On nominal sets with support-preorder

A. Hosseinabadi, M. Haddadi*, and Kh. Keshvardoost
Communicated by Themba Dube

Abstract

Each nominal set X can be equipped with a preorder relation \leq defined by the notion of support, so-called support-preorder. This preorder also leads us to the support topology on each nominal set. We study support-preordered nominal sets and some of their categorical properties in this paper. We also examine the topological properties of support topology, in particular separation axioms.

1 Introduction

Nominal set theory provides a mathematical framework for studying semantics, modifying variables, and much more in computer science. Indeed, Fraenkel presented nominal sets in [3] as an alternative model of set theory in 1922. In this context Mostowski studied further, which is why nominal sets are sometimes referred to as Fraenkel-Mostowski sets. In the 1990s, Gabbay and Pitts [6] rediscovered nominal sets for the computer science community, and this notion sparked a lot of interest in semantics $[1,2,4,5]$.

[^0]Every nominal set can be viewed as a preordered set equipped with the support preorder relation based on the notion of support. Here considering supportpreordered nominal sets, briefly sp-nominal sets, and the category spNom of sp-nominal sets and sp-preserving equivariant maps between them, some categorical properties in spNom including monics, epics, products and coproducts are investigated. In particular, we find some conditions under which products and coproducts in $\mathbf{~ s p N p m}$ do exist. This preorder also provides a topological structure on a nominal set which converts nominal sets to nominal spaces. Some topological properties of nominal spaces such as separation axioms and compactness are also studied.

2 Preliminaries

This section contains some necessary notions on nominal sets and topological spaces needed throughout the paper from [8] and [7] respectively. For further information on category theory, one may consult [1].
2.1 Nominal sets Suppose \mathbb{D} is a set, then a permutation π of \mathbb{D} is a bijective map from \mathbb{D} to itself. The permutations of \mathbb{D} with composition and identity form a group, called the symmetric group on the set \mathbb{D} and denoted by SymD. A permutation $\pi \in \operatorname{SymD}$ is finitary if the set $\{d \in \mathbb{D} \mid \pi d \neq d\}$ is a finite subset of \mathbb{D}. It is clear that id $\in S y m D$ is finitary and that the composition and the inverse of finitary permutations are finitary. Therefore, we get a subgroup of SymD of finitary permutations, denoted by Perm(\mathbb{D}). We fix a countable infinite set \mathbb{D} whose elements are denoted by a, b, c, \ldots and called atomic names. Let X be a set equipped with an action of the group $\operatorname{Perm}(\mathbb{D}), \operatorname{Perm}(\mathbb{D}) \times X \rightarrow X$ mapping (π, x) to πx. We call X a $\operatorname{Perm}(\mathbb{D})$-set, whenever for every $\pi_{1}, \pi_{2} \in \operatorname{Perm}(\mathbb{D})$ and every $x \in X$ we have:
(1) $\pi_{1}\left(\pi_{2} x\right)=\left(\pi_{1} o \pi_{2}\right) x$
(2) $\operatorname{id} x=x$.

A subset Y of a $\operatorname{Perm}(\mathbb{D})$-set X is called equivariant if $\pi y \in Y$, for all $\pi \in$ $\operatorname{Perm}(\mathbb{D})$ and $y \in Y . \operatorname{Perm}(\mathbb{D})$-sets are the objects of a category, denoted by $\operatorname{Perm}(\mathbb{D})$-Set whose morphisms are equivariant maps, i.e. maps subject to the rule $f(\pi x)=\pi f(x)$, for all $x \in X, \pi \in \operatorname{Perm}(\mathbb{D})$, whose compositions and identities are as in the category Set of sets and maps.

An element x of a $\operatorname{Perm}(\mathbb{D})$-set X is called a zero element if $\pi x=x$, for all $\pi \in \operatorname{Perm}(\mathbb{D})$. The set of all zero elements of the $\operatorname{Perm}(\mathbb{D})$-set X is denoted by $\mathcal{Z}(X)$. A Perm($\mathbb{D})$-set all of whose elements are zero is called discrete.

Given a $\operatorname{Perm}(\mathbb{D})$-set X, a set of atomic names $D \subseteq \mathbb{D}$ is a support for an element $x \in X$ if for all $\pi \in \operatorname{Perm}(\mathbb{D})$ and for every $d \in D$,

$$
\pi(d)=d \Rightarrow \pi x=x
$$

Given a $\operatorname{Perm}(\mathbb{D})$-set X, we say an element $x \in X$ is finitely supported, if there is some finite set of atomic names that is, a support for the element x.

Example 2.1. Given a $\operatorname{Perm}(\mathbb{D})$-set X, the power set of $X, \mathcal{P}(X)$, with the action

$$
\begin{aligned}
\operatorname{Perm}(\mathbb{D}) \times \mathcal{P}(X) & \rightarrow \mathcal{P}(X) \\
(\pi, S) & \rightsquigarrow\{\pi x: x \in S\}
\end{aligned}
$$

is a $\operatorname{Perm}(\mathbb{D})$-set. A set of atomic names D supports $S \in \mathcal{P}(X)$ if and only if

$$
(\forall \pi \in \operatorname{Perm}(\mathbb{D}))((\forall d \in D) \pi(d)=d) \Rightarrow(\forall x \in S) \pi x \in S
$$

Definition 2.2. [8] A nominal set is a $\operatorname{Perm}(\mathbb{D})$-set all of whose elements are finitely supported. Nominal sets are the objects of a category, denoted by Nom, whose morphisms are equivariant maps and whose compositions and identities are as in the category of $\operatorname{Perm}(\mathbb{D})$-Set.

Remark 2.3. Suppose X is a nominal set and $x \in X$. Intersection of two finite supports of x is a (finite) support of x, [8, Propositions 2.1 and 2.3]. So each $x \in X$ has the least (finite) support which is denoted by $\operatorname{supp}_{X} x$, and when there is no possibility of error, we denote it by supp x. In fact, supp $x=\bigcap\{C: C$ is a finite support of $x\}$.

Definition 2.4. [8] We say that a set of atomic names $A \subseteq \mathbb{D}$ strongly supports an element x of a nominal set X if and only if

$$
(\forall \pi \in \operatorname{Perm}(\mathbb{D}))((\forall a \in A) \pi a=a) \Leftrightarrow \pi x=x
$$

A strong nominal set is a Perm(\mathbb{D})-set in which every element is strongly supported by a finite set of atomic names.

Example 2.5. (i) The set \mathbb{D} is a nominal set with the natural action $\pi d=\pi(d)$.
(ii) The action of $\operatorname{Perm}(\mathbb{D})$ on \mathbb{D} extends pointwise to action of $\operatorname{Perm}(\mathbb{D})$ on tuples \mathbb{D}^{n} and $\mathbb{D}^{(n)}$. So, the sets $\mathbb{D}^{n}=\left\{\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{D}^{n} \mid d_{i} \in \mathbb{D}\right\}$ and $\mathbb{D}^{(n)}=\left\{\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{D}^{n} \mid d_{i} \neq d_{j}\right.$ for $\left.i \neq j\right\}$ are nominal sets.

Proposition 2.6: [8] Suppose X is a $\operatorname{Perm}(\mathbb{D})$-set and $x \in X$. A subset $A \subseteq \mathbb{D}$ supports x if and only if, for all $d_{1}, d_{2} \in \mathbb{D} \backslash A$, we have $\left(d_{1} d_{2}\right) \cdot x=x$.

Notation 2.7. We will frequently write $\mathcal{P}_{\mathrm{fs}}(X)$ for the set consisting of all finitely supported subsets of a given nominal set X. By Fix C we mean the set $\{\pi \in$ $\operatorname{Perm}(\mathbb{D}) \mid \pi a=a$, for every $a \in C\}$, where $C \subseteq \mathbb{D}$. We also denote by $\mathcal{P}_{f}(\mathbb{D})$ the set consisting of all finite subsets of \mathbb{D}, and by $\mathcal{P}_{\text {cof }}(\mathbb{D})$ the set consisting of all subsets of \mathbb{D} with finite complement.

Lemma 2.8. Let X be a nominal set and $Y, Z \in \mathcal{P}_{\mathrm{fs}}(X)$. Then, $Y \cup Z$ and $Y \cap Z$ are finitely supported subsets of X.

Proof. Suppose A is a finite support of Y and B is a finite support of Z. Take $\pi \in \operatorname{Fix}(A \cup B)$. Then, $\pi Y=Y$ and $\pi Z=Z$. So, $\pi(Y \cap Z)=Y \cap Z$ and $\pi(Y \cup Z)=Y \cup Z$.

Lemma 2.9. Let X be a nominal set. Then, the following statements are equivalent.
(i) X is discrete.
(ii) For all $x, y \in X, \operatorname{supp} x=\operatorname{supp} y$.

Proof. (i) \Rightarrow (ii) It is clear.
(ii) \Rightarrow (i) On the contrary, suppose there exists $x \in X$ with $\operatorname{supp} x=$ $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\} \neq \emptyset$. Take distinct elements $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime} \in \mathbb{D}$ with $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\} \cap\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime}\right\}=\emptyset$ and $\pi=\left(d_{1} d_{1}^{\prime}\right)\left(d_{2} d_{2}^{\prime}\right) \cdots\left(d_{k} d_{k}^{\prime}\right)$. Then, we have $\pi x \in X$ with $\operatorname{supp} \pi x \neq \operatorname{supp} x$ which is a contradiction.

Remark 2.10. Every finite nominal set is discrete.

3 Support-Preordered nominal sets

Every nominal set can be considered as a preordered set, see Definition 3.1. We direct our attention to the category spNom of support-preordered nominal sets, in this section, with a view to investigating the properties of its objects and morphisms.

Definition 3.1. By the support-preorder on a nominal set X, we mean the binary relation \leq on X defined by:

$$
x \leq y \Leftrightarrow \operatorname{supp} x \subseteq \operatorname{supp} y .
$$

Since \leq is a preorder (i.e. reflexive and transitive), the pair (X, \leq) is called a support-preordered nominal set or briefly sp-nominal set.

It can be easily seen that the support-preorder is equivariant (or action preserving); meaning that:

$$
x_{1} \leq x_{2} \Rightarrow \pi x_{1} \leq \pi x_{2}
$$

for each $x_{1}, x_{2} \in X, \pi \in \operatorname{Perm}(\mathbb{D})$.
Example 3.2. The support-preorder on
(i) the nominal set \mathbb{D} is equality. Indeed, since supp $d=\{d\}$, for every $d \in \mathbb{D}$, we have

$$
d \leq d^{\prime} \Leftrightarrow\{d\} \subseteq\left\{d^{\prime}\right\} \text { (or equivalently } d=d^{\prime} \text {). }
$$

(ii) the nominal set $\mathcal{P}_{\mathrm{f}}(\mathbb{D})$ is \subseteq. Indeed, since supp $A=A$, for every $A \in \mathcal{P}_{\mathrm{f}}(\mathbb{D})$, we have

$$
A_{1} \leq A_{2} \Leftrightarrow A_{1} \subseteq A_{2}
$$

for $A_{1}, A_{2} \in \mathcal{P}_{f}(\mathbb{D})$.
(iii) the nominal set $\mathcal{P}_{\text {cof }}(\mathbb{D})$ is \supseteq. Indeed, since $\operatorname{supp} A=A^{c}$, for every $A \in \mathcal{P}_{\text {cof }}(\mathbb{D})$, we have

$$
A_{1} \leq A_{2} \Leftrightarrow A_{1} \supseteq A_{2}
$$

for $A_{1}, A_{2} \in \mathcal{P}_{\text {cof }}(\mathbb{D})$.
(iv) the nominal set $\mathcal{P}_{\mathrm{fs}}(\mathbb{D})$ is defined as follows.

$$
A_{1} \leq A_{2} \Leftrightarrow A_{1} \subseteq A_{2} \text { or } A_{1} \supseteq A_{2} \text { or } A_{1} \cap A_{2}=\emptyset \text { or } A_{1} \cup A_{2}=\mathbb{D}
$$

Indeed, when $A_{1} \leq A_{2}$ in $\mathcal{P}_{\text {cof }}(\mathbb{D})$, one of the following four items may occur.

- If both A_{1}, A_{2} are finite, then since $\operatorname{supp} A_{1}=A_{1}$ and $\operatorname{supp} A_{2}=A_{2}, A_{1} \leq A_{2}$ if and only if $A_{1} \subseteq A_{2}$.
- If both A_{1}, A_{2} are cofinite, then since $\operatorname{supp} A_{1}=A_{1}^{c}$, $\operatorname{supp} A_{2}=A_{2}^{c}, A_{1} \leq A_{2}$ if and only if $A_{1} \supseteq A_{2}$.
- If A_{1} is finite and A_{2} is cofinite, then since $\operatorname{supp} A_{1}=A_{1}$ and $\operatorname{supp} A_{2}=A_{2}^{c}$, $A_{1} \leq A_{2}$ if and only if $A_{1} \cap A_{2}=\emptyset$.
- If A_{1} is cofinite and A_{2} is finite, then since $\operatorname{supp} A_{1}=A_{1}^{c}$ and $\operatorname{supp} A_{2}=A_{2}$, $A_{1} \leq A_{2}$ if and only if $\left(A_{1}^{c}\right) \cap\left(A_{2}^{c}\right)=\emptyset$ if and only if $A_{1} \cup A_{2}=\mathbb{D}$.

