𝑦1. Hence, 𝜓(𝑦1) ⪯ 𝜑(𝑦1) but 𝜌1(𝜓(𝑦1)) ⪯̸ 𝜌1(𝜑(𝑦1)) which is a contradic-
tion.

(⇐) If Z(𝑋) = Z(𝑌 ) = ∅, then Theorem 4.19 implies the result. Now let
Z(𝑌 ) = ∅ and {supp 𝑥 | 𝑥 ∈ 𝑋} ∩ {supp 𝑦 | 𝑦 ∈ 𝑌 } = ∅. Then we show that
(⋃\𝑖∈Z(𝑋) (𝑌 × {𝑖}), 𝜋, 𝑧), in which 𝜋 :

⋃
\𝑖∈Z(𝑋) (𝑌 × {𝑖}) → 𝑌 defined by

𝜋((𝑦, 𝑖)) := 𝑦 and 𝑧 :
⋃
\𝑖∈Z(𝑋) (𝑌 × {𝑖}) → 𝑋 defined by 𝑧((𝑦, 𝑖)) := \𝑖 , for

every (𝑦, 𝑖) ∈ ⋃
\𝑖∈Z(𝑋) (𝑌 × {𝑖}), is the product of 𝑋1 and 𝑋2. To do so, consider

𝐴 ∈ spNom together with sp-preserving maps 𝑓 : 𝐴 → 𝑋 and 𝑔 : 𝐴 → 𝑌 .
Since Z(𝑌 ) = ∅, by Lemma 3.13, supp 𝑎 ≠ ∅ and supp 𝑎 = supp 𝑔(𝑎), for all
𝑎 ∈ 𝐴. Also since {supp 𝑥 | 𝑥 ∈ 𝑋} ∩ {supp 𝑦 | 𝑦 ∈ 𝑌 } = ∅, Lemma 3.13 implies
that 𝑓 (𝑎) ∈ Z(𝑋), for all 𝑎 ∈ 𝐴. We define 𝜑 : 𝐴 → ¤⋃

𝑖∈Z(𝑋) (𝑌 × {𝑖}) to be
𝜑(𝑎) = (𝑔(𝑎), 𝑖), in which 𝑓 (𝑎) = \𝑖 ∈ Z(𝑋), for every 𝑎 ∈ 𝐴. Since 𝑔 is an
sp-preserving map and 𝑓 (𝑎) ∈ Z(𝑋), for all 𝑎 ∈ 𝐴, the map 𝜑 is sp-preserving
making the desired diagram commute.



On nominal sets with support-preorder 165

5 Nominal space

Each nominal set 𝑋 can be considered as a topological space with the support
segment topology (or simply, support topology) arised from 𝑆 = {𝑥↓, 𝑥↑ | 𝑥 ∈ 𝑋}
as the subbasis. The nominal set with the support topology, (𝑋,S), is called
a nominal space. This section is devoted to study the topological properties of
nominal spaces.

Example 5.1. According to Example 3.2,
(i) the support topology on D is discrete.
(ii) the support topologies on Pcof (D) and Pf (D) are also discrete. Indeed, for

each 𝐴 ∈ Pcof (D), 𝐴↑∩𝐴↓ = {𝐴′ ∈ Pcof (D) | supp 𝐴′ = supp 𝐴} = {𝐴}. Similarly
one can show that the nominal space Pf (D) is discrete.

(iii) the support topology on Pfs (D) is non-discrete. Because for each 𝐴 ∈
Pfs (D), 𝐴↑ ∩ 𝐴↓ = {𝐴′ ∈ Pfs (D) | supp 𝐴′ = supp 𝐴} = {𝐴, 𝐴𝑐}.

Definition 5.2. A congruence relation 𝜌 on 𝑋 saturates 𝐿 ⊆ 𝑋 if the condition
𝑢 ∈ 𝐿 and 𝑢𝜌𝑣 imply 𝑣 ∈ 𝐿.

Lemma 5.3. Let 𝑋 be a nominal space and𝑈 ∈ S. Then, ∼ saturates𝑈.

