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Abstract. The systematic study of planar semimodular lattices started in
2007 with a series of papers by G. Grätzer and E. Knapp. These lattices have
connections with group theory and geometry. A planar semimodular lattice
L is slim if M3 it is not a sublattice of L. In his 2016 monograph, “The
Congruences of a Finite Lattice, A Proof-by-Picture Approach”, the second
author asked for a characterization of congruence lattices of slim, planar,
semimodular lattices. In addition to distributivity, both authors have pre-
viously found specific properties of these congruence lattices. In this paper,
we present a new property, the Three-pendant Three-crown Property. The
proof is based on the first author’s papers: 2014 (multifork extensions), 2017
(C1-diagrams), and a recent paper (lamps), introducing the tools we need.
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1 Introduction

1.1 The Main Theorem The book G. Grätzer [18] presents many
results characterizing congruence lattices of various classes of finite lattices,
spanning 80 years, up to 2015. In particular, in 1996, G. Grätzer, H. Lakser,
and E. T. Schmidt [26] started looking at the class of semimodular lattices
and were surprised: every finite distributive lattice can be represented as
the congruence lattice of a planar semimodular lattice.

The sublattice M3 played a crucial role in the Grätzer-Lakser-Schmidt
construction, so it was natural to ask (see Problem 1 in G. Grätzer [19],
originally raised in G. Grätzer [18]) what happens if, in addition to planarity
and semimodularity, we also assume that the lattice is slim, that is, it does
not have M3 sublattices.

Open Problem 1.1. What are the congruence lattices of slim, planar,
semimodular lattices?

We call a slim, planar, semimodular lattice an SPS lattice. A finite
distributive lattice D is representable by an SPS lattice L (in short, rep-
resentable) if D is isomorphic to the congruence lattice ConL of an SPS
lattice L.

We say that a finite distributive lattice D satisfies the Three-pendant
Three-crown Property if the ordered setR3 of Figure 1 has no cover-preserving
embedding into J(D).

Our paper continues the research in G. Czédli [7] that presented four
new properties of ConL. We provide one more.

Now we can state our result.

Main Theorem. Let L be a slim, planar, semimodular lattice. Then ConL
satisfies the Three-pendant Three-crown Property.

We have one more theorem in this paper.

Theorem 1.2. Let n be a positive integer number and L1, . . . , Ln be slim,
planar, semimodular lattices with at least three elements. Then there exists
a slim rectangular lattice H and a slim patch lattice L such that the following
two isomorphisms hold:

ConH ∼= ConL1 × · · · × ConLn, (1.1)

ConL ∼=
(
ConL1 × · · · × ConLn

)
+ B2, (1.2)
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In (1.2), the operation + stands for ordinal sum, also known as linear
sum (the second summand is put on the top of the first one). We define
rectangular lattices and patch lattices in Section 2.

1.2 Background G. Grätzer and E. Knapp [21]– [25] started the study
of planar semimodular lattices. There are a number of surveys of this
field, see the book chapter G. Czédli and G. Grätzer [10] in G. Grätzer
and F. Wehrung, eds. [29], and G. Czédli and Á. Kurusa [11]. For the
topic: congruences of planar semimodular lattices, see the book chapter
G. Grätzer [15] in G. Grätzer and F. Wehrung, eds. [29].

This research have also led to results outside of lattice theory: to a group
theoretical result by G. Czédli and E. T. Schmidt [13] and G. Grätzer and
J. B. Nation [27], and to (combinatorial) geometric results by G. Czédli [4]
and [6], K. Adaricheva and G. Czédli [1], and G. Czédli and Á. Kurusa [11].
G. Czédli and G. Makay [12] presented a computer game based on these
lattices. G. Czédli [8] is a related model theoretic paper. Note that more
than four dozen papers have been devoted to planar semimodular lattices
and their applications since G. Grätzer and E. Knapp’s 2007 paper [21].
The list of 48 of these papers is included in the appendix of G. Czédli [9];
see also http://www.math.u-szeged.hu/ czedli/m/listak/publ-psml.pdf

for an updated list.

The next two theorems summarize what we know about congruence
lattices of SPS lattices. (In both theorems, the covering relations are those
of the ordered set J(ConL) and not of the lattice ConL.)