Remark 3.3. Let X be a nominal set. Then one can define the equivalence relation \sim on X obtained from \leq to be

$$
x \sim x^{\prime} \Leftrightarrow x \leq x^{\prime} \text { and } x^{\prime} \leq x .
$$

The quotient set X / \sim together with the canonical action over Perm $(\mathbb{D}), \pi(x / \sim)=$ $(\pi x) / \sim$, is a nominal set and we immediately get the following statements.
(i) $\operatorname{supp}(x / \sim)=\operatorname{supp} x$, for every $x / \sim \in X / \sim$.
(ii) $x / \sim=\{y \in X \mid \operatorname{supp} x=\operatorname{supp} y\}$ is the equivalance class of $x \in X$.
(iii) The support-preoreder is a partial order if and only if $x / \sim=\{x\}$, for all $x \in X$.

Lemma 3.4. Let X be an sp-nominal set and $x, x^{\prime} \in X$. Then, there exists π with $\pi x \leq x^{\prime}$ or $\pi x^{\prime} \leq x$.

Proof. Let $\operatorname{supp} x=\left\{d_{1}, \ldots, d_{k}\right\}$ and $\operatorname{supp} x^{\prime}=\left\{a_{1}, \ldots, a_{m}\right\}$ with $k \leq m$.
Case (i) If supp $x \cap \operatorname{supp} x^{\prime}=\emptyset$, then taking $\pi=\left(d_{1} a_{1}\right) \cdots\left(d_{k} a_{k}\right)$ we obtain $\operatorname{supp} \pi x=\pi \operatorname{supp} x=\left\{a_{1}, \ldots, a_{k}\right\} \subseteq \operatorname{supp} x^{\prime}$.

Case (ii) If $\operatorname{supp} x \cap \operatorname{supp} x^{\prime}=\left\{a_{j+1}, \ldots, a_{k}\right\}$, then taking $\pi=$ $\left(d_{1} a_{1}\right) \cdots\left(d_{j} a_{j}\right)$ we obtain $\operatorname{supp} \pi x=\pi \operatorname{supp} x=\left\{a_{1}, \ldots, a_{j}, \ldots, a_{m}\right\} \subseteq$ $\operatorname{supp} x^{\prime}$.

Definition 3.5. Suppose X and Y are two sp-nominal sets. An equivariant map $f: X \rightarrow Y$ is called support-preorder preserving or for convenience sp-preserving whenever $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, for all $x_{1} \leq x_{2} \in X$.

Example 3.6. (i) The equivariant map $f: \mathbb{D}^{2} \rightarrow \mathbb{D}^{(2)} \cup\{\theta\}$ defined by

$$
f\left(d_{1}, d_{2}\right)= \begin{cases}\left(d_{1}, d_{2}\right) & d_{1} \neq d_{2} \\ \theta & d_{1}=d_{2}\end{cases}
$$

is sp-preserving.
(ii) The support map supp : X $\rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$, mapping $x \mapsto \operatorname{supp} x$, is sppreserving.

It is worth noting that an equivariant map between nominal sets does not necessarily preserve support-preorder, see Example 3.7. So we consider the category of support-preordered nominal sets and sp-preserving maps between them denoted by $\mathbf{s p N o m}$.

Example 3.7. Considering the nominal sets \mathbb{D}^{2} and $\mathbb{D} \cup\{\theta\}$ we define the equivariant map $f: \mathbb{D}^{2} \longrightarrow \mathbb{D} \cup\{\theta\}$ as follows.

$$
f\left(d, d^{\prime}\right)= \begin{cases}\theta & d \neq d^{\prime} \\ d & d=d^{\prime}\end{cases}
$$

For every $d \neq d^{\prime} \in \mathbb{D}$, we have $(d, d) \leq\left(d, d^{\prime}\right)$ but $f(d, d) \npreceq f\left(d, d^{\prime}\right)$.
Definition 3.8. By a downward (upward) directed nominal set we mean a nominal set (X, \leq) in which each pair of elements has a lower (upper) bound. More explicitly, for every $x_{1}, x_{2} \in X$ there exists $x \in X$ with $x \leq x_{1}$ and $x \leq x_{2}\left(x_{1} \leq x\right.$ and $x_{2} \leq x$).

Theorem 3.9. (i) The sp-nominal set (X, \leq) is downward directed if and only if $\mathcal{Z}(X) \neq \emptyset$.
(ii) The sp-nominal set (X, \leq) is upward directed if and only if the subset $A=\{|\operatorname{supp} x| \mid x \in X\}$ of \mathbb{N}^{0} has no upper bound.

Proof. (i) Suppose (X, \leq) is downward directed. Take $A=\{|\operatorname{supp} x| \mid x \in$ $X\} \subseteq \mathbb{N} \cup\{0\}$. By well-ordering principle, A contains a least element and hence, there exists $x_{0} \in X$ such that $\left|\operatorname{supp} x_{0}\right|$ is infimum in A. If supp $x_{0}=\emptyset$, then $x_{0} \in \mathcal{Z}(X)$. Otherwise, $\operatorname{supp} x_{0}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$, for some $n \in \mathbb{N}$. Then we take $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\} \subseteq \mathbb{D}$ with $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} \cap\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\}=\emptyset$ and consider the finite permutation $\pi=\left(d_{1} d_{1}^{\prime}\right)\left(d_{2} d_{2}^{\prime}\right) \cdots\left(d_{n} d_{n}^{\prime}\right)$. Since supp $\pi x_{0}=$ $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\}, \operatorname{supp} \pi x_{0} \cap \operatorname{supp} x_{0}=\emptyset$, and so $x_{0} \neq \pi x_{0}$. By the assumptions, there exists $x_{1} \in X$ with $x_{1} \leq x_{0}$ and $x_{1} \leq \pi x_{0}$. Hence, $\operatorname{supp} x_{1} \subseteq \operatorname{supp} x_{0} \cap$ $\operatorname{supp} \pi x_{0}=\emptyset$ and so $\mathcal{Z}(X) \neq \emptyset$.
Conversely, suppose $\theta \in \mathcal{Z}(X) \neq \emptyset$. Then clearly for each pair $x_{1}, x_{2} \in X, \theta \leq x_{1}$ and $\theta \leq x_{2}$.
(ii) Suppose X is upward directed. We show that $A=\{|\operatorname{supp} x| \mid x \in X\}$ has no upper bound. On the contrary, let A have an upper bound. Then since the set $A^{u p}$, consisting of the upper bounds of A, is a subset of \mathbb{N}, well-ordering principle implies $A^{u p}$ has the least element n which is the supremum of A. Now let $n=\left|\operatorname{supp} x_{0}\right|$,
for some $x_{0} \in X$ and $\operatorname{supp} x_{0}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$. Then, analogous to the proof (i), we take $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\} \subseteq \mathbb{D}$ with $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\} \cap\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right\}=\emptyset$ and consider $\pi x_{0} \neq x_{0}$ in which $\pi=\left(d_{1} d_{1}^{\prime}\right)\left(d_{2} d_{2}^{\prime}\right) \cdots\left(d_{n} d_{n}^{\prime}\right)$. Now, by the hypothesis, there exists $x^{\prime} \in X$ such that $x_{0} \leq x^{\prime}$ and $\pi x_{0} \leq x^{\prime}$. Therefore, $\left|\operatorname{supp} x_{0}\right|<n$ which is a contradiction.
To prove the converse, suppose $x_{1}, x_{2} \in X$ with $\operatorname{supp} x_{1}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ and supp $x_{2}=\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{m}^{\prime}\right\}$. Since A has no upper bound, there is $x^{\prime} \in X$ with $\left|\operatorname{supp} x^{\prime}\right| \geqslant m+n$. Suppose $\operatorname{supp} x^{\prime}=\left\{d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \ldots, d_{m+n+r}^{\prime \prime}\right\}$ in which $r \geqslant 0$. If $\operatorname{supp} x_{1} \cup \operatorname{supp} x_{2} \subseteq \operatorname{supp} x^{\prime}$ then $\operatorname{supp} x_{1} \subseteq \operatorname{supp} x^{\prime}$ and supp $x_{2} \subseteq \operatorname{supp} x^{\prime}$ meaning that $x_{1} \leq x^{\prime}$ and $x_{2} \leq x^{\prime}$ which is the desired result. Otherwise, suppose $\left(\operatorname{supp} x_{1} \cup \operatorname{supp} x_{2}\right) \cap\left(\operatorname{supp} x^{\prime}\right)=\left\{s_{1}, s_{2}, \ldots, s_{t-1}\right\}$ and $\left(\operatorname{supp} x_{1} \cup \operatorname{supp} x_{2}\right) \cap\left(\operatorname{supp} x^{\prime}\right)^{c}=\left\{s_{t}, s_{t+1}, \ldots, s_{l}\right\}$ with $s_{i} \in \operatorname{supp} x_{1} \cup \operatorname{supp} x_{2}$. We take $\pi=\left(d_{t}^{\prime \prime} s_{t}\right)\left(d_{t+1}^{\prime \prime} s_{t+1}\right) \ldots\left(d_{l}^{\prime \prime} s_{l}\right)$. Since supp $\pi \cap\left\{d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \ldots, d_{t-1}^{\prime \prime}\right\}=$ \emptyset, we have $\pi\left\{d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \ldots, d_{l}^{\prime \prime}\right\} \subseteq \operatorname{supp} \pi x^{\prime}$. Hence, $\operatorname{supp} x_{1} \cup \operatorname{supp} x_{2}=$ $\left\{d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \ldots, d_{t-1}^{\prime \prime}, s_{t}, s_{t+1}, \ldots, s_{l}\right\} \subseteq \operatorname{supp} \pi x^{\prime}$. That is, $x_{1} \leq \pi x^{\prime}$ and $x_{2} \leq$ πx^{\prime}.

Definition 3.10. Let X be an sp-nominal set and $Y \in \mathcal{P}_{\mathrm{fs}}(X)$. Then we define $Y_{\downarrow}:=$ $\{x \in X \mid x \leq y$, for some $y \in Y\}$ and $Y^{\uparrow}:=\{x \in X \mid y \leq x$, for some $y \in Y\}$. In particular, we write x_{\downarrow} and x^{\uparrow} rather than Y_{\downarrow} and Y^{\uparrow}, respectively, when $Y \in \mathcal{P}_{\mathrm{fs}}(X)$ is a singleton set containing x.

Lemma 3.11. Let X be an sp-nominal set and $Y, Z \in \mathcal{P}_{\mathrm{fs}}(X)$. Then
(i) $Y_{\downarrow} \cup Z_{\downarrow}=(Y \cup Z)_{\downarrow}$ and $Y^{\uparrow} \cup Z^{\uparrow}=(Y \cup Z)^{\uparrow}$.
(ii) $Y_{\downarrow}, Y^{\uparrow} \in \mathcal{P}_{\mathrm{fs}}(X)$, for every $Y \in \mathcal{P}_{\mathrm{fs}}(X)$.
(iii) the set $L_{\downarrow X}:=\left\{Y_{\downarrow}, \emptyset, X \mid Y \in \mathcal{P}_{\mathrm{fs}}(X)\right\}$ is a bounded lattice.
(iv) the set $L_{\uparrow X}:=\left\{Y^{\uparrow}, \emptyset, X \mid Y \in \mathcal{P}_{\mathrm{fs}}(X)\right\}$ is a bounded lattice.

Proof. (i) One can easily check.
(ii) We show that supp Y is a support for Y_{\downarrow} and Y^{\uparrow}, for each $Y \in \mathcal{P}_{\mathrm{fs}}(X)$. Indeed, if $A=\operatorname{supp} Y$, then for every $\pi \in$ Fix A we have

$$
\begin{aligned}
\pi Y^{\uparrow} & =\pi\{x \in X \mid \operatorname{supp} y \subseteq \operatorname{supp} x, \text { for some } y \in Y\} \\
& =\{\pi x \in X \mid \operatorname{supp} \pi y \subseteq \operatorname{supp} \pi x, \text { for some } \pi y \in \pi Y\} \\
& =\left\{x^{\prime} \in X \mid \operatorname{supp} y^{\prime} \subseteq \operatorname{supp} x^{\prime}, \text { for some } y^{\prime} \in \pi Y=Y\right\} \\
& =Y^{\uparrow}
\end{aligned}
$$

Analogously, $\pi Y_{\downarrow}=Y_{\downarrow}$.
(iii) We show that $L_{\downarrow X}$ is closed under finite intersections and unions. Let $Y, Z \in \mathcal{P}_{\mathrm{fs}}(X)$. Then, by Lemma 2.8, $Y \cup Z, Y \cap Z \in \mathcal{P}_{\mathrm{fs}}(X)$. Also, applying (i), we have $(Y \cup Z)_{\downarrow}=Y_{\downarrow} \cup Z_{\downarrow}$ and $Y_{\downarrow} \cap Z_{\downarrow}=(Y \cap Z)_{\downarrow}$.
(iv) The proof is similar to (iii).

Theorem 3.12. If the sp-nominal set (X, \leq) is a lattice, then X is isomorphic to a subnominal set of $\mathcal{P}_{f}(\mathbb{D})$.

Proof. Suppose (X, \leq) is a lattice. Then, for every $x, x^{\prime} \in X$ with supp $x=\operatorname{supp} x^{\prime}$, we have $x \leq x^{\prime}$ and $x^{\prime} \leq x$. Since X is a lattice, $x=x^{\prime}$. Hence, the equivariant map supp : $X \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$ defined by $x \mapsto \operatorname{supp} x$ is injective.