Proof. Let 𝑥 ∈ 𝑈 and 𝑥 ∼ 𝑦. Then, since 𝑈 =
⋃

𝑖∈𝐼
⋂

𝑗∈𝐽 𝑉𝑖 𝑗
, in which 𝐽 is finite,

there exists 𝑖 ∈ 𝐼 such that for all 𝑗 ∈ 𝐽 we have 𝑥 ∈ 𝑉𝑖 𝑗
. Notice that, 𝑉𝑖 𝑗

= 𝑥𝑖 𝑗 ↓ or

𝑉𝑖 𝑗
= 𝑥𝑖 𝑗

↑. Assume 𝑉𝑖 𝑗
= 𝑥𝑖 𝑗 ↓ (𝑉𝑖 𝑗

= 𝑥↑𝑖 𝑗 ). We show that 𝑦 ∈ 𝑉𝑖 𝑗
. Indeed, since

𝑦 ⪯ 𝑥 and 𝑥 ⪯ 𝑦, we have 𝑦 ⪯ 𝑥 ⪯ 𝑥𝑖 𝑗 (𝑥𝑖 𝑗 ⪯ 𝑥 ⪯ 𝑦). So 𝑦 ⪯ 𝑥𝑖 𝑗 (𝑥𝑖 𝑗 ⪯ 𝑦) and so
𝑦 ∈ 𝑉𝑖 𝑗

(𝑦 ∈ 𝑉𝑖 𝑗
). Thus, 𝑦 ∈ 𝑈.

Theorem 5.4. Let 𝑋 be a nominal space . Then,
(i) if 𝑥 ∈ 𝑈 ∈ S, then 𝑥↑ ∩ 𝑥↓ ⊆ 𝑈.
(ii) if 𝑥 ∈ 𝐹 and 𝐹 is closed, then 𝑥↑ ∩ 𝑥↓ ⊆ 𝐹.

Proof. (i) Let 𝑦 ∈ 𝑥↑ ∩ 𝑥↓. Then, 𝑦 ⪯ 𝑥 and 𝑥 ⪯ 𝑦 and so 𝑥 ∼ 𝑦. Now, applying
Lemma 5.3, 𝑦 ∈ 𝑈.

(ii) Let 𝑦 ∈ 𝑥↑ ∩ 𝑥↓. Then, 𝑦 ∼ 𝑥. Assume 𝑦 ∉ 𝐹. So, 𝑦 ∈ 𝑋 \ 𝐹. Since 𝑋 \ 𝐹
is open and 𝑥 ∼ 𝑦, by (i) 𝑥 ∈ 𝑋 \ 𝐹. Which is a contradiction.

Corollary 5.5. Let 𝑋 be a nominal set. Then 𝑥/∼= 𝑥↑ ∩ 𝑥↓ is the smallest open set
containing 𝑥.
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Corollary 5.6. (i) If 𝑋 is a nominal space, then 𝑥↓ (𝑥↑) is clopen.
(ii) If𝑈 is clopen, then𝑈 =

⋃
𝑦∈𝑈 (𝑦↑ ∩ 𝑦↓).

(iii) If𝑈 ∈ S, then𝑈 is clopen.

Proof. (i) Follows from Proposition 3.18(ii, iii).
(ii) Follows from Theorem 5.4(i, ii).
(iii) If 𝑈 ∈ S, then 𝑋 \ 𝑈 is closed and so by (ii) it is a (finitely supported)

union of open subsets of 𝑋 . Thus, 𝑋 \𝑈 is open and so𝑈 is closed.

Theorem 5.7. Let 𝑋 and 𝑌 be two sp-nominal sets. Then every sp-preserving map
𝑓 : 𝑋 → 𝑌 is continuous.

Proof. Applying Lemma 3.20, we have

𝑓 −1(𝑎↑ ∩ 𝑎↓) = 𝑓 −1(𝑎↑) ∩ 𝑓
−1 (𝑎↓) = [

⋃
𝑓 (𝑥) ∈𝑎↑

𝑥↑] ∩ [
⋃

𝑓 (𝑥) ∈𝑎↓

𝑥↓] .

So, 𝑓 −1(𝑎↑ ∩ 𝑎↓) is open in 𝑋 , for all 𝑎 ∈ 𝑌 . Now, by Corollary 5.6, we get the
result.