Theorem 1.3 (G. Grätzer [19] and [20]). Let L be an SPS lattice with at
least three elements.

(i) The ordered set J(ConL) has at least two maximal elements.
(Equivalently, ConL has at least two coatoms.)

(ii) Every element of the ordered set J(ConL) has at most two covers.

We know, see G. Grätzer [20], that the three-element chain C3 cannot
be isomorphic to the congruence lattice of an SPS lattice L, though J(C3)
has only one maximal element. This shows that the necessary condition
(1.3) for representability is not sufficient. G. Czédli [3] provides an eight
element distributive lattice to show that the necessary condition (ii) for
representability is not sufficient.
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Our paper is a continuation of G. Czédli [7]. Here are some of the results
of this paper.

Theorem 1.4 (G. Czédli [7]). Let L be an SPS lattice with at least three
elements.

(i) The set of maximal elements of the ordered set J(ConL) can be rep-
resented as the disjoint union of two nonempty subsets such that no two
distinct elements in the same subset have a common lower cover.

(ii) The ordered set R of Figure 1 cannot be embedded as a cover-
preserving subset into the ordered set J(ConL) provided that every maximal
element of R is a maximal element of J(ConL).

(iii) If x ∈ J(ConL) is covered by a maximal element y of J(ConL),
then y is not the only cover of x in the ordered set J(ConL).

(iv) Let x 6= y ∈ J(ConL), and let z be a maximal element of J(ConL).
Assume that both x and y are covered by z in the ordered set J(ConL).
Then there is no element u ∈ J(ConL) such that u is covered by x and y in
J(ConL).

Figure 1: The Three-pendant Three-crown ordered set R3 and the Two-
pendant Four-crown ordered set R; the elements of the crowns are indicated
by pentagons

Outline Section 2 recalls some concepts we need. Section 3 recalls some of
the tools developed in G. Czédli [7] while we develop some new tools in Sec-
tion 4. We prove our Main Theorem in Section 5. Finally, Section 6 proves
Theorem 1.2 and discusses what we know about the congruence lattices of
slim patch lattices.
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2 Basic notation and concepts

All lattices in this paper are finite. We assume that the reader is familiar is
with the rudiments of lattice theory. Most basic concepts and notation not
defined in this paper are available in Part I of the monograph G. Grätzer [18],
which is free to access. In particular,

the glued sum of two lattices A and B is denoted by A
.
+B (2.1)

(B is on the top of A with the unit element of A and the zero of B identified,

so C2

.
+ C2 is C3). The n-element chain is Cn, the Boolean lattice with n

atoms is Bn, and M3 is the 5-element modular nondistributive lattice. The
set of maximal elements of an ordered set P will be denoted by Max(P ).
In this paper, edges are synonymous with prime intervals.

For a finite lattice L, the set of (non-zero) join-irreducible elements and
(non-unit) meet-irreducible elements will be denoted by J(L) and M(L),
respectively, so J(L) ∩M(L) is the set of doubly irreducible elements. We
denote by x∗ the unique cover of x for x ∈ M(L). For an element a ∈ L,
let ↓ a = {x ∈ L | x ≤ a } be the principal ideal generated by a and
↑ a = {x ∈ L | x ≥ a } the principal filter generated by a.

A planar semimodular lattice is slim if it does not contain M3 as a sublat-
tice; see G. Grätzer and E. Knapp [21], [24], G. Czédli and E. T. Schmidt [13].

Let L be a planar lattice. A left corner lc(L) (resp., right corner rc(L))
of L is a doubly-irreducible element in L − {0, 1} on the left (resp., right)
boundary of L. We define a rectangular lattice L as a planar semimodular
lattice which has exactly one left corner, lc(L), and exactly one right corner,
rc(L), and they are complementary, that is, lc(L) ∨ rc(L) = 1 and lc(L) ∧
rc(L) = 0 (see G. Grätzer and E. Knapp [21]). Finally, a rectangular lattice
in which both corners are coatoms are called a patch lattice.

3 Tools

We call the directions of (1, 1) and (1,−1) normal and any other direction
(cosα, sinα) with π/2 < α < 3π/2 steep. (In [5] and other papers, the first
author uses “precipitous” instead of “steep”.) Edges and lines parallel to a
steep vector are also called steep, and similarly for normal slopes.