Lemma 3.13. Suppose X and Y are two sp-nominal sets, $f: X \rightarrow Y$ is an sp-preserving map, and $x \in X$ with $\operatorname{supp} f(x) \neq \emptyset$. Then, $\operatorname{supp} f(x)=\operatorname{supp} x$.

Proof. First we note that since f is equivariant, $\operatorname{supp} f(x) \subseteq \operatorname{supp} x$ and hence, supp $x \neq \emptyset$ follows from supp $f(x) \neq \emptyset$, for an arbitrary $x \in X$ with supp $f(x) \neq \emptyset$. One can suppose supp $x=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$. Since, by the assumption, $\operatorname{supp} f(x) \neq$ \emptyset, we choose an element $d \in \operatorname{supp} f(x) \subseteq \operatorname{supp} x$. Now, for every $d_{i} \in \operatorname{supp} x$ with $d_{i} \neq d$, we have $\operatorname{supp}\left(d_{i} d\right) x=\operatorname{supp} x$. So, $\left(d_{i} d\right) x \leq x$. Since f is order-preserving, $f\left(\left(d_{i} d\right) x\right) \leq f(x)$. Thus, $\operatorname{supp}\left(d_{i} d\right) f(x) \subseteq \operatorname{supp} f(x)$ and so $d_{i} \in \operatorname{supp} f(x)$, for all $d_{i} \in \operatorname{supp} x$. That is, $\operatorname{supp} x \subseteq \operatorname{supp} f(x)$ and so $\operatorname{supp} f(x)=\operatorname{supp} x$.

Corollary 3.14. (i) If (X, \leq) is an sp-nominal set with $\mathcal{Z}(X)=\emptyset$, then id_{X} is the only sp-preserving map over X.
(ii) The category $\mathbf{s p N o m}$ is not connected.
(iii) Let $f, g: X \rightarrow A$ be two parallel sp-preserving maps with $\mathcal{Z}(A)=\emptyset$ and the support map $\operatorname{supp}_{A}: A \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$ be injective. Then, $f=g$.

Proof. (i) Let $f: X \rightarrow X$ be an sp-preserving map. Then, since $\mathcal{Z}(X)=\emptyset$, applying Lemma 3.13, $\operatorname{supp} f(x)=\operatorname{supp} x$, for all $x \in X$. Now, since \leq is antisymmetric, $f(x)=x$ for all $x \in X$.
(ii) By Lemma 3.13, there exists no sp-preserving map from $\mathbb{D}^{(2)}$ to \mathbb{D}.
(iii) Let $x \in X$. Then, by Lemma 3.13, $\operatorname{supp} f(x)=\operatorname{supp} x=\operatorname{supp} g(x)$. Now, since supp ${ }_{A}$ is injective, $f(x)=g(x)$.

Lemma 3.15. Let A and X be two sp-nominal sets with $\mathcal{Z}(A)=\emptyset$. Then,
(i) given a map $f: X \rightarrow A$, if f is an sp-preserving map, then for all $x \in X$ we have $\operatorname{supp} x=\operatorname{supp} f(x)$. The converse is stablished if the support map $\operatorname{supp}_{A}: A \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$ is injective.
(ii) if $f: X \rightarrow A$ is an sp-preserving map and $\operatorname{supp}_{X}: X \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$ is injective, then f is injective.

Proof. (i) Follows immidiately from Lemma 3.13. For the converse, it is clear that f is sp-preserving. We show that f is equivariant. Indeed, since by the assumption, $\pi \operatorname{supp} f(x)=\pi \operatorname{supp} x=\operatorname{supp} \pi x=\operatorname{supp} f(\pi x)$ and supp ${ }_{A}$ is injective, $\pi f(x)=f(\pi x)$.
(ii) Let $f(x)=f\left(x^{\prime}\right)$ with $x, x^{\prime} \in X$. Then, by Lemma 3.13, we have $\operatorname{supp} x=$ $\operatorname{supp} f(x)=\operatorname{supp} f\left(x^{\prime}\right)=\operatorname{supp} x^{\prime}$. Now, since supp ${ }_{X}$ is injective, $x=x^{\prime}$.

Theorem 3.16. Let X be an sp-nominal set and $\mathcal{Z}(X)=\emptyset$. Then any $\rho \in \operatorname{Con}(X)$ with $\mathcal{Z}(X / \rho)=\emptyset$ whose canonical map, $\pi: X \rightarrow X / \rho, x \mapsto x / \rho$, is sp-preserving, is a subset of \sim.

Proof. Suppose $\mathcal{Z}(X)=\emptyset$, and $\rho \in \operatorname{Con}(X) \backslash\{\nabla\}$ such that the canonical map $X \rightarrow X / \rho, x \mapsto x / \rho$ is sp-preserving. Then, by Lemma 3.13, supp $x=\operatorname{supp} x / \rho$, for every $x \in X$. If $\left(x, x^{\prime}\right) \in \rho$ then $x / \rho=x^{\prime} / \rho$. Hence, $\operatorname{supp} x=\operatorname{supp} x^{\prime}$; that is, $x \sim x^{\prime}$. So $\rho \subseteq \sim$.

Theorem 3.17. Let X be an sp-nominal set. Then,
(i) for each $x \in X, x_{\downarrow} \neq \emptyset\left(x^{\uparrow} \neq \emptyset\right)$.
(ii) if $y \in x_{\downarrow}\left(y \in x^{\uparrow}\right)$ and $z \leq y(y \leq z)$, then $z \in x_{\downarrow}\left(z \in x^{\uparrow}\right)$.
(iii) for all $x \neq y$, if $x \in y^{\uparrow}\left(x \in y_{\downarrow}\right)$, then $x^{\uparrow} \subseteq y^{\uparrow}$ and $x_{\downarrow} \subseteq y_{\downarrow}$.
(iv) the sets x_{\downarrow} and x^{\uparrow} are finitely supported subsets of X and $\operatorname{supp} x$ is a finite support for them.
(v) for all $\pi \in \operatorname{Perm}(\mathbb{D})$, we have $\pi x_{\downarrow}=(\pi x)_{\downarrow}$ and $\pi x^{\uparrow}=(\pi x)^{\uparrow}$.
(vi) the set $\mathcal{S}=\left\{x_{\downarrow}, x^{\uparrow} \mid x \in X\right\}$ is a nominal subset of $\mathcal{P}_{\mathrm{fs}}(X)$.

Proof. (i) For each $x \in X, x \in x_{\downarrow}\left(x \in x^{\uparrow}\right)$.
(ii) and (iii) follow from the fact that the relation " \leq " is transitive.
(iv) Applying Proposition 2.6, assume $a, b \notin \operatorname{supp} x$. We show ($a b$) $x_{\downarrow}=x_{\downarrow}$. Let $y \in x_{\downarrow}$. Then, supp $y \subseteq \operatorname{supp} x$ and so, for all $a, b \notin \operatorname{supp} x$, we have $(a b) y=y$. Thus, $(a b) x_{\downarrow}=x_{\downarrow}$. Analogously, $\operatorname{supp} x$ is a finite support for x^{\uparrow}.
(v) Since \leq is equivariant, we have

$$
\begin{aligned}
y \in(\pi x)_{\downarrow} & \Leftrightarrow y \leq \pi x \\
& \Leftrightarrow \pi^{-1} y \leq x \\
& \Leftrightarrow y \in \pi x_{\downarrow} .
\end{aligned}
$$

Analogously, $\pi x^{\uparrow}=(\pi x)^{\uparrow}$.
(vi) By (vi) and (v), \mathcal{S} is an equivariant subset of $\mathcal{P}_{\mathrm{fs}}(X)$ and so it is a nominal set.

Proposition 3.18: Let X be an sp-nominal set and $x \in X$. Then,
(i) $X \backslash x_{\downarrow}$ is a finitely supported subset of X and $\operatorname{supp}\left(X \backslash x_{\downarrow}\right) \subseteq \operatorname{supp} x$.
(ii) $X \backslash x_{\downarrow}=\bigcup_{t \in X \backslash x_{\downarrow}} t^{\uparrow}$.
(iii) $X \backslash x^{\uparrow}=\bigcup_{t \in X \backslash x \uparrow} t_{\downarrow}$.

Proof. (i) By Proposition 2.6, we show that, for every $a, b \notin \operatorname{supp} x$ and $t \in X \backslash x_{\downarrow}$, ($a b$) $t \in X \backslash x_{\downarrow}$. On the contrary, suppose ($a b$) $t \in x_{\downarrow}$. Then ($a b$) $t \leq x$ and hence, $t \leq(a b) x$. Since $a, b \notin \operatorname{supp} x, t \leq x$ which is a contradiction.
(ii) For the nontrivial part, let $y \in \bigcup_{t \in X \backslash x_{\downarrow}} t^{\uparrow}$. Then, there exists $t \in X \backslash x_{\downarrow}$ with $y \in t^{\uparrow}$. Now, if $y \in x_{\downarrow}$, then $y \leq x$ and we get $t \leq y \leq x$, which contradicts $t \in X \backslash x_{\downarrow}$.
(iii) The proof is similar to (ii).

Theorem 3.19. If $f: X \rightarrow Y$ is an sp-preserving map, then
(i) $f\left(x_{\downarrow}\right) \subseteq f(x)_{\downarrow}$.
(ii) $f\left(x^{\uparrow}\right) \subseteq f(x)^{\uparrow}$.
(iii) $\pi f\left(x_{\downarrow}\right)=f\left(\pi x_{\downarrow}\right)$.
(iv) $f\left(x_{\downarrow}\right)=f(x)_{\downarrow}$, if f is surjective and $\mathcal{Z}(Y)=\emptyset$.
(v) $f\left(x^{\uparrow}\right)=f(x)^{\uparrow}$, if f is surjective and $f(x) \notin \mathcal{Z}(Y)$.

Proof. (i) Let $y \in f\left(x_{\downarrow}\right)$. Then, there exists $t \in x_{\downarrow}$ with $f(t)=y$. Since $t \leq x$ and f is sp-preseving, $y=f(t) \leq f(x)$.
(ii) Analogous to (i) one can prove (ii).
(iii) Let $y \in \pi f\left(x_{\downarrow}\right)$. Then, $\pi^{-1} y \in f\left(x_{\downarrow}\right)$ and so there exists $t \in x_{\downarrow}$ with $f(t)=\pi^{-1} y$. Now, we have $\pi t \leq \pi x$ and $y=f(\pi t)$. Thus, $y \in f\left(\pi x_{\downarrow}\right)$. Analogously, we have $f\left(\pi x_{\downarrow}\right) \subseteq \pi f\left(x_{\downarrow}\right)$.
(iv) By (i), it is enough to show that $f(x)_{\downarrow} \subseteq f\left(x_{\downarrow}\right)$. Let $t \in f(x)_{\downarrow}$. Then, there exists $x^{\prime} \in X$ with $f\left(x^{\prime}\right)=t$. So, $f\left(x^{\prime}\right) \leq f(x)$. Now since, by Lemma 3.13, $\operatorname{supp} f\left(x^{\prime}\right)=\operatorname{supp} x^{\prime}$ and $\operatorname{supp} f(x)=\operatorname{supp} x$, we have $x^{\prime} \leq x$.
(v) Analogous to (iv) one can prove (v).

Lemma 3.20. Let $f: X \rightarrow Y$ be an sp-preseving equivariant map between spnominal sets X and Y, and $a \in Y$. Then,
(i) supp a supports $f^{-1}\left(a_{\downarrow}\right)$ and $f^{-1}\left(a_{\downarrow}\right)=\bigcup_{f(x) \in a \downarrow} x_{\downarrow}$.
(ii) supp a supports $f^{-1}\left(a^{\uparrow}\right)$ and $f^{-1}\left(a^{\uparrow}\right)=\bigcup_{f(x) \in a^{\uparrow}} x^{\uparrow}$.

Proof. (i) First, we show that supp a is a finite support for $f^{-1}\left(a_{\downarrow}\right)$. Let $d, d^{\prime} \notin$ $\operatorname{supp} a$. Then,

$$
\left(d d^{\prime}\right) f^{-1}\left(a_{\downarrow}\right)=f^{-1}\left(\left(d d^{\prime}\right) a_{\downarrow}\right)=f^{-1}\left(a_{\downarrow}\right)
$$

Now, we prove that $f^{-1}\left(a_{\downarrow}\right)=\bigcup_{f(x) \in a_{\downarrow}} x_{\downarrow}$. Let $t \in f^{-1}\left(a_{\downarrow}\right)$. Then, $f(t) \in a_{\downarrow}$. Since $t \in t_{\downarrow}, t \in \bigcup_{f(x) \in a_{\downarrow}} x_{\downarrow}$. To prove the other side, let $x^{\prime} \in \bigcup_{f(x) \in a_{\downarrow}} x_{\downarrow}$. Then, there exists $t \in X$ with $f(t) \in a_{\downarrow}$ and $x^{\prime} \leq t$. So, $\operatorname{supp} f(t) \subseteq \operatorname{supp} a$ and $\operatorname{supp} x^{\prime} \subseteq \operatorname{supp} t$. Since f is order-preserving, $\operatorname{supp} f\left(x^{\prime}\right) \subseteq \operatorname{supp} f(t)$ and so $\operatorname{supp} f\left(x^{\prime}\right) \subseteq \operatorname{supp} a$. Thus, $f\left(x^{\prime}\right) \leq a$ and so $x^{\prime} \in f^{-1}\left(a_{\downarrow}\right)$.
(ii) Is analogous to (i).