The following example shows that the converse of Theorem 5.7 does not hold.

Example 5.8. Take 𝑓 : D2 → D ¤∪{\} to be the equivariant map defined by

𝑓 (𝑑, 𝑑′) =
{
𝑑 𝑑 = 𝑑′

\ 𝑑 ≠ 𝑑′.

Since support topology of D is discrete, the least open sets of D ¤∪{\} are singleton
sets. Now we have

𝑓
−1 ({𝑑}) = (𝑑, 𝑑)↓, 𝑓

−1 ({\}) = D(2)
=

⋃
𝑑≠𝑑′

(𝑑, 𝑑′)↑,

and hence, 𝑓 is continuous. On the other hand, we have (𝑑, 𝑑) ⪯ (𝑑, 𝑑1) while
𝑓 (𝑑, 𝑑) ⪯̸ 𝑓 (𝑑, 𝑑1), that is, 𝑓 is not an sp-preserving map.

Example 5.9. Let 𝑋 be a nominal space. Then, by applying Example 3.6 (ii)
and Theorem 5.7, the support map supp : 𝑋 → Pf (D), mapping 𝑥 ↦→ supp 𝑥, is
continuous.
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In the sequal of this section we examine separation axioms and describe com-
pact nominal spaces. Among many separation axioms that can be imposed on
topological spaces, here we discuss the “Hausdorff condition” (T2). Because it
implies the uniqueness of limits of sequences, nets, and filters. We first note that
nominal spaces can be Hausdorff or not, see Examples 5.11 and 5.12. Therefore,
we seek to characterize those nominal spaces that are Hausdorff. To do so, we first
recall the following definition.

Definition 5.10. A topological space 𝑋 is called

• 𝑇0 if for every pair of points, there exists at least one open set that contains
one but not the other; that is, if 𝑥1 ≠ 𝑥2 ∈ 𝑋 then there is an open set𝑈 with
𝑥1 ∈ 𝑈 and 𝑥2 ∉ 𝑈.

• 𝑇1 if for every pair of points, there exist open sets that each of which contains
one but not the other; that is, if 𝑥1 ≠ 𝑥2 ∈ 𝑋 then there are open sets 𝑈1 and
𝑈2 with 𝑥1 ∈ 𝑈1, 𝑥2 ∉ 𝑈1, and 𝑥2 ∈ 𝑈2, 𝑥1 ∉ 𝑈2.

• 𝑇2 or Hausdorff if every pair of points can be separated by open sets; that is,
if 𝑥1 ≠ 𝑥2 ∈ 𝑋 then there are disjoint open sets 𝑈1 and 𝑈2 with 𝑥1 ∈ 𝑈1 and
𝑥2 ∈ 𝑈2.

• normal if every disjoint pair of closed sets can be separated by open sets;
that is, if 𝐴1 and 𝐴2 are disjoint closed subsets of 𝑋 then there are disjoint
open sets𝑈1 and𝑈2 with 𝐴1 ⊆ 𝑈1 and 𝐴2 ⊆ 𝑈2.

• regular if any closed set and any point can be separated by open sets; that
is, if 𝐴 is closed set and 𝑥 ∈ 𝑋 then there exist disjoint open sets 𝑈1 and 𝑈2
with 𝐴 ⊆ 𝑈1 and 𝑥 ∈ 𝑈2.

• 𝑇3 or regular Hausdorff if it is a topological space that is, both regular and
a Hausdorff space.

• T4 Space or normal Hausdorff if 𝑋 is both a normal space and a T1 space.