The following definition and result are crucial in the study of SPS lat-
tices.
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Definition 3.1 (G. Czédli [5]). A diagram of the slim rectangular lattice
L is a C1-diagram if it has the following two properties.

(i) If x ∈ M(L)− (↑ lc(L) ∪ ↑ rc(L)), then the edge [x, x∗] is steep.

(ii) Every edge not of the form [x, x∗] as in (i) has a normal slope.

If, in addition,

(iii) any two edges on the lower boundary are of the same geometric length,

then the diagram is a C2-diagram.

Theorem 3.2 (G. Czédli [5]). Every slim rectangular lattice L has a C2-
diagram.

In this section, L is a slim rectangular lattice with a fixed C1-diagram,
as we shall soon define. The chains ↓ lc(L), ↑ lc(L), ↓ rc(L), and ↑ rc(L) are
called the bottom left boundary chain, . . . , top right boundary chain. These
chains have normal slopes and they are the sides of a geometric rectangle,
which we call the full geometric rectangle of L and denote it by FulR(L). The
four vertices of this rectangle are 0, 1, lc(L), and rc(L). The lower boundary
of L is ↓ lc(L)∪↓ rc(L) and the upper boundary is ↑ lc(L)∪↑ rc(L). With the
exception of the corners, no meet-irreducible element belongs to the lower
boundary of L.

The following is the central definition of G. Czédli [7].

Definition 3.3.
(A) Let L be a slim rectangular lattice. The edges [x, y] of L with

x ∈ M(L) are called neon tubes. We call a neon tube [x, y] on the upper
boundary of L a boundary neon tube; it is an internal neon tube, otherwise.
Equivalently, neon tubes with normal slopes are boundary neon tubes, while
steep neon tubes are internal.

In Figures 2, 11, and 12, we represent the neon tubes by thick edges.
(B) A boundary neon tube n = [p, q] is also called a boundary lamp. This

lamp I is an edge, the neon tube n is the neon tube of the lamp I. Define
Foot(I) as p and Peak(I) as q. If Foot(I) is on the top left boundary chain,
then I is a left boundary lamp; similarly, we define right boundary lamps.

In Figure 2, the left boundary lamps and the right boundary lamps
are P1, . . . , P5 and Q1, . . . , Q6, respectively, and pi = Foot(Pi) and qj =
Foot(Qj) for all i and j.
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(C) Every steep (that is, internal) neon tube n = [p, q] belongs to a
unique internal lamp I = [βq, q], where βq is the meet of all p′ ∈ L such
that [p′, q] is a steep neon tube. For the lamp I, define the Foot(I) as βq
and the peak Peak(I) as q.

In Figure 2, there are five internal lamps, A, . . . , E with Foot(A) = a,
Foot(B) = b, and so on; also, Peak(A) = g, Peak(B) = h, and Peak(C) = z;
so A = [a, g], B = [b, h], and C = [c, z].

(D) The set Lamp(L) consists of all lamps of L. For example, for the
lattice L in Figure 2, there are 16 lamps in L.

(E) A lamp I determines a geometric region (as in David Kelly and
I. Rival [30]) which we call the body of I, and denote it by Body(I). It has
a geometric shape: it is either a line segment or a quadrilateral whose lower
sides have normal slopes and whose upper sides are steep.

In Figure 2, the regions Body(A), Body(B), and Body(C) are colored
dark-grey.

For later reference, we recall by G. Czédli [7, Lemma 3.1] that

A lamp is uniquely determined by its foot. (3.1)

The feet of our lamps are black-filled in Figures 2–12; this helps us find
them.

In the real world, lamps emit light. Our lamps do it in a special way:
the light rays go from all points of the neon tubes of a lamp I downward
with normal slopes. Next we give our definition of light emission. For an
element x ∈ L, we define the line segment LineL(x) from x left and down,
of normal slope to the lower-right boundary of L. Similarly, to the right,
we have LineR(x).

So for a lamp I, we have the four line segments, from Peak(I) and
Foot(I), left and right. We denote them by LRoof(I) (the left roof), RRoof(I)
(the right roof), LFloor(I), (the left floor) and RFloor(I) (the right floor).