4 Some categorical properties of the category spNom

In the category spNom of sp-nominal sets the class of monics (left cancellable sppreserving maps) and the class of monomorphisms (injective sp-preserving maps) do not coincide, see the following example, while epics are exactly surjectives, by Theorem 4.2.

Example 4.1. The sp-preserving map $f: \mathbb{D}^{2} \rightarrow \mathbb{D}^{(2)} \cup\{\theta\}$ in Example 3.6 is monic while it is not injective. Indeed, since f is identity on $\mathbb{D}^{(2)}$ and $f(d, d)=\theta$, f is not injective. We show that f is monic. To do so, take $g_{1}, g_{2}: X \rightarrow \mathbb{D}^{2}$ to be sp-preserving maps with $f g_{1}=f g_{2}$. Since $\mathcal{Z}\left(\mathbb{D}^{2}\right)=\emptyset$, supp $g_{1}(x) \neq \emptyset$ and $\operatorname{supp} g_{2}(x) \neq \emptyset$, for every $x \in X$. So, by Lemma 3.13, we have supp $g_{1}(x)=$ $\operatorname{supp} x=\operatorname{supp} g_{2}(x)$. Notice that, $g_{i}(x) \in \mathbb{D}^{2}$ implies that $g_{i}(x)=(d, d)$ or $g_{i}(x)=\left(d, d^{\prime}\right)$, where $i=1,2$ and $d \neq d^{\prime}$. We have the following cases;

Case (1): If $f g_{1}(x)=f g_{2}(x)=\theta$, then $g_{1}(x)=(d, d)$ and $g_{2}(x)=\left(d^{\prime}, d^{\prime}\right)$. Since $\{d\}=\operatorname{supp} g_{1}(x)=\operatorname{supp} g_{2}(x)=\left\{d^{\prime}\right\}, d=d^{\prime}$. So, in this case, $g_{1}(x)=g_{2}(x)$.
Case (2): If $f g_{1}(x)=f g_{2}(x) \neq \theta$, then $g_{1}(x), g_{2}(x) \in \mathbb{D}^{(2)}$. Now since $f g_{1}(x)=$ $g_{1}(x)$ and $f g_{2}(x)=g_{2}(x), g_{1}(x)=g_{2}(x)$. Thus, $g_{1}=g_{2}$.

Theorem 4.2. In the category $\mathbf{s p N o m}$ epics are exactly surjectives.
Proof. Let $f: X \rightarrow Y$ be an epic sp-preserving map. We show f is surjective. On the contrary suppose f is not surjective. Hence, $Y \backslash \operatorname{Im}(f) \neq \emptyset$. We define the sp-preserving maps $g_{1}, g_{2}: Y \rightarrow Y \cup\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ to be

$$
\begin{aligned}
& g_{1}(y)= \begin{cases}y & \text { when } y \in \operatorname{Im}(f) \text { and } y^{\uparrow} \subseteq \operatorname{Im}(f) \\
\theta_{3} & \text { when } y \in \operatorname{Im}(f) \text { and } y^{\uparrow} \nsubseteq \operatorname{Im}(f) \\
\theta_{1} & \text { otherwise }\end{cases} \\
& g_{2}(y)= \begin{cases}y & \text { when } y \in \operatorname{Im}(f) \text { and } y^{\uparrow} \subseteq \operatorname{Im}(f) \\
\theta_{3} & \text { when } y \in \operatorname{Im}(f) \text { and } y^{\uparrow} \nsubseteq \operatorname{Im}(f) \\
\theta_{2} & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $g_{1} o f=g_{2} o f, g_{1}=g_{2}$ and hence, for each $y \in Y \backslash \operatorname{Im}(f), g_{1}(y)=g_{2}(y)$. Therefore, $\theta_{1}=\theta_{2}$, which is a contradiction.

Theorem 4.3. The category $\mathbf{s p N o m}$ is not regular.
Proof. We show that the sp-preserving map $f: \mathbb{D}^{2} \rightarrow \mathbb{D}^{(2)} \cup\{\theta\}$, given in Example 3.6, is not an equalizer while, by Example 4.1, it is monic. On the contrary, suppose there exist $Y \in \mathbf{s p N o m}$ and two parallel sp-preserving maps g_{1}, g_{2} such that f is an equalizer of $g_{1}, g_{2}: \mathbb{D}^{(2)} \cup\{\theta\} \rightarrow Y$. Since $g_{1} o f=g_{2} o f$, we have $g_{1} o f(d, d)=g_{2} o f(d, d)$, for every $d \in \mathbb{D}$. Therefore, $g_{1}(\theta)=g_{2}(\theta)$. Now we consider the zero map $h:\left\{\theta_{1}\right\} \rightarrow \mathbb{D}^{(2)} \cup\{\theta\}, \theta_{1} \mapsto \theta$. Since $g_{1} o h=g_{2} o h$, by universal property of equalizer, there is a unique sp-preserving map $\varphi:\left\{\theta_{1}\right\} \rightarrow \mathbb{D}^{2}$, which commutes the desired diagrams and this contradicts the fact that \mathbb{D}^{2} has no zero element.

Corollary 4.4. The category spNom is not balanced.
Proof. Consider $f: \mathbb{D}^{2} \rightarrow \mathbb{D}^{(2)} \cup\{\theta\}$, given in Example 3.6. By Example 4.1, f is monic. Since f is surjective, f is epic. Therefore, f is a bimorphism. But, since f is not injective, it is not an isomorphism.

In general the category $\mathbf{s p N o m}$ does not contains all of the products and coproducts as seen in Examples 4.5 and 4.18. Here we charactrize conditions under which products and coproducts exist.

Example 4.5. Let $X_{1}=X_{2}=\mathbb{D}$. We show that there exists no coproduct of X_{1} and X_{2} in the category spNom. On the contrary, suppose that $\left(X, \alpha_{1}, \alpha_{2}\right)$ is the coproduct of X_{1} and X_{2}. Take the singleton sp-nominal set $Z=\{\theta\}$ in which $\theta \notin \mathbb{D}$ and consider the sp-preserving maps $z, \iota: \mathbb{D} \rightarrow Z \dot{\cup} \mathbb{D}$, and $\iota_{1}, \iota_{2}: \mathbb{D} \rightarrow \mathbb{D} \times\{1,2\}$ defined by $z(d):=\theta, \iota(d):=d, \iota_{1}(d):=(d, 1)$, and $\iota_{2}(d):=(d, 2)$, for all $d \in \mathbb{D}$. Then, since X is coproduct, there exist unique sp-preserving maps φ and ψ such that the following diagrams commute.

(*)

$(* *)$

According to Diagram $(*), \varphi\left(\alpha_{2}(d)\right)=\iota_{2}(d)=(d, 2)$ and $\varphi\left(\alpha_{1}(d)\right)=\iota_{1}(d)=$ $(d, 1)$, for every $d \in \mathbb{D}$, meaning that α_{1} and α_{2} are non-zero sp-preserving maps. So, by Lemma 3.13, $\operatorname{supp} \alpha_{1}(d)=\operatorname{supp} \alpha_{2}(d)=\{d\}$. By Diagram (**), we have $\psi\left(\alpha_{2}(d)\right)=\theta$ and $\psi\left(\alpha_{1}(d)\right)=\iota(d)=d$. Now, $\operatorname{supp} \alpha_{1}(d)=\operatorname{supp} \alpha_{2}(d)$ implies that $\alpha_{1}(d) \leq \alpha_{2}(d)$. Now, since ψ is order preserving, $d=\psi\left(\alpha_{1}(d)\right) \leq$ $\psi\left(\alpha_{2}(d)\right)=\theta$ which is a contradiction.

The following theorem determines which family of sp-nominal sets has coproduct.

Theorem 4.6. The coproduct of a family of sp-nominal sets $\left(X_{i}\right)_{i \in I}$ exists if and only if all X_{i} 's are discrete except probably one.

Proof. (\Leftarrow) If X_{i} 's are all discrete, then one can easily see that the coproduct is the disjoint union of X_{i} 's. Now let X_{t} be the non-discrete member of the family. Then we have $X_{j}=\mathcal{Z}\left(X_{j}\right)$, for all $j \neq t$ and for every sp-nominal set
$\left(B,\left(\beta_{i}: X_{i} \rightarrow B\right)_{i \in I}\right)$, we have the following commutative diagram

in which $\iota_{i}: X_{i} \rightarrow \bigcup_{i \in I}\left(X_{i} \times\{i\}\right)$ maps every $x \in X_{i}$ to (x, i), for every $i \in I$, and φ is uniquely defined by $\varphi((x, i))=\beta_{i}(x)$, for every $(x, i) \in \bigcup_{i \in I}\left(X_{i} \times\{i\}\right)$. So $\bigcup_{i \in I}\left(X_{i} \times\{i\}\right)$ is the coproduct.
(\Rightarrow) Suppose $\left(X,\left(\alpha_{i}\right)_{i \in I}\right)$ is the coproduct of $\left(X_{i}\right)_{i \in I}$ and there exists some $t \in I$ such that X_{t} is non-discrete. We show that X_{i} 's are discrete, for all $i \neq t$. Since X_{t} is non-discrete, there exists a non-zero element $x_{t} \in X_{t}$. On the contrary, suppose X_{j} is non-discrete, for some $j \in I$, with $j \neq t$. Suppose $x_{j} \in X_{j} \backslash \mathcal{Z}\left(X_{j}\right)$. Since $\left(X,\left(\alpha_{i}\right)_{i \in I}\right)$ is coproduct, we have the following commutative diagrams;

where ι_{i} 's are inclusions, $h_{i}=\iota_{i}$, for all $i \neq t$, and h_{t} is the zero map. According to $\operatorname{Diagram}(*), \varphi\left(\alpha_{t}\left(x_{t}\right)\right)=\left(x_{t}, t\right)$ and $\varphi\left(\alpha_{j}\left(x_{j}\right)\right)=\left(x_{j}, j\right)$. So, $\alpha_{t}\left(x_{t}\right)$ and $\alpha_{j}\left(x_{j}\right)$ are non-zero. Applying Lemma 3.13, $\operatorname{supp} \alpha_{t}\left(x_{t}\right)=\operatorname{supp} x_{t}$ and $\operatorname{supp} \alpha_{j}\left(x_{j}\right)=$ $\operatorname{supp} x_{j}$. By Diagram $(* *)$, we have $\psi\left(\alpha_{t}\left(x_{t}\right)\right)=\theta$ and $\psi\left(\alpha_{j}\left(x_{j}\right)\right)=\left(x_{j}, j\right)$. By Lemma 3.4, there exists π with $\pi \alpha_{j}\left(x_{j}\right) \leq \alpha_{t}\left(x_{t}\right)$ or $\pi \alpha_{t}\left(x_{t}\right) \leq \alpha_{j}\left(x_{j}\right)$. If $\alpha_{j}\left(\pi x_{j}\right) \leq \alpha_{t}\left(x_{t}\right)$, then we have $\left(\pi x_{j}, j\right)=h_{j}\left(\pi x_{j}\right)=\psi\left(\alpha_{j}\left(\pi x_{j}\right)\right) \leq \psi\left(\alpha_{t}\left(x_{t}\right)\right)=$ $h_{t}\left(x_{t}\right)=\theta$ which is a contradiction. If $\pi \alpha_{t}\left(x_{t}\right) \leq \alpha_{j}\left(x_{j}\right)$, we can then make a similar diagram to (**), by exchanging the definitions of h_{j} and h_{t} in Diagram $(* *)$, and get a contradiction using a similar argument.

Now we examine the existence of products, but first take note the following corollary of Lemma 3.13.

Corollary 4.7. If $f: X \rightarrow A$ is an sp-preserving map between sp-nominal sets with $\mathcal{Z}(A)=\emptyset$, then the following diagram is commutative.

Lemma 4.8. Let $\left(P,\left(p_{i}: P \rightarrow A_{i}\right)_{i \in I}\right)$ be a product of a family $\left(A_{i}\right)_{i \in I}$ with $\mathcal{Z}\left(A_{i}\right)=\emptyset$ in the category $\mathbf{s p N o m}$ which is not empty. Then
(i) for all i, the following diagram is commutative.

(ii) for every sp-nominal set X with the commutative diagram

there exists a unique sp-preserving $h: X \rightarrow P$ with the following commutative diagram.

Proof. (i) Follows by Corollary 4.7.
(ii) First we note that since $\mathcal{Z}\left(A_{i}\right)=\emptyset$, for each $i \in I$, by (i), $\mathcal{Z}(P)=\emptyset$. Now for every sp-nominal set X with a family of sp-preserving maps $\left(q_{i}: X \rightarrow A_{i}\right)$, by the universal property of product, one can get a unique sp-preserving map $h: X \rightarrow P$ with $p_{i} h=q_{i}$, for every $i \in I$. Now the result follows from (i).

Theorem 4.9. Let A be an sp-nominal set with $\mathcal{Z}(A)=\emptyset$ and supp_{A} is injetive. Then, product of A and A is $\left(A, \mathrm{id}_{A}, \mathrm{id}_{A}\right)$.

Proof. Consider $X \in \mathbf{s p N o m}$ together with the sp-preserving maps $f_{1}, f_{2}: X \rightarrow A$. By Corollary 3.14 (iii), we have $f_{1}=f_{2}$. So we get the unique sp-preserving map $f=f_{1}: X \rightarrow A$ with $f \circ \mathrm{id}_{A}=f_{1}=f_{2}$.