• a separatory for each pair of subsets if every disjoint pair of subsets can be
separated by open sets; that is, if 𝐴1, 𝐴2 ∈ P(𝑋) are disjoint then there are
disjoint open sets𝑈1 and𝑈2 with 𝐴1 ⊆ 𝑈1 and 𝐴2 ⊆ 𝑈2.
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Example 5.11. (i) Considering the nominal space D2, we have

(𝑑1, 𝑑2)↓ = {(𝑑, 𝑑′) ∈ D2 | supp (𝑑, 𝑑′) ⊆ supp (𝑑1, 𝑑2)}
= {(𝑑1, 𝑑1), (𝑑2, 𝑑2), (𝑑1, 𝑑2), (𝑑2, 𝑑1)}, and

(𝑑1, 𝑑2)↑ = {(𝑑, 𝑑′) ∈ D2 | supp (𝑑1, 𝑑2) ⊆ supp (𝑑, 𝑑′)}
= {(𝑑1, 𝑑2), (𝑑2, 𝑑1)},

for every 𝑑1 ≠ 𝑑2 ∈ D. Now since, for every 𝑑1 ≠ 𝑑2 ∈ D, Theorem 5.4 implies
((𝑑1, 𝑑2)↓) ∩ ((𝑑1, 𝑑2)↑) = {(𝑑1, 𝑑2), (𝑑2, 𝑑1)} is the smallest open set, contains
the points (𝑑1, 𝑑2) and (𝑑2, 𝑑1) in D2, in which 𝑑1 ≠ 𝑑2, can not be separated by
disjoint open sets. Hence, this space is neither Hausdorff nor T1.

(ii) Considering the nominal space D(𝑘 ) with 𝑘 ≥ 2, since the cardinality of
the support of each element equals 𝑘 , we have

(𝑑1, 𝑑2, . . . , 𝑑𝑘)↓ = {(𝑑′1, 𝑑′2, . . . , 𝑑′𝑘) | {𝑑′1, 𝑑′2, . . . , 𝑑′𝑘} = {𝑑1, 𝑑2, . . . , 𝑑𝑘}}
= (𝑑1, 𝑑2, . . . , 𝑑𝑘)↑.

Hence, the poins (𝑑1, 𝑑2, . . . , 𝑑𝑘) ≠ (𝑑2, 𝑑1, 𝑑3, . . . , 𝑑𝑘) ∈ D(𝑘 ) can not be
separated by disjoint open sets, because (𝑑1, 𝑑2, . . . , 𝑑𝑘), (𝑑2, 𝑑1, 𝑑3, . . . , 𝑑𝑘) ∈
(𝑑1, 𝑑2, . . . , 𝑑𝑘)↑ ∩ (𝑑1, 𝑑2, . . . , 𝑑𝑘)↓ and, by Theorem 5.4, (𝑑1, 𝑑2, . . . , 𝑑𝑘)↑ ∩
(𝑑1, 𝑑2, . . . , 𝑑𝑘)↓ is the smallest open sets containing (𝑑1, 𝑑2, . . . , 𝑑𝑘) and
(𝑑2, 𝑑1, 𝑑3, . . . , 𝑑𝑘), meaning that this space is neither Hausdorff nor T1.

(iii) Using Example 5.1(iii), one can easily see that the points {𝑑} and D \ {𝑑}
in the nominal space Pfs(D) can not be separated by disjoint open sets and hence,
Pfs(D) is not Hausdorff.

Analogously, one can see that the nominal space Pfs(D) is neither Hausdorff
nor T1.

Example 5.12. Using Example 5.1(ii), since the nominal space Pf (D) contains
singleton element hence, it is disceret. Therefore, it is Hausdorff.

Theorem 5.13. Let (𝑋,S) be a nominal space. Then, 𝑋 is Hausdorff if and only
if the support map, supp : 𝑋 → Pf (D), separates the elements of 𝑋 .

Proof. (⇒) Let 𝑋 be Hausdorff and 𝑥 ≠ 𝑦 ∈ 𝑋 . Then, there exist 𝑈,𝑉 ∈ S
with 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and 𝑈 ∩ 𝑉 = ∅. Then, by Theorem 5.4 and Corollary 5.5,
𝑥/∼ ∩ 𝑦/∼= ∅. Hence, supp 𝑥 ≠ supp 𝑦.
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(⇐) Let 𝑦 ≠ 𝑥 ∈ 𝑋 . Then, by the hypothesis, we have supp 𝑥 ≠ supp 𝑦 and
hence, 𝑥/∼ ∩ 𝑦/∼= ∅. Now Corollary 5.5 implies the result.

Lemma 5.14. Any nominal space is a regular space.