Definition 3.4 (G. Czédli [7]). For a lamp I of a slim rectangular lattice
L, we define

(i) the area left lit by I (or, as in [7], illuminated from the right by I),
denoted by LeftLit(I), is a quadrangle bounded by the line segments
LineL(Peak(I)), LineL(Foot(I)), the upper right boundary of I, and
the appropriate line segment of the lower left boundary of L.



8 G. Czédli and G. Grätzer

Figure 2: Lamps and related geometric objects

(ii) the area right lit by I, denoted by RightLit(I), is defined symmetri-
cally.

(iii) the area lit by I, denoted by Lit(I) is defined as LeftLit(I)∪RightLit(I).
The geometric (topological) interior of Lit(L) is denoted by OLit(L)
and we call it the open lit set of I.

For example, in Figure 2, LeftLit(C), RightLit(D), and Lit(B) are
shaded.

It follows from the statements (2.10) and (2.11) of G. Czédli [7] that, for
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every lamp I of L,

the geometric (that is, topological) boundaries of the areas
Lit(I), LeftLit(I), and RightLit(I) consist of edges.

(3.2)

Utilizing the concept of lit sets, we define some relations on Lamp(L);
G. Czédli [7, Definition 2.9] defines eight relations but here we only need
four.

Definition 3.5 (G. Czédli [7]). Let L be a slim rectangular lattice. We
define four relations ρBody, ρfoot, ρinfoot, and ρalg on the set Lamp(L), by
the following rules. For I, J ∈ Lamp(L),

(i) (I, J) ∈ ρBody if I 6= J , Body(I) ⊆ Lit(J), and I is an internal lamp;

(ii) (I, J) ∈ ρfoot if I 6= J , Foot(I) ∈ Lit(J), and I is an internal lamp;

(iii) (I, J) ∈ ρinfoot if I 6= J , Foot(I) ∈ OLit(J), and I is an internal lamp;

(iv) (I, J) ∈ ρalg if Peak(I) ≤ Peak(J), Foot(I) 6� Foot(J), and I is an
internal lamp.

The significance of lamps becomes clear from the following statement,
which is a part of the (Main) Lemma 2.11 of G. Czédli [7].

Lemma 3.6 (G. Czédli [7]). Let L be a slim rectangular lattice. Then
ρBody = ρfoot = ρinfoot = ρalg. Let ρ stand for any one (or all ) of these rela-
tions and let ≤ be the reflexive transitive closure of ρ. Then (Lamp(L),≤)
is an ordered set and it is isomorphic to J(ConL). Also, if I, J ∈ Lamp(L)
and I ≺ J in (Lamp(L),≤), then (I, J) ∈ ρ.

This lemma is illustrated by Figure 2. The isomorphism

Lamp(L) ∼= J(ConL)

is witnessed by the map

Lamp(L)→ J(ConL), defined by I 7→ con(Foot(I),Peak(I)).

We also need the following statement.
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Lemma 3.7 (G. Grätzer and E. Knapp [24]). If K is a slim planar semi-
modular lattice with at least three elements, then there exists a slim rectan-
gular lattice L such that ConK ∼= ConL.

G. Grätzer and E. Knapp [24] proved a stronger statement, which we
do not require. See also G. Grätzer and E. T. Schmidt [28].

To verify the Three-pendant Three-crown Property, we have to work in
J(ConL). So by utilizing Lemmas 3.6 and 3.7, we can confine ourselves to
investigate lamps in slim rectangular lattices.

4 Further tools and the Key Lemma

4.1 Coordinate quadruples We start with some technical tools.

Definition 4.1. Let I be a lamp of a slim rectangular lattice L with a fixed
C1-diagram. Assume that we choose the coordinate system of the plane R2

so that (0, 0) is the zero of L.

(i) Following G. Czédli [7], the lit set Lit(I) of an internal lamp I is
bordered by the line segments LRoof(I) and RRoof(I), LFloor(I), and
RFloor(I), and the appropriate segments on the lower boundary. If
I is a boundary lamp, the above-mentioned line segments still border
Lit(I). Any proper line segment lies on a line referred to as its carrier
line.