Example 4.10. The product of the sp-nominal sets \mathbb{D} and \mathbb{D} is $\left(\mathbb{D}, \mathrm{id}_{\mathbb{D}}, \mathrm{id}_{\mathbb{D}}\right)$.
Lemma 4.11. Let $f: X \rightarrow \mathbb{D}^{(n)}$ be an sp-preserving map. Then,
(i) for every $x \in X,|\operatorname{supp} x|=n$.
(ii) X is isomorphic to $\mathbb{D}^{(n)}$, if $X=\operatorname{Perm}(\mathbb{D}) x$, for some $x \in X$.
(iii) X is isomorphic to a disjoint union of $\mathbb{D}^{(n)}$.

Proof. (i) Since $\mathcal{Z}\left(\mathbb{D}^{(n)}\right)=\emptyset$, by Lemma 3.13, $\operatorname{supp} x=\operatorname{supp} f(x)=$ $\operatorname{supp}\left(d_{1}, \ldots, d_{n}\right)=\left\{d_{1}, \ldots, d_{n}\right\}$.
(ii) We show that f is bijective. But first we note that $f(\pi x)=\left(\pi d_{1}, \ldots, \pi d_{n}\right)$, for every $\pi \in \operatorname{Perm}(\mathbb{D})$, in which $\left(d_{1}, \ldots, d_{n}\right)=f(x)$. Now let $f(\pi x)=f(\delta x)$. Then $\left(\pi d_{1}, \ldots, \pi d_{n}\right)=\left(\delta d_{1}, \ldots, \delta d_{n}\right)$, and hence, $\pi^{-1} \delta \in \operatorname{Fix}\left(\left\{d_{1}, \ldots, d_{n}\right\}\right)=$ Fix $(\operatorname{supp} x)$. Therefore, $\pi^{-1} \delta x=x$ and hence, $\delta x=\pi x$. The map f is also onto, since for every $\left\{b_{1}, \ldots, b_{n}\right\} \in \mathbb{D}^{(n)}, f\left(\left(d_{1} b_{1}\right) x, \cdots,\left(d_{n} b_{n}\right) x\right)=\left(b_{1}, \ldots, b_{n}\right)$.
(iii) Since X as a nominal set is the disjoint union of its orbits, by (ii), we are done.

We mention the following remark and terminology used in Theorem 4.13 with considering $\dot{U}_{i \in I} \mathbb{D}^{(n)}=\mathbb{D}^{(n)} \times I$.

Remark 4.12. (i) If P is the product of a family of $\left(\mathbb{D}^{(n)}\right)_{i \in I}$, then P is a disjoint union of $\mathbb{D}^{(n)}$'s, by Lemma 4.11 (iii).
(ii) Since the nominal set $\mathbb{D}^{(n)}$ is transitive, for every two elements $\left(d_{1}, d_{2}, \ldots, d_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{D}^{(n)}$ we have $\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ $\left(d_{1} b_{1}\right)\left(d_{2} b_{2}\right) \cdots\left(b_{n} d_{n}\right)\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, every equivariant map $\sigma: \mathbb{D}^{(n)} \rightarrow$ $\mathbb{D}^{(n)}$ is bijective and, by [8, Lemma $\left.2 \cdot 12\right]$, it is sp-preserving.
(iii) Since the nominal set $\mathbb{D}^{(n)}$ is cyclic, the set $S=\left\{\sigma: \mathbb{D}^{(n)} \rightarrow \mathbb{D}^{(n)}\right.$: σ is equivariant $\}$ has n ! elements, and so one can cosider $S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$.
(iv) We define $\varphi: \dot{\bigcup}_{i \in I} \mathbb{D}^{(n)} \rightarrow \mathbb{D}^{(n)}$ by $\varphi\left(\left(d_{1}, \ldots, d_{n}\right), i\right):=$ $\left(d_{\sigma_{i}(1)}, \ldots, d_{\sigma_{i}(n)}\right)$ and denote it by $\varphi\left(\left(d_{1}, \ldots, d_{n}\right), i\right)=\sigma_{i}\left(d_{1}, \ldots, d_{n}\right)$, where $i \in I=\{1,2, \ldots, n!\}$ and $\sigma_{i} \in S$. One can easily check that φ is sp-preserving map.
(v) It is clear that $\pi_{1}: \mathbb{D}^{(n)} \times I \rightarrow \mathbb{D}^{(n)}$ by $\pi_{1}\left(\left(d_{1}, \ldots, d_{n}\right), i\right)=\left(d_{1}, \ldots, d_{n}\right)$, for all $i \in I$, is an sp-preserving map.
(vi) The map $f: \mathbb{D}^{(n)} \times J \rightarrow \mathbb{D}^{(n)}$ is an sp-preserving if and only if there exists $\sigma \in S$ with $f\left(\left(d_{1}, \ldots, d_{n}\right), j\right)=\sigma\left(d_{1}, \ldots, d_{n}\right)$.

Theorem 4.13. The triple $\left(P=\dot{U}_{i \in I} \mathbb{D}^{(n)}, \pi_{1}, \varphi\right)$ is the product of $\mathbb{D}^{(n)}$ and $\mathbb{D}^{(n)}$, where φ, π_{1} are defined in Remark 4.12 (iv, v) and $I=\{1,2, \ldots, n!\}$.

Proof. Consider (X, f, g), in which X is an sp-nominal set and $f, g: X \rightarrow \mathbb{D}^{(n)}$ are sp-preserving maps. Then, by Lemma 4.11 (iii) and since $\mathbb{D}^{(n)}$ is cyclic, $X=\dot{U}_{J} \operatorname{Perm}(\mathbb{D}) x_{j}$. If $f\left(x_{j}\right)=\left(b_{1}, \ldots, b_{n}\right)$ and $g\left(x_{j}\right)=\left(c_{1}, \ldots, c_{n}\right)$, for each $j \in J$, then since, by Lemma 3.13, we have $\left\{b_{1}, \cdots, b_{n}\right\}=\operatorname{supp} f\left(x_{j}\right)=\operatorname{supp} x_{j}=$ $\operatorname{supp} g\left(x_{j}\right)=\left\{c_{1}, \ldots, c_{n}\right\}$, there exists $\sigma_{k_{j}} \in S$ with $\left.\sigma_{k_{j}} f\right|_{\text {Perm(D) } x_{j}}=\left.g\right|_{\text {Perm(D) } x_{j}}$. Now we consider $h: X \rightarrow P$ to be the equivariant map defined by $h\left(x_{j}\right)=$ $\left(f\left(x_{j}\right), k_{j}\right)$. Then we have $f=\pi_{1} h$ and $\varphi h=g$, means the desired diagrams commutes. Also uniqueness follows from the definition of h.

Remark 4.14. (i) For given sp-nominal sets X and Y with $\mathcal{Z}(X)=\mathcal{Z}(Y)=\emptyset$, if P is the non-empty product of X and Y then applying Lemma 3.13, for every $t \in P$, there exist $x \in X$ and $y \in Y$ with $\operatorname{supp} t=\operatorname{supp} x=\operatorname{supp} y$. Note that, the product of cyclic nominal sets $\operatorname{Perm}(\mathbb{D}) x$ and $\operatorname{Perm}(\mathbb{D}) x^{\prime}$ with $|\operatorname{supp} x| \neq\left|\operatorname{supp} x^{\prime}\right|$ is empty nominal set.
(ii) Conisder sp-nominal sets $X=\operatorname{Perm}(\mathbb{D}) x$ and $X^{\prime}=\operatorname{Perm}(\mathbb{D}) x^{\prime} \cup\{\theta\}$ where x, x^{\prime} are non-zero and $|\operatorname{supp} x| \neq\left|\operatorname{supp} x^{\prime}\right|$. If $f: Y \rightarrow X$ and $g: Y \rightarrow X^{\prime}$ are sp-preserving maps, then applying Lemma 3.13, one can see that g must be a zero map.
(iii) Suppose X and Y are two non-discrete sp-nominal sets with $|\operatorname{supp} x| \neq$ \mid supp $y \mid$, for all $x \in X$ and $y \in Y$. Let $p, q: Z \rightarrow X \dot{\cup} Y$ be two sp-preserving maps. Then, $p(z) \in X \Leftrightarrow q(z) \in X$.

Example 4.15. The product of $\mathbb{D}^{(n)}$ and $\mathbb{D}^{(k)} \cup\{\theta\}$, with $k \neq n$, is $\left(\mathbb{D}^{(n)}, z\right.$, id $\left._{\mathbb{D}^{(n)}}\right)$, in which $\mathrm{z}: \mathbb{D}^{(n)} \rightarrow \mathbb{D}^{(k)} \cup\{\theta\}$ defined by $z\left(\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right)=\theta$, for all $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{D}^{(n)}$. Since, for any $X \in \mathbf{s p N o m}$ together with sp-preserving maps $f_{1}: X \rightarrow \mathbb{D}^{(n)}$, and $f_{2}: X \rightarrow \mathbb{D}^{(k)} \cup\{\theta\}$, by Remark 4.14 (ii), f_{2} is a zero
map, and we have the following commutative diagram.

Theorem 4.16. Suppose X and Y are two sp-nominal sets with $|\operatorname{supp} x| \neq|\operatorname{supp} y|$, for all $x \in X$ and $y \in Y$. Let $\mathcal{Z}(X)=\mathcal{Z}(Y)=\emptyset$ and $\left(P, p_{1}, p_{2}\right)$ be the product of X and X and $\left(Q, q_{1} . q_{2}\right)$ be the product of Y and Y. Then, $P \dot{\cup} Q$ is the product of $X \dot{\cup} Y$ and $X \dot{\cup} Y$.

Proof. Consider the diagram

in which $p(a)=\left\{\begin{array}{ll}p_{1}(a) & a \in P \\ q_{1}(a) & a \in Q\end{array}\right.$ and $q(a)=\left\{\begin{array}{ll}p_{2}(a) & a \in P \\ q_{2}(a) & a \in Q\end{array}\right.$. Then the following cases may occur.
Case (1): If $f(Z) \subseteq X$, then by Remark 4.14 (iii), $g(Z) \subseteq X$ and we get the commutative diagram

by the universal property of product which implies the commutative diagram

in which $h=h_{1}$.
Case (2): If $f(Z) \subseteq Y$, then $g(z) \subseteq Y$, by Remark 4.14 (iii), and the result is proved analogous to Case (1).
Case (3): If $f(Z) \cap X \neq \emptyset$ and $f(Z) \cap Y \neq \emptyset$, then we have $Z=Z_{1} \dot{\cup} Z_{2}$ in which $Z_{1}=\{z \in Z \mid f(z) \in X\}$ and $Z_{2}=\{z \in Z \mid f(z) \in Y\}$. Therefore, we get $h_{1}: Z_{1} \rightarrow P$, by Case (1) and $h_{2}: Z_{2} \rightarrow Q$ by Case (2). Now we define the sp-preserving map. Therefore, $h: Z \rightarrow P \dot{\cup} Q$ by

$$
h(z)= \begin{cases}h_{1}(z) & z \in Z_{1} \\ h_{2}(z) & z \in Z_{2}\end{cases}
$$

which commutes the desired diagram.
Corollary 4.17. (i) The product of \mathbb{D}^{2} and \mathbb{D}^{2} exists.
(ii) The product of \mathbb{D}^{3} and \mathbb{D}^{3} exists.
(iii) The product of \mathbb{D}^{n} and \mathbb{D}^{n} exists.
(iv) The product of \mathbb{D}^{n} and $\mathbb{D}^{(k)}$ with $k \leq n$ exists.
(v) The product of \mathbb{D}^{n} and \mathbb{D}^{k} with $k \leq n$ exists.