Proof. Suppose 𝑋 is a nominal space. Take a closed set 𝐹 and 𝑥1 ∈ 𝑋 with 𝑥1 ∉ 𝐹.
By Corollary 5.6 (iii), 𝐹 is open. Thus, there are two open sets 𝑥↑1 ∩ 𝑥1↓ and 𝐹 with
(𝑥↑1 ∩ 𝑥1↓) ∩ 𝐹 = ∅.

Corollary 5.15. Any nominal space is a normal space.

Proof. By Corollary 5.6 (iii), since each closed set is open, we get the result.

Theorem 5.16. Let 𝑋 be a nominal space. Then the following statements are
equivalent:

(i) The relation ⪯ is a partially order on 𝑋 .
(ii) 𝑥↑ ∩ 𝑥↓ = {𝑥}, for every 𝑥 ∈ 𝑋 .
(iii) 𝑋 is T0.
(iv) 𝑋 is T1.
(v) 𝑋 is T2 (or Hausdorff space).
(vi) 𝑋 is T3.
(vii) 𝑋 is T4.
(viii) 𝑋 is a separator for each 𝐴, 𝐵 ∈ P(𝑋) with 𝐴 ∩ 𝐵 = ∅.
(ix) The support map supp : 𝑋 → 𝑃f (D) is injective.

Proof. (i) ⇒ (ii) Let 𝑡 ∈ 𝑥↑∩𝑥↓. Then, 𝑡 ⪯ 𝑥 and 𝑥 ⪯ 𝑡. Since ⪯ is antisymmetric,
𝑡 = 𝑥.

(ii) ⇒ (iii) Follows by taking open sets 𝑥↓ ∩ 𝑥↑ and 𝑥′↓ ∩ 𝑥′↑ for each 𝑥 ≠ 𝑥′.
(iii) ⇒ (iv), and (iv ⇒ v) follow from Theorem 5.4(i) and Corollary 5.5.
Lemma 5.14 implies (v ⇒ vi).
Corollary 5.15 implies (vi ⇒ vii).
(vii) ⇒ (viii) For each 𝐴, 𝐵 ∈ P(𝑋) such that 𝐴∩𝐵 = ∅ we show (⋃𝑎∈𝐴(𝑎↑∩

𝑎↓)) ∩ (⋃𝑏∈𝐵 (𝑏↑ ∩ 𝑏↓)) = ∅. On the contrary, suppose 𝑥 ∈ (⋃𝑎∈𝐴(𝑎↑ ∩ 𝑎↓)) ∩
(⋃𝑏∈𝐵 (𝑏↑ ∩ 𝑏↓)). Hence, there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑥 ∈ (𝑎↑ ∩ 𝑎↓)
and 𝑥 ∈ (𝑏↑ ∩ 𝑏↓). Therefore, supp 𝑥 = supp 𝑎 = supp 𝑏 hence, 𝑎 ∈ (𝑏↑ ∩ 𝑏↓).
Since 𝐴 ∩ 𝐵 = ∅ hence, 𝑎 ≠ 𝑏, which is a contradiction with 𝑋 is T4. Obviously
𝐴 ⊆ (⋃𝑎∈𝐴(𝑎↑ ∩ 𝑎↓)) and 𝐵 ⊆ (⋃𝑏∈𝐵 (𝑏↑ ∩ 𝑏↓)), we get the result.
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(viii) ⇒ (ix) For each 𝑥1 ≠ 𝑥2 we consider {𝑥1} = 𝐴 and 𝐵 = {𝑥2}. Now, by
assumption, we have (𝑥↑1 ∩ 𝑥1↓) ∩ (𝑥↑2 ∩ 𝑥2↓) = ∅. Hence, supp 𝑥1 ≠ supp 𝑥2 for
each 𝑥1 ≠ 𝑥2.

(ix) ⇒ (i) Follows from Corollary 5.5.

Theorem 5.17. A nominal space 𝑋 is compact if and only if the set

𝐴 = {(𝑥, 𝑥′) | supp 𝑥 ≠ supp 𝑥′} = ∇/∼,

is finite.