(ii) Let (pI , 0), (qI , 0), (rI , 0) and (sI , 0) ∈ R2 be the intersection points
of the x-axis with the carrier lines of LRoof(I), LFloor(I), RFloor(I),
and RRoof(I), respectively. Then (pI , qI , rI , sI) is called the coordi-
nate quadruple of the lamp I.

(iii) Let I, J ∈ Lamp(L). Then I is to the left of J , in notation I λ J , if
qI ≤ pJ and sI ≤ rJ .

In Figure 2, LRoof(C), RRoof(C), LFloor(C), and RFloor(C) are the
line segments corresponding to the intervals (in fact, chains) [t, z], [s, z],
[y, c], and [r, c], respectively. The coordinate quadruple of the lamp E is
shown in Figure 2 and, for example, E λ D and P1 λ C; however, P2 λ C
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and A λ B fail. For I ∈ Lamp(L), the following observation follows from
the definitions.

pI < qI < rI < sI if and only if I is an internal lamp,
pI = qI < rI < sI if and only if I is a left boundary lamp,
pI < qI < rI = sI if and only if I is a right boundary lamp.

(4.1)

Remark 4.2. Apart from an order isomorphism, (−pI , sI) and (−qI , rI)
are the join-coordinates of Peak(I) and Foot(I) as in Czédli [5, Definition
4.2].

4.2 Key Lemma The proof of the Main Theorem is based on the fol-
lowing key result.

Lemma 4.3 (Key Lemma). Let I and I ′ be lamps of a slim rectangular
lattice L with a fixed C1-diagram. If I 6= I ′ and they have a common lower
cover in (Lamp(L);≤), then either I is to the left of I ′ or I ′ is to the left
of I.

Proof. For later use, recall the following statement from G. Czédli [5, Corol-
lary 6.1].

For u 6= v ∈ L, the inequality u < v holds if and only
if the ordinate (that is, the vertical y-coordinate) of u is
less than that of v and the geometric line through u and
v is either steep or it has a normal slope.

(4.2)

In the rest of this proof, assume that I 6= I ′ are lamps of L and they
have a common lower cover I ′′ and so incomparable, in notation, I ‖ I ′. By
Lemma 3.6, both (I ′′, I) and (I ′′, I ′) belong to ρinfoot, that is, Foot(I ′′) ∈
OLit(I) and Foot(I ′′) ∈ OLit(I ′). Hence,

OLit(I) ∩OLit(I ′) 6= ∅. (4.3)

As Figure 2 (for the lamp E) shows or alternatively, as Remark 4.2 yields,

(pI , sI), (qI , rI), and (pI , qI , rI , sI) determine
Peak(I), Foot(I), and I, respectively;

(4.4)

and similarly for I ′. Since I and I ′ are distinct, it follows from (4.3) that

At least one of I and I ′ is not a left boundary lamp. Simi-
larly, at least one is not a right boundary lamp.

(4.5)
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To make the proof more readable, we write (p, q, r, s) for (pI , qI , rI , sI)
and (p′, q′, r′, s′) for (pI′ , qI′ , rI′ , sI′).

Statement (4.5) and G. Czédli [7, Lemma 3.8] yield that

q 6= q′ and r 6= r′. (4.6)

We distinguish several cases.
Case 1 : Both I and I ′ are internal lamps.
We need the following concept (which is based on the concept of circum-

scribed rectangles by G. Czédli [7, Definition 2.6]) as illustrated by Figure 2.
For an internal lamp J ∈ Lamp(L), the left shield and the right shield of J
are the left upper side and the right upper side of the circumscribed rectan-
gle of J . So these shields are line segments. Namely, it follows from (2.8),
(2.10), (2.14), and Definition 2.6 of G. Czédli [7] (and from the fact that
Foot(J) is in the interior of the circumscribed rectangle of J) that

the right shield of an internal lamp J is an edge of nor-
mal slope and this edge is longer than the geometric dis-
tance of (the carrier lines of) LRoof(J) and LFloor(J).
Analogously for the left shield of J .

(4.7)

Based on (4.7), there is another way to define the shields of an internal
lamp J : the left shield of J is the unique edge of slope (−1,−1) whose top
is Peak(J); the right shield of J has slope (1,−1) and its top is Peak(J).
For example, in Figure 2, [h, g] is the right shield of A while [f, h] and
[y,Peak(E)] are the left shields of B and E, respectively.