Proof. (i) Notice that, $\mathbb{D}^{2}=\{(d, d) \mid d \in \mathbb{D}\} \cup \mathbb{D}{ }^{(2)}$ where $\{(d, d) \mid d \in \mathbb{D}\} \cong \mathbb{D}$. Let $X=\{(d, d) \mid d \in \mathbb{D}\}$ and $Y=\mathbb{D}^{(2)}$. By Theorem 4.13, the product of X and X, and the product of Y and Y exist. So, applying Theorem 4.16, the product of \mathbb{D}^{2} and \mathbb{D}^{2} exists. Indeed, the product \mathbb{D}^{2} and \mathbb{D}^{2} is $\left(\mathbb{D}^{(2)} \times\{1,2\} \cup \mathbb{D}, \rho_{1}, \rho_{2}\right)$ in which $\rho_{j}(d)=(d, d)$, for $j=1,2$ and

$$
\rho_{j}\left(\left(d_{1}, d_{2}\right), i\right)= \begin{cases}\left(d_{1}, d_{2}\right) & i=1,2, j=1 \\ \left(d_{1}, d_{2}\right) & i=1, j=2 \\ \left(d_{2}, d_{1}\right) & i=2, j=2\end{cases}
$$

(ii) We have

$$
\mathbb{D}^{3}=\{(d, d, d) \mid d \in \mathbb{D}\} \dot{\cup}\left\{\left(d, d, d^{\prime}\right) \mid d \neq d^{\prime} \in \mathbb{D}\right\} \dot{\cup}\left\{\left(d, d^{\prime}, d\right) \mid d \neq d^{\prime} \in \mathbb{D}\right\}
$$

$$
\dot{\cup}\left\{\left(d^{\prime}, d, d\right) \mid d \neq d^{\prime} \in \mathbb{D}\right\} \dot{\cup} \mathbb{D}^{(3)}
$$

So, $\mathbb{D}^{3} \cong \mathbb{D} \dot{\cup}\left(\mathbb{D}^{(2)} \times\{1,2,3\}\right) \dot{\cup} \mathbb{D}^{(3)}$. By Theorem 4.13, the product of $\mathbb{D}^{(i)}$ and $\mathbb{D}^{(i)}$ exists, for $i=1,2,3$. So, applying Theorem 4.16, the product of \mathbb{D}^{3} and \mathbb{D}^{3} exists. Indeed, the product of \mathbb{D}^{3} and \mathbb{D}^{3} is $\left(\left(\dot{\cup}_{i=1}^{6} \mathbb{D}{ }^{(3)} \times\{i\}\right) \cup\left(\dot{\cup}_{i=1}^{9} \mathbb{D}(2) \times\{i\}\right) \cup\right.$ $\left.\mathbb{D}, \rho_{1}, \rho_{2}\right)$, in which

$$
\begin{cases}\rho_{1}(d)=(d, d, d) & \\ \rho_{1}\left(\left(d_{1}, d_{2}\right), i\right)=\left(\left(d_{1}, d_{2}\right), j\right) & j \in\{1,2,3\}, i \in\{1, \ldots, 6\} \\ \rho_{1}\left(\left(d_{1}, d_{2}, d_{3}\right), i\right)=\left(d_{1}, d_{2}, d_{3}\right) & i \in\{1, \ldots, 6\}\end{cases}
$$

and

$$
\begin{cases}\rho_{2}(d)=(d, d, d) & \\ \rho_{2}\left(\left(d_{1}, d_{2}\right), i\right)=\left(\left(d_{\sigma_{i(1)}}, d_{\sigma_{i(2)}}\right), j\right) & j \in\{1,2,3\}, \sigma_{i} \in S_{2} \\ \rho_{2}\left(\left(d_{1}, d_{2}, d_{3}\right), i\right)=\left(d_{\sigma_{i}(1)}, d_{\sigma_{i}(2)}, d_{\sigma_{i}(3)}\right) & \sigma_{i} \in S_{3}\end{cases}
$$

(iii) Similar to (i) and (ii), follows by Theorems 4.13 and 4.16.
(iv) Note that, \mathbb{D}^{n} is isomorphic to a disjoint union of $\mathbb{D}^{(i)}$,s where $i=$ $1,2,3, \ldots, n$. Let $\mathbb{D}^{n}=\dot{U}_{i}\left(\mathbb{D}^{(i)} \times I_{i}\right)$. By Remark 4.14(i), $\mathbb{D}^{(k)}$ and $\mathbb{D}^{(i)}$ when $i \neq k$ have no product. So, the product of $\mathbb{D}^{(k)}$ and \mathbb{D}^{n} is equal to the product of $\mathbb{D}^{(k)}$ and $\mathbb{D}^{(k)} \times I_{k}$ which exists by Theorems 4.16 and 4.13.
(v) Suppose $\mathbb{D}^{k}=\dot{U}_{i}\left(\mathbb{D}^{(i)} \times I_{i}\right)$. By (iv), the product of \mathbb{D}^{n} and $\mathbb{D}^{(i)}$ exists. So, applying Theorems 4.16 and 4.13 we get the result.

Example 4.18. Let $X_{1}=\mathbb{D}$ and $X_{2}=\mathbb{D} \cup\{\theta\}$. We show that there exists no product of X_{1} and X_{2} in the category spNom. On the contrary, suppose that $\left(P, \rho_{1}, \rho_{2}\right)$ is the product of X_{1} and X_{2}. Then, by the universal property of product, we have the
following commutative diagrams

(*)

(**)
in which ι is inclusion and z is the zero sp-preserving map. By Diagram (*) we have $\rho_{1}(\varphi(d))=\operatorname{id}(d)=d$ and $\rho_{2}(\varphi(d))=\iota(d)=d$, for every $d \in \mathbb{D}$, meaning that ρ_{1} and ρ_{2} are non-zero sp-preserving maps. So, by Lemma 3.13, $\operatorname{supp} \rho_{1}(\varphi(d))=\operatorname{supp} \rho_{2}(\varphi(d))=\{d\}$. By Diagram $(* *)$, we have $\rho_{2}(\psi(d))=\theta$ and $\rho_{1}(\psi(d))=\operatorname{id}(d)=d$. Since, $\operatorname{supp} \varphi(d)=\operatorname{supp} \psi(d), \varphi(d) \leq \psi(d)$. But $\rho_{2}(\varphi(d)) \npreceq \rho_{2}(\psi(d))$ which is a contradiction.

Theorem 4.19. Let X and Y be strong nominal sets and $\mathcal{Z}(X)=\mathcal{Z}(Y)=\emptyset$. Also let $X=\dot{U}_{i \in I} \operatorname{Perm}(\mathbb{D}) x_{i}$ and $Y=\dot{U}_{j \in J} \operatorname{Perm}(\mathbb{D}) y_{j}$. Then $P=\left(\left(\dot{U}_{i \in I}\left(\operatorname{Perm}(\mathbb{D}) x_{i} \times\right.\right.\right.$ $\left.\left.\left\{y \in Y \mid \operatorname{supp} y=\operatorname{supp} x_{i}\right\}\right), \rho_{1}, \rho_{2}\right)$, with the action $\pi(x, y)=(\pi x, y)$, for all $\pi \in \operatorname{Perm}(\mathbb{D})$ and $(x, y) \in P$, is the product of X and Y in $\mathbf{s p N o m}$, in which ρ_{1} is projection map on the first component and $\rho_{2}: P \rightarrow Y$ is defined by $\rho_{2}\left(\pi x_{i}, y\right)=\pi y$.

Proof. First we note that $\operatorname{supp}(x, y)=\operatorname{supp} x$, for every $(x, y) \in P$. Hence, P is a nominal set and ρ_{1} is an sp-preserving map. Also ρ_{2} is well-defined, since if $\left(\pi x_{i}, y\right)=\left(\pi_{1} x_{i}, y\right)$ with supp $x_{i}=\operatorname{supp} y$. Hence, $\pi_{1}^{-1} \pi x_{i}=x_{i}$. Since supp $x_{i}=$ supp y, by [8, Theorem 2.7], $\pi_{1}^{-1} \pi y=y$. So ρ_{2} is well-defined. The map ρ_{2} is also sp-preserving. Indeed, if $\left(\pi x_{i}, y\right) \leq\left(\pi_{1} x_{j}, y^{\prime}\right)$, for some $\left(\pi x_{i}, y\right),\left(\pi_{1} x_{j}, y^{\prime}\right) \in$ P, then $\operatorname{supp} \pi x_{i} \subseteq \operatorname{supp} \pi_{1} x_{j}$. Since $\operatorname{supp} x_{i}=\operatorname{supp} y$ and $\operatorname{supp} x_{j}=\operatorname{supp} y^{\prime}$, $\pi \operatorname{supp} y \subseteq \pi_{1} \operatorname{supp} y^{\prime}$ and we get the result.

Now consider $N \in \operatorname{spNom}$ together with sp-preserving maps $f_{1}: N \rightarrow X$ and $f_{2}: N \rightarrow Y$. Since $\mathcal{Z}(X)=\mathcal{Z}(Y)=\emptyset$, by Lemma 3.13, $\operatorname{supp} n=\operatorname{supp} f_{1}(n)=$ $\operatorname{supp} f_{2}(n)$, for all $n \in N$. Define $\varphi: N \rightarrow P$ by $n \mapsto\left(f_{1}(n), \pi^{-1} f_{2}(n)\right)$ in which $f_{1}(n)=\pi x_{i}$, for some $\pi \in \operatorname{Perm}(\mathbb{D})$ and $i \in I$. Since supp $x_{i}=\pi^{-1} \operatorname{supp} f_{2}(n)$, we have $\left(x_{i}, \pi^{-1} f_{2}(n)\right) \in P$, and hence $\varphi(n)=\left(\pi x_{i}, \pi^{-1} f_{2}(n)\right)=\pi\left(x_{i}, \pi^{-1} f_{2}(n)\right) \in$ P. Since f_{1} preserves support-preorder, so is φ. The $\operatorname{map} \varphi$ is equivariant, because
for every $\pi \in \operatorname{Perm}(\mathbb{D})$ and $n \in N$ we have

$$
\begin{aligned}
\varphi\left(\pi_{1} n\right) & =\left(f_{1}\left(\pi_{1} n\right),\left(\pi_{1} \pi\right)^{-1} f_{2}\left(\pi_{1} n\right)\right) \\
& =\left(\pi_{1} f_{1}(n), \pi^{-1} \pi_{1}^{-1} f_{2}\left(\pi_{1} n\right)\right) \\
& =\left(\pi_{1} f_{1}(n), \pi^{-1} \pi_{1}^{-1} \pi_{1} f_{2}(n)\right) \\
& =\left(\pi_{1} f_{1}(n), \pi^{-1} f_{2}(n)\right) \\
& =\pi_{1}\left(f_{1}(n), \pi^{-1} f_{2}(n)\right) \\
& =\pi_{1} \varphi(n) .
\end{aligned}
$$

Also $\rho_{1} o \varphi(n)=f_{1}(n)$ and $\rho_{2} \sigma \varphi(n)=\rho_{2}\left(f_{1}(n), \pi^{-1} f_{2}(n)\right)=\pi \pi^{-1} f_{2}(n)=f_{2}(n)$. One can easily check that φ is the unique sp-preserving map with $\rho_{1} \varphi=f_{1}$ and $\rho_{2} \varphi=f_{2}$.

Given arbitrary $X_{1}, X_{2} \in \mathbf{s p N o m}$, if at least one of X_{1} or X_{2} is discrete then one can easily see the product of X_{1} and X_{2} is ($X_{1} \times X_{2}, \pi_{1}, \pi_{2}$). In the following we characterize conditions under which the product of non-discrete sp-nominal sets exists.

Theorem 4.20. The product of non-discrete nominal sets X and Y exists if and only if at least one of X or Y has no zero element, and if one of X or Y has some zero element (s), the condition $\{\operatorname{supp} x \mid x \in X\} \cap\{\operatorname{supp} y \mid y \in Y\}=\emptyset$ is required for the product to exist.

Proof. (\Rightarrow) Suppose $\mathcal{Z}(X) \neq \emptyset$. We show that the existence of product implies $\mathcal{Z}(Y)=\emptyset$. On the contrary, suppose that $\mathcal{Z}(Y) \neq \emptyset$ and $\theta_{1} \in \mathcal{Z}(X)$ and $\theta_{2} \in \mathcal{Z}(Y)$, and $\left(P, \rho_{1}, \rho_{2}\right)$ is the product of X and Y in spNom. Consider the sp-preserving maps $\mathrm{z}_{1}: X \rightarrow Y$ defined by $\mathrm{z}_{1}(x)=\theta_{2}$, for all $x \in X$, and $\mathrm{z}_{2}: Y \rightarrow X$ defined by $\mathrm{z}_{2}(y)=\theta_{1}$, for all $y \in Y$. Then, by the universal property of product, we have the following commutative diagrams.

Then since $\rho_{1}(\varphi(x))=\operatorname{id}(x)=x$, for every $x \in X$, we have ρ_{1} is a nonzero sp-preserving map. Analogously, one can see that ρ_{2} is a non-zero sppreserving map. By the assumption we can take $x \in X \backslash \mathcal{Z}(X)$ and $y \in Y \backslash \mathcal{Z}(Y)$.

Suppose $|\operatorname{supp} x| \leq|\operatorname{supp} y|$. It can be assumed $\operatorname{supp} x \subseteq \operatorname{supp} y$ without loss of generality. So, by Lemma 3.13, $\operatorname{supp} \rho_{1}(\varphi(x))=\operatorname{supp} \varphi(x)=\operatorname{supp} x$ and $\operatorname{supp} \rho_{2}(\psi(y))=\operatorname{supp} \psi(y)=\operatorname{supp} y$. Hence, $\varphi(x) \leq \psi(y)$. But, by the above commutative diagrams, $\rho_{1}\left(\varphi(x) \npreceq \rho_{1}(\psi(y))\right.$ which is a contradiction. Hence, $\mathcal{Z}(Y)=\emptyset$.