Proof. (⇒) Suppose 𝑋 is compact. Then, by Corollary 5.5, one can consider the
open cover 𝑋 ⊆ ⋃

𝑥∈𝑋 (𝑥↑ ∩ 𝑥↓) of 𝑋 . So there exist 𝑥1, 𝑥2, · · · , 𝑥𝑛 ∈ 𝑋 such that
𝑋 ⊆ ⋃

1≤𝑖≤𝑛 (𝑥↑𝑖 ∩ 𝑥𝑖↓); meaning that 𝑋 only contains a finite number of elements
with different supports, and hence, 𝐴 is a finite set.

(⇐) Suppose 𝐴 is finite and {𝑈 𝑗} 𝑗∈𝐼 is an arbitrary open cover for 𝑋 . Since 𝐴 is
finite, there are finitely many elements of 𝑋 , such as 𝑥1, . . . , 𝑥𝑛, each pair of which
have different supports. Since, by Corollary 5.5, 𝑥↑𝑖 ∩𝑥𝑖↓ is the smallest open subset
of 𝑋 containing 𝑥𝑖 , for every 1 ≤ 𝑖 ≤ 𝑛, there exists 𝑗𝑖 ∈ 𝐼 such that 𝑥↑𝑖 ∩ 𝑥𝑖↓ ⊆ 𝑈 𝑗𝑖 ,
for evey 1 ≤ 𝑖 ≤ 𝑛. Hence, we have 𝑋 ⊆ ⋃

1≤𝑖≤𝑛 (𝑥↑𝑖 ∩ 𝑥𝑖↓) ⊆
⋃

1≤𝑖≤𝑛𝑈 𝑗𝑖 .

Theorem 5.18. A nominal space 𝑋 is compact if and only if 𝑋/∼ is finite.

Proof. (⇒) Let 𝑋 be compact and 𝑋 =
⋃
𝑥∈𝑋 (𝑥/∼). Then, there exist

𝑥1, 𝑥2, · · · , 𝑥𝑛 ∈ 𝑋 with 𝑋 ⊆ ⋃
1≤𝑖≤𝑛 (𝑥𝑖/∼). So, 𝑋/∼ is finite.

(⇐) Let 𝑋/∼ be finite. Then, 𝑋 =
⋃

1≤𝑖≤𝑛 𝑥𝑖/∼. Suppose 𝑋 =
⋃

𝛼
𝑈𝛼. By

Theorem 5.4, there exists 𝛼𝑥𝑖 ∈ 𝐼 such that 𝑥𝑖/∼⊆ 𝑈𝛼𝑥𝑖
, for every 1 ≤ 𝑖 ≤ 𝑛.

Hence, 𝑋 =
⋃

1≤𝑖≤𝑛 𝑥𝑖/∼⊆
⋃

1≤𝑖≤𝑛𝑈𝛼𝑥𝑖
⊆ 𝑋 and so 𝑋 =

⋃
1≤𝑖≤𝑛𝑈𝛼𝑥𝑖

.

Corollary 5.19. Let 𝑋 be a nominal space. The following statements are equiva-
lent:

(i) 𝑋 is compact.
(ii) 𝑋 is a discrete nominal set.
(iii) S = {∅, 𝑋}.

Proof. (i) ⇒ (ii) By Remark 3.3, 𝑋/∼ is a nominal set. If 𝑋 is compact then, by
Theorem 5.18, 𝑋/∼ is finite. So, by Remark 2.10, 𝑋/∼ is a discrete nominal set
and supp (𝑥/∼) = ∅, for every 𝑥/∼∈ 𝑋/∼. Now since for every 𝑡 ∈ 𝑋 , there exists
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𝑥/∼∈ 𝑋/∼ with 𝑡 ∈ 𝑥/∼ and supp 𝑥/∼= supp 𝑥 = supp 𝑡, we have supp 𝑡 = ∅, for
all 𝑡 ∈ 𝑋 , and we are done.

(ii) ⇒ (iii) Suppose supp 𝑥 = ∅, for each 𝑥 ∈ 𝑋 . Then 𝑥↑ = 𝑥↓ = 𝑥↑ ∩ 𝑥↓ = 𝑋 ,
for each 𝑥 ∈ 𝑋 . Therefore, S = {∅, 𝑋}.

(iii) ⇒ (i) This is clear.
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