We know from (2.7) of G. Czédli [7] that distinct internal lamps have
distinct peaks. This fact along with (3.1) and (4.4) yield that

(p, s) 6= (p′, s′) and (q, r) 6= (q′, r′). (4.8)

Next, we claim that
p 6= p′. (4.9)

By way of contradiction, assume that p = p′. Since q 6= q′ by (4.6) and
the role of I and I ′ is now symmetric, we can assume that q < q′. Since
p = p′ and (4.8) yield that s 6= s′, we conclude that either s < s′ or s′ < s.

Case 1A: s′ < s. The situation (apart from the position of r′) is
illustrated by Figure 3, where Lit(I) is the grey area and Lit(I ′) is given by
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Figure 3: Proving (4.10)

its boundary line segments LRoof(I ′), LFloor(I ′), etc. The figure indicates
the length v of the right shield of I ′, which is greater than the “width”
(q′ − p′)/

√
2 of LeftLit(I ′) by (4.7), and the “width” w = (q − p)/

√
2 =

(q − p′)/
√

2 of LeftLit(I). By (3.2), the geometric boundary of LeftLit(I)
consists of edges (but these are not indicated in the figure between Foot(I)
and Peak(I)). Since v > w, the geometric boundary of LeftLit(I) (consisting
of edges) crosses the right shield of I ′. But this contradicts the planarity of
the diagram since this right shield is an edge by (4.7).

Figure 4: Still proving (4.10)

Case 1B : s < s′. This case is illustrated by Figure 4 (in which additional
conditions hold, such as, r′ < r). In this subcase, q < q′ yields that Foot(I),
which is on a line with point (q, 0) and of slope (1, 1) is above the carrier
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line of LFloor(I ′). Hence, it is clear by the figure and, mainly by (4.2),
that Peak(I) ≤ Peak(I ′) but Foot(I) � Foot(I ′). Thus, (I, I ′) ∈ ρalg,
contradicting that I ‖ I ′. This completes Case 1B and proves (4.9).

Figure 5: Case p < p′ < q

Next, we are going to show that

if p ≤ p′, then q ≤ p′. (4.10)

So assume that p ≤ p′. Then we know from (4.9) that p < p′. By way
of contradiction, assume that (4.10) fails, that is, p′ < q. Then neither
q′ = q, nor q′ > q by Lemma 3.8 of G. Czédli [7]. So p < p′ < q′ < q,
see Figure 5. Observe that the geometric boundary of LeftLit(I ′) cannot
cross the right shield of I by (3.2) and (4.7). So we obtain from (4.2) that
Peak(I ′) ≤ Peak(I). Note that Foot(I ′) is on the carrier line of LFloor(I ′),
which goes through the point (q′, 0); moreover, q′ < q. Therefore, (4.2)
also yields that Foot(I ′) � Foot(I). Hence, (I ′, I) ∈ ρalg, contradicting that
I ‖ I ′. This contradicts that p′ < q and so proves the validity of (4.10).

As a variant of (4.10), observe that

if s′ ≤ s, then s′ ≤ r. Also, if s ≤ s′, then s ≤ r′. (4.11)

Indeed, the first part of (4.11) follows from (4.10) by left-right symmetry
while its second part follows from the first part by interchanging the role of
I and I ′.

Next, we claim that

if p ≤ p′, then I λ I ′. (4.12)
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Figure 6: Case p < p′ and s′ < s

So assume that p ≤ p′. By (4.10), we have that q ≤ p′. We claim that
s ≤ s′. Assume, to the contrary, that s′ < s. By (4.11), s′ ≤ r; see Figure 6.
Hence, OLit(I)∩OLit(I ′) = ∅, contradicting (4.3). This shows that s ≤ s′.
Applying (4.11), we obtain that s ≤ r′. Now, as part ((iii)) of Definition 4.1
shows, q ≤ p′ and s ≤ r′ complete the argument proving (4.12).

Since I and I ′ play a symmetric role, we can assume that p ≤ p′. Thus,
(4.12) yields the validity of the lemma for the case of internal lamps.