Now we show that in the case $\mathcal{Z}(X) \neq \emptyset, \mathcal{Z}(Y)=\emptyset$, the existence of product implies $\{\operatorname{supp} x \mid x \in X\} \cap\{\operatorname{supp} y \mid y \in Y\}=\emptyset$. On the contrary, suppose that there are $x_{1} \in X$ and $y_{1} \in Y$ with $\operatorname{supp} x_{1}=\operatorname{supp} y_{1}$. Since $\mathcal{Z}(Y)=\emptyset, x_{1} \notin \mathcal{Z}(X)$. Consider the sp-preserving maps $z, f: Y \rightarrow X$ defined by $z(y)=\theta_{1}$, for all $y \in Y$, and

$$
f(y)= \begin{cases}\pi x_{1} & \text { when } y=\pi y_{1} \in \operatorname{Perm}(\mathbb{D}) y_{1} \\ \theta_{1} & \text { otherwise }\end{cases}
$$

Then since P is product, we get the following commutative diagrams

which implies $\rho_{2}\left(\varphi\left(y_{1}\right)\right)=\operatorname{id}\left(y_{1}\right)=y_{1}$ and $\rho_{1}\left(\psi\left(y_{1}\right)\right)=f\left(y_{1}\right)=x_{1}$. Since $\rho_{1}\left(\varphi\left(y_{1}\right)\right)=\theta_{1}$ and $\rho_{1}\left(\psi\left(y_{1}\right)\right)=x_{1}, \psi\left(y_{1}\right) \neq \varphi\left(y_{1}\right)$. So, by Lemma 3.13, $\operatorname{supp} \rho_{2}\left(\varphi\left(y_{1}\right)\right)=\operatorname{supp} \varphi\left(y_{1}\right)=\operatorname{supp} y_{1}$ and $\operatorname{supp} \rho_{1}\left(\psi\left(y_{1}\right)\right)=\operatorname{supp} \psi\left(y_{1}\right)=$ supp y_{1}. Hence, $\psi\left(y_{1}\right) \leq \varphi\left(y_{1}\right)$ but $\rho_{1}\left(\psi\left(y_{1}\right)\right) \npreceq \rho_{1}\left(\varphi\left(y_{1}\right)\right)$ which is a contradiction.
(\Leftarrow) If $\mathcal{Z}(X)=\mathcal{Z}(Y)=\emptyset$, then Theorem 4.19 implies the result. Now let $\mathcal{Z}(Y)=\emptyset$ and $\{\operatorname{supp} x \mid x \in X\} \cap\{\operatorname{supp} y \mid y \in Y\}=\emptyset$. Then we show that $\left(\cup_{\theta_{i} \in \mathcal{Z}(X)}(Y \times\{i\}), \pi, z\right)$, in which $\pi: \bigcup_{\theta_{i} \in \mathcal{Z}(X)}(Y \times\{i\}) \rightarrow Y$ defined by $\pi((y, i)):=y$ and $z: \bigcup_{\theta_{i} \in \mathcal{Z}(X)}(Y \times\{i\}) \rightarrow X$ defined by $z((y, i)):=\theta_{i}$, for every $(y, i) \in \bigcup_{\theta_{i} \in \mathcal{Z}(X)}(Y \times\{i\})$, is the product of X_{1} and X_{2}. To do so, consider $A \in \mathbf{s p N o m}$ together with sp-preserving maps $f: A \rightarrow X$ and $g: A \rightarrow Y$. Since $\mathcal{Z}(Y)=\emptyset$, by Lemma 3.13, $\operatorname{supp} a \neq \emptyset$ and $\operatorname{supp} a=\operatorname{supp} g(a)$, for all $a \in A$. Also since $\{\operatorname{supp} x \mid x \in X\} \cap\{\operatorname{supp} y \mid y \in Y\}=\emptyset$, Lemma 3.13 implies that $f(a) \in \mathcal{Z}(X)$, for all $a \in A$. We define $\varphi: A \rightarrow \dot{U}_{i \in \mathcal{Z}(X)}(Y \times\{i\})$ to be $\varphi(a)=(g(a), i)$, in which $f(a)=\theta_{i} \in \mathcal{Z}(X)$, for every $a \in A$. Since g is an sp-preserving map and $f(a) \in \mathcal{Z}(X)$, for all $a \in A$, the map φ is sp-preserving making the desired diagram commute.

5 Nominal space

Each nominal set X can be considered as a topological space with the support segment topology (or simply, support topology) arised from $S=\left\{x_{\downarrow}, x^{\uparrow} \mid x \in X\right\}$ as the subbasis. The nominal set with the support topology, (X, \mathcal{S}), is called a nominal space. This section is devoted to study the topological properties of nominal spaces.

Example 5.1. According to Example 3.2,
(i) the support topology on \mathbb{D} is discrete.
(ii) the support topologies on $\mathcal{P}_{\text {cof }}(\mathbb{D})$ and $\mathcal{P}_{\mathrm{f}}(\mathbb{D})$ are also discrete. Indeed, for each $A \in \mathcal{P}_{\text {cof }}(\mathbb{D}), A^{\uparrow} \cap A_{\downarrow}=\left\{A^{\prime} \in \mathcal{P}_{\text {cof }}(\mathbb{D}) \mid \operatorname{supp} A^{\prime}=\operatorname{supp} A\right\}=\{A\}$. Similarly one can show that the nominal space $\mathcal{P}_{\mathrm{f}}(\mathbb{D})$ is discrete.
(iii) the support topology on $\mathcal{P}_{\text {fs }}(\mathbb{D})$ is non-discrete. Because for each $A \in$ $\mathcal{P}_{\mathrm{fs}}(\mathbb{D}), A^{\uparrow} \cap A_{\downarrow}=\left\{A^{\prime} \in \mathrm{P}_{\mathrm{fs}}(\mathbb{D}) \mid \operatorname{supp} A^{\prime}=\operatorname{supp} A\right\}=\left\{A, A^{c}\right\}$.

Definition 5.2. A congruence relation ρ on X saturates $L \subseteq X$ if the condition $u \in L$ and $u \rho v$ imply $v \in L$.

Lemma 5.3. Let X be a nominal space and $U \in \mathcal{S}$. Then, \sim saturates U.
Proof. Let $x \in U$ and $x \sim y$. Then, since $U=\bigcup_{i \in I} \bigcap_{j \in J} V_{i_{j}}$, in which J is finite, there exists $i \in I$ such that for all $j \in J$ we have $x \in V_{i_{j}}$. Notice that, $V_{i_{j}}=x_{i_{j}} \downarrow$ or $V_{i_{j}}=x_{i_{j}}{ }^{\uparrow}$. Assume $V_{i_{j}}=x_{i_{j} \downarrow}\left(V_{i_{j}}=x_{i_{j}}^{\uparrow}\right)$. We show that $y \in V_{i_{j}}$. Indeed, since $y \leq x$ and $x \leq y$, we have $y \leq x \leq x_{i_{j}}\left(x_{i_{j}} \leq x \leq y\right)$. So $y \leq x_{i_{j}}\left(x_{i_{j}} \leq y\right)$ and so $y \in V_{i_{j}}\left(y \in V_{i_{j}}\right)$. Thus, $y \in U$.

Theorem 5.4. Let X be a nominal space. Then,
(i) if $x \in U \in \mathcal{S}$, then $x^{\uparrow} \cap x_{\downarrow} \subseteq U$.
(ii) if $x \in F$ and F is closed, then $x^{\uparrow} \cap x_{\downarrow} \subseteq F$.

Proof. (i) Let $y \in x^{\uparrow} \cap x_{\downarrow}$. Then, $y \leq x$ and $x \leq y$ and so $x \sim y$. Now, applying Lemma 5.3, $y \in U$.
(ii) Let $y \in x^{\uparrow} \cap x_{\downarrow}$. Then, $y \sim x$. Assume $y \notin F$. So, $y \in X \backslash F$. Since $X \backslash F$ is open and $x \sim y$, by (i) $x \in X \backslash F$. Which is a contradiction.

Corollary 5.5. Let X be a nominal set. Then $x / \sim=x^{\uparrow} \cap x_{\downarrow}$ is the smallest open set containing x.

Corollary 5.6. (i) If X is a nominal space, then $x_{\downarrow}\left(x^{\uparrow}\right)$ is clopen.
(ii) If U is clopen, then $U=\bigcup_{y \in U}\left(y^{\uparrow} \cap y_{\downarrow}\right)$.
(iii) If $U \in \mathcal{S}$, then U is clopen.

Proof. (i) Follows from Proposition 3.18(ii, iii).
(ii) Follows from Theorem 5.4(i, ii).
(iii) If $U \in \mathcal{S}$, then $X \backslash U$ is closed and so by (ii) it is a (finitely supported) union of open subsets of X. Thus, $X \backslash U$ is open and so U is closed.

Theorem 5.7. Let X and Y be two sp-nominal sets. Then every sp-preserving map $f: X \rightarrow Y$ is continuous.

Proof. Applying Lemma 3.20, we have

$$
f^{-1}\left(a^{\uparrow} \cap a_{\downarrow}\right)=f^{-1}\left(a^{\uparrow}\right) \cap f^{-1}\left(a_{\downarrow}\right)=\left[\bigcup_{f(x) \in a^{\uparrow}} x^{\uparrow}\right] \cap\left[\bigcup_{f(x) \in a_{\downarrow}} x_{\downarrow}\right]
$$

So, $f^{-1}\left(a^{\uparrow} \cap a_{\downarrow}\right)$ is open in X, for all $a \in Y$. Now, by Corollary 5.6, we get the result.

The following example shows that the converse of Theorem 5.7 does not hold.
Example 5.8. Take $f: \mathbb{D}^{2} \rightarrow \mathbb{D} \dot{\cup}\{\theta\}$ to be the equivariant map defined by

$$
f\left(d, d^{\prime}\right)= \begin{cases}d & d=d^{\prime} \\ \theta & d \neq d^{\prime}\end{cases}
$$

Since support topology of \mathbb{D} is discrete, the least open sets of $\mathbb{D} \dot{\cup}\{\theta\}$ are singleton sets. Now we have

$$
f^{-1}(\{d\})=(d, d)_{\downarrow}, \quad f^{-1}(\{\theta\})=\mathbb{D}^{(2)}=\bigcup_{d \neq d^{\prime}}\left(d, d^{\prime}\right)^{\uparrow}
$$

and hence, f is continuous. On the other hand, we have $(d, d) \leq\left(d, d_{1}\right)$ while $f(d, d) \npreceq f\left(d, d_{1}\right)$, that is, f is not an sp-preserving map.

Example 5.9. Let X be a nominal space. Then, by applying Example 3.6 (ii) and Theorem 5.7, the support map supp : $X \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$, mapping $x \mapsto \operatorname{supp} x$, is continuous.

In the sequal of this section we examine separation axioms and describe compact nominal spaces. Among many separation axioms that can be imposed on topological spaces, here we discuss the "Hausdorff condition" $\left(\mathrm{T}_{2}\right)$. Because it implies the uniqueness of limits of sequences, nets, and filters. We first note that nominal spaces can be Hausdorff or not, see Examples 5.11 and 5.12. Therefore, we seek to characterize those nominal spaces that are Hausdorff. To do so, we first recall the following definition.

Definition 5.10. A topological space X is called

- T_{0} if for every pair of points, there exists at least one open set that contains one but not the other; that is, if $x_{1} \neq x_{2} \in X$ then there is an open set U with $x_{1} \in U$ and $x_{2} \notin U$.
- T_{1} if for every pair of points, there exist open sets that each of which contains one but not the other; that is, if $x_{1} \neq x_{2} \in X$ then there are open sets U_{1} and U_{2} with $x_{1} \in U_{1}, x_{2} \notin U_{1}$, and $x_{2} \in U_{2}, x_{1} \notin U_{2}$.
- T_{2} or Hausdorff if every pair of points can be separated by open sets; that is, if $x_{1} \neq x_{2} \in X$ then there are disjoint open sets U_{1} and U_{2} with $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$.
- normal if every disjoint pair of closed sets can be separated by open sets; that is, if A_{1} and A_{2} are disjoint closed subsets of X then there are disjoint open sets U_{1} and U_{2} with $A_{1} \subseteq U_{1}$ and $A_{2} \subseteq U_{2}$.
- regular if any closed set and any point can be separated by open sets; that is, if A is closed set and $x \in X$ then there exist disjoint open sets U_{1} and U_{2} with $A \subseteq U_{1}$ and $x \in U_{2}$.
- T_{3} or regular Hausdorff if it is a topological space that is, both regular and a Hausdorff space.
- T_{4} Space or normal Hausdorff if X is both a normal space and a T_{1} space.
- a separatory for each pair of subsets if every disjoint pair of subsets can be separated by open sets; that is, if $A_{1}, A_{2} \in \mathcal{P}(X)$ are disjoint then there are disjoint open sets U_{1} and U_{2} with $A_{1} \subseteq U_{1}$ and $A_{2} \subseteq U_{2}$.

Example 5.11. (i) Considering the nominal space \mathbb{D}^{2}, we have

$$
\begin{aligned}
\left(d_{1}, d_{2}\right)_{\downarrow} & =\left\{\left(d, d^{\prime}\right) \in \mathbb{D}^{2} \mid \operatorname{supp}\left(d, d^{\prime}\right) \subseteq \operatorname{supp}\left(d_{1}, d_{2}\right)\right\} \\
& =\left\{\left(d_{1}, d_{1}\right),\left(d_{2}, d_{2}\right),\left(d_{1}, d_{2}\right),\left(d_{2}, d_{1}\right)\right\}, \text { and } \\
\left(d_{1}, d_{2}\right)^{\uparrow} & =\left\{\left(d, d^{\prime}\right) \in \mathbb{D}^{2} \mid \operatorname{supp}\left(d_{1}, d_{2}\right) \subseteq \operatorname{supp}\left(d, d^{\prime}\right)\right\} \\
& =\left\{\left(d_{1}, d_{2}\right),\left(d_{2}, d_{1}\right)\right\}
\end{aligned}
$$

for every $d_{1} \neq d_{2} \in \mathbb{D}$. Now since, for every $d_{1} \neq d_{2} \in \mathbb{D}$, Theorem 5.4 implies $\left(\left(d_{1}, d_{2}\right)_{\downarrow}\right) \cap\left(\left(d_{1}, d_{2}\right)^{\uparrow}\right)=\left\{\left(d_{1}, d_{2}\right),\left(d_{2}, d_{1}\right)\right\}$ is the smallest open set, contains the points $\left(d_{1}, d_{2}\right)$ and $\left(d_{2}, d_{1}\right)$ in \mathbb{D}^{2}, in which $d_{1} \neq d_{2}$, can not be separated by disjoint open sets. Hence, this space is neither Hausdorff nor T_{1}.
(ii) Considering the nominal space $\mathbb{D}^{(k)}$ with $k \geq 2$, since the cardinality of the support of each element equals k, we have

$$
\begin{aligned}
\left(d_{1}, d_{2}, \ldots, d_{k}\right)_{\downarrow} & =\left\{\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime}\right) \mid\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{k}^{\prime}\right\}=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}\right\} \\
& =\left(d_{1}, d_{2}, \ldots, d_{k}\right)^{\uparrow}
\end{aligned}
$$

Hence, the poins $\left(d_{1}, d_{2}, \ldots, d_{k}\right) \neq\left(d_{2}, d_{1}, d_{3}, \ldots, d_{k}\right) \in \mathbb{D}^{(k)}$ can not be separated by disjoint open sets, because $\left(d_{1}, d_{2}, \ldots, d_{k}\right),\left(d_{2}, d_{1}, d_{3}, \ldots, d_{k}\right) \in$ $\left(d_{1}, d_{2}, \ldots, d_{k}\right)^{\uparrow} \cap\left(d_{1}, d_{2}, \ldots, d_{k}\right)_{\downarrow}$ and, by Theorem 5.4, $\left(d_{1}, d_{2}, \ldots, d_{k}\right)^{\uparrow} \cap$ $\left(d_{1}, d_{2}, \ldots, d_{k}\right)_{\downarrow}$ is the smallest open sets containing $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ and $\left(d_{2}, d_{1}, d_{3}, \ldots, d_{k}\right)$, meaning that this space is neither Hausdorff nor T_{1}.
(iii) Using Example 5.1(iii), one can easily see that the points $\{d\}$ and $\mathbb{D} \backslash\{d\}$ in the nominal space $\mathcal{P}_{\mathrm{fs}}(\mathbb{D})$ can not be separated by disjoint open sets and hence, $\mathcal{P}_{\mathrm{fs}}(\mathbb{D})$ is not Hausdorff.

Analogously, one can see that the nominal space $\mathcal{P}_{\mathrm{fs}}(\mathbb{D})$ is neither Hausdorff nor T_{1}.

Example 5.12. Using Example 5.1(ii), since the nominal space $\mathcal{P}_{\mathrm{f}}(\mathbb{D})$ contains singleton element hence, it is disceret. Therefore, it is Hausdorff.

Theorem 5.13. Let (X, \mathcal{S}) be a nominal space. Then, X is Hausdorff if and only if the support map, supp : $X \rightarrow \mathcal{P}_{\mathrm{f}}(\mathbb{D})$, separates the elements of X.

Proof. (\Rightarrow) Let X be Hausdorff and $x \neq y \in X$. Then, there exist $U, V \in \mathcal{S}$ with $x \in U, y \in V$ and $U \cap V=\emptyset$. Then, by Theorem 5.4 and Corollary 5.5, $x / \sim \cap y / \sim=\emptyset$. Hence, $\operatorname{supp} x \neq \operatorname{supp} y$.
(\Leftarrow) Let $y \neq x \in X$. Then, by the hypothesis, we have supp $x \neq$ supp y and hence, $x / \sim \cap y / \sim=\emptyset$. Now Corollary 5.5 implies the result.

Lemma 5.14. Any nominal space is a regular space.
Proof. Suppose X is a nominal space. Take a closed set F and $x_{1} \in X$ with $x_{1} \notin F$. By Corollary 5.6 (iii), F is open. Thus, there are two open sets $x_{1}^{\uparrow} \cap x_{1 \downarrow}$ and F with $\left(x_{1}^{\uparrow} \cap x_{1 \downarrow}\right) \cap F=\emptyset$.

Corollary 5.15. Any nominal space is a normal space.
Proof. By Corollary 5.6 (iii), since each closed set is open, we get the result.
Theorem 5.16. Let X be a nominal space. Then the following statements are equivalent:
(i) The relation \leq is a partially order on X.
(ii) $x^{\uparrow} \cap x_{\downarrow}=\{x\}$, for every $x \in X$.
(iii) X is T_{0}.
(iv) X is T_{1}.
(v) X is T_{2} (or Hausdorff space).
(vi) X is T_{3}.
(vii) X is T_{4}.
(viii) X is a separator for each $A, B \in \mathrm{P}(X)$ with $A \cap B=\emptyset$.
(ix) The support map supp : $X \rightarrow P_{\mathrm{f}}(\mathbb{D})$ is injective.

Proof. (i) \Rightarrow (ii) Let $t \in x^{\uparrow} \cap x_{\downarrow}$. Then, $t \leq x$ and $x \leq t$. Since \leq is antisymmetric, $t=x$.
(ii) \Rightarrow (iii) Follows by taking open sets $x_{\downarrow} \cap x^{\uparrow}$ and $x_{\downarrow}^{\prime} \cap x^{\uparrow \uparrow}$ for each $x \neq x^{\prime}$.
(iii) \Rightarrow (iv), and (iv \Rightarrow v) follow from Theorem 5.4(i) and Corollary 5.5.

Lemma 5.14 implies ($\mathrm{v} \Rightarrow \mathrm{vi}$).
Corollary 5.15 implies ($\mathrm{vi} \Rightarrow$ vii).
(vii) \Rightarrow (viii) For each $A, B \in \mathcal{P}(X)$ such that $A \cap B=\emptyset$ we show $\left(\cup_{a \in A}\left(a^{\uparrow} \cap\right.\right.$ $\left.\left.a_{\downarrow}\right)\right) \cap\left(\bigcup_{b \in B}\left(b^{\uparrow} \cap b_{\downarrow}\right)\right)=\emptyset$. On the contrary, suppose $x \in\left(\bigcup_{a \in A}\left(a^{\uparrow} \cap a_{\downarrow}\right)\right) \cap$ $\left(\cup_{b \in B}\left(b^{\uparrow} \cap b_{\downarrow}\right)\right)$. Hence, there are $a \in A$ and $b \in B$ such that $x \in\left(a^{\uparrow} \cap a_{\downarrow}\right)$ and $x \in\left(b^{\uparrow} \cap b_{\downarrow}\right)$. Therefore, $\operatorname{supp} x=\operatorname{supp} a=\operatorname{supp} b$ hence, $a \in\left(b^{\uparrow} \cap b_{\downarrow}\right)$. Since $A \cap B=\emptyset$ hence, $a \neq b$, which is a contradiction with X is T_{4}. Obviously $A \subseteq\left(\cup_{a \in A}\left(a^{\uparrow} \cap a_{\downarrow}\right)\right)$ and $B \subseteq\left(\bigcup_{b \in B}\left(b^{\uparrow} \cap b_{\downarrow}\right)\right)$, we get the result.
(viii) \Rightarrow (ix) For each $x_{1} \neq x_{2}$ we consider $\left\{x_{1}\right\}=A$ and $B=\left\{x_{2}\right\}$. Now, by assumption, we have $\left(x_{1}^{\uparrow} \cap x_{1 \downarrow}\right) \cap\left(x_{2}^{\uparrow} \cap x_{2 \downarrow}\right)=\emptyset$. Hence, $\operatorname{supp} x_{1} \neq \operatorname{supp} x_{2}$ for each $x_{1} \neq x_{2}$.
(ix) \Rightarrow (i) Follows from Corollary 5.5.

Theorem 5.17. A nominal space X is compact if and only if the set

$$
A=\left\{\left(x, x^{\prime}\right) \mid \operatorname{supp} x \neq \operatorname{supp} x^{\prime}\right\}=\nabla / \sim,
$$

is finite.
Proof. (\Rightarrow) Suppose X is compact. Then, by Corollary 5.5, one can consider the open cover $X \subseteq \bigcup_{x \in X}\left(x^{\uparrow} \cap x_{\downarrow}\right)$ of X. So there exist $x_{1}, x_{2}, \cdots, x_{n} \in X$ such that $X \subseteq \cup_{1 \leq i \leq n}\left(x_{i}^{\uparrow} \cap x_{i \downarrow}\right)$; meaning that X only contains a finite number of elements with different supports, and hence, A is a finite set.
(\Leftarrow) Suppose A is finite and $\left\{U_{j}\right\}_{j \in I}$ is an arbitrary open cover for X. Since A is finite, there are finitely many elements of X, such as x_{1}, \ldots, x_{n}, each pair of which have different supports. Since, by Corollary $5.5, x_{i}^{\uparrow} \cap x_{i \downarrow}$ is the smallest open subset of X containing x_{i}, for every $1 \leq i \leq n$, there exists $j_{i} \in I$ such that $x_{i}^{\uparrow} \cap x_{i \downarrow} \subseteq U_{j_{i}}$, for evey $1 \leq i \leq n$. Hence, we have $X \subseteq \bigcup_{1 \leq i \leq n}\left(x_{i}^{\uparrow} \cap x_{i \downarrow}\right) \subseteq \bigcup_{1 \leq i \leq n} U_{j_{i}}$.

Theorem 5.18. A nominal space X is compact if and only if X / \sim is finite.
Proof. (\Rightarrow) Let X be compact and $X=\bigcup_{x \in X}(x / \sim)$. Then, there exist $x_{1}, x_{2}, \cdots, x_{n} \in X$ with $X \subseteq \bigcup_{1 \leq i \leq n}\left(x_{i} / \sim\right)$. So, X / \sim is finite.
(\Leftarrow) Let X / \sim be finite. Then, $X=\bigcup_{1 \leq i \leq n} x_{i} / \sim$. Suppose $X=\bigcup_{\alpha} U_{\alpha}$. By Theorem 5.4, there exists $\alpha_{x_{i}} \in I$ such that $x_{i} / \sim \subseteq U_{\alpha_{x_{i}}}$, for every $1 \leq i \leq n$. Hence, $X=\bigcup_{1 \leq i \leq n} x_{i} / \sim \subseteq \bigcup_{1 \leq i \leq n} U_{\alpha_{x_{i}}} \subseteq X$ and so $X=\bigcup_{1 \leq i \leq n} U_{\alpha_{x_{i}}}$.

Corollary 5.19. Let X be a nominal space. The following statements are equivalent:
(i) X is compact.
(ii) X is a discrete nominal set.
(iii) $\mathcal{S}=\{\emptyset, X\}$.

Proof. (i) \Rightarrow (ii) By Remark 3.3, X / \sim is a nominal set. If X is compact then, by Theorem 5.18, X / \sim is finite. So, by Remark 2.10, X / \sim is a discrete nominal set and $\operatorname{supp}(x / \sim)=\emptyset$, for every $x / \sim \in X / \sim$. Now since for every $t \in X$, there exists
$x / \sim \in X / \sim$ with $t \in x / \sim$ and $\operatorname{supp} x / \sim=\operatorname{supp} x=\operatorname{supp} t$, we have $\operatorname{supp} t=\emptyset$, for all $t \in X$, and we are done.
(ii) \Rightarrow (iii) Suppose supp $x=\emptyset$, for each $x \in X$. Then $x^{\uparrow}=x_{\downarrow}=x^{\uparrow} \cap x_{\downarrow}=X$, for each $x \in X$. Therefore, $\mathcal{S}=\{\emptyset, X\}$.
(iii) \Rightarrow (i) This is clear.

Acknowledgement

The authors gratefully thank the referee for the constructive comments and recommendations, which definitely help to improve the readability and quality of the paper.

References

[1] Amorim, A.A., Binding Operators for Nominal Sets, Electron. Notes Theor. Comput. Sci. 325 (2016), 3-27.
[2] Bojańczyk, M., Klin, B., and Lasota, S., Automata Theory in Nominal Sets, Log. Methods Comput. Sci. 10(3:4) (2014), 1-44.
[3] Fraenkel, J.A., Der begriff definit und die unabhangigkeit des auswahlsaxioms, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1922), 253-257.
[4] Fernandez, M., Gabbay, M.J., Nominal rewriting, Inform. and Comput. 205(6) (2007), 917965.
[5] Gabbay, M.J., and Hofmann, M., Nomianl renaming sets, In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR (2008), 158-173, part of Lecture Notes in Comput. Sci. 5330, Springer.
[6] Gabbay, M.J. and Pitts, A.M., A new approach to abstract syntax with variable binding, Form. Asp. Comput. 13 (2002), 341-363.
[7] Munkres, J.R., "Topology", Prentice Hall, Incorporated, 2000.
[8] Pitts, A.M., "Nominal Sets: Names and Symmetry in Computer Science, Cambridge Tracts in Theoretical Computer Science", Cambridge University Press, 2013.

Aliyeh Hosseinabadi Faculty of mathematics, Statistics and Computer science, Semnan University, Semnan,

Iran.
Email: hossinabadialiya71@semnan.ac.ir

Mahdieh Haddadi Faculty of mathematics, Statistics and Computer science, Semnan University, Semnan, Iran. Email: m.haddadi@semnan.ac.ir

Khadijeh Keshvardoost Department of Mathematics, Velayat University, Iranshahr, Sistan and Baluchistan, Iran.

Email: khadijeh.keshvardoost@gmail.com

[^0]: * Corresponding author

 Keywords: Nominal set, support-preordered nominal set, support topological nominal set.
 Mathematics Subject Classification [2010]: 08A30, 08C05, 18A20, 20M30, 68Q70.
 Received: 7 March 2022, Accepted: 21 July 2022.
 ISSN: Print 2345-5853, Online 2345-5861.
 © Shahid Beheshti University