Figure 7: I is a left boundary lamp and r < r′ < s

Case 2 : Of the two lamps, I and I ′, one is a boundary lamp and the
other one is internal. By symmetry, we can assume that I is a left boundary
lamp and I ′ is an internal lamp. By (4.1), p = q. Since this is clearly the
least possible value, q ≤ p′. Hence, to show that I λ I ′, we need to show
that s ≤ r′.

Suppose, for a contradiction, that r′ < s. If r′ < r, then we also have
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that s′ ≤ r; otherwise, RFloor(I) would cross the left shield of I ′ (see
Figure 6 after collapsing p and q). So if r′ < r, then s′ ≤ r, but then
OLit(I)∩OLit(I ′) = ∅ (similarly to Figure 6 but now p = q and LeftLit(I)
reduces to a line segment), and this equality contradicts (4.3). This rules
out that r′ < r. Since r′ = r is also ruled out by Lemma 3.8 of G. Czédli [7],
we have that r < r′.

So we have that r < r′ < s; see Figure 7. Combining (4.2) and r < r′,
we obtain that Foot(I ′) � Foot(I). Thus Peak(I ′) � Peak(I); indeed, oth-
erwise we would have that (I ′, I) ∈ ρalg and so I ′ ≤ I would contradict
I ‖ I ′. Since s′ ≤ s (together with the trivial p ≤ p′) would imply that
Peak(I ′) ≤ Peak(I), which has just been excluded, we obtain that, as op-
posed to what Figure 7 shows, s < s′. However, then r′ < s < s′ and
RRoof(I) crosses the left shield of I ′, which contradicts (3.2), (4.7), and the
planarity of L. We have shown that I λ I ′, as required.

Case 3: Both I and I ′ are boundary lamps. If they both were left
boundary lamps, then OLit(I)∩OLit(I ′) would contradict (4.3). We would
have the same contradiction if both were right boundary lamps. Hence
one of them, say I, is a left boundary lamp while the other, I ′, is a right
boundary lamp, and the required I λ I ′ trivially holds. This completes the
proof of Lemma 4.3.

Figure 8: A0, A1, A2, and B1

5 Proving the Main Theorem

Now we are ready to prove our main result.
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Proof of the Main Theorem. The theorem is trivial for lattices with less
than three elements. Hence, by Lemma 3.7, it suffices to prove the the-
orem for slim rectangular lattices. By way of contradiction, assume that
L is a slim rectangular lattice that fails the 3P3C-property. Then by
Lemma 3.6, R3 is a cover-preserving ordered subset of Lamp(L). Let Xi

be the lamp corresponding to xi ∈ R3. It follows from Lemma 4.3 that for
any i 6= j ∈ {0, 1, 2}, either Ai is to the left of Aj (in notation, Ai λ Aj),
or Aj λ Ai. Therefore, since any permutation of {A0, A1, A2} extends to
an automorphism of R3, we can assume that A0 λ A1 and A1 λ A2; see
Figure 8, where the coordinate quadruple of Ai is (pi, qi, ri, si). By Defini-
tion 4.1((iii)), it follows that

q0 ≤ p1, s0 ≤ r1, q1 ≤ p2, s1 ≤ r2, and pi ≤ qi ≤ ri ≤ si (5.1)

for every i ∈ {0, 1, 2}. Note that A0 is either an internal lamp such as in
the figure, or it is a left boundary lamp and then LeftLit(A0) is only a line
segment, and analogously for A2. Let (p′, q′, r′, s′) denote the coordinate
tuple of B1; note that Lit(B1) is grey in the figure. It follows from (5.1)
and from trivial properties of C1-diagrams that OLit(A1) ∩ OLit(B1) = ∅.
On the other hand, C1 ≺ A1 and C1 ≺ B1 give that (C1, A1) ∈ ρinfoot and
(C1, B1) ∈ ρinfoot by Lemma 3.6. It follows that Foot(C1) ∈ OLit(A1) ∩
OLit(B1) = ∅, which is a contradiction, completing the proof of the Main
Theorem.

6 Rectangular and patch lattices

6.1 Distance-free geometry of distributive 4-cells We assume
some familiarity with the multifork extensions of G. Czédli [2]. As a prepara-
tion for the proof of Theorem 1.2, let us have a closer look at the “geometry”
of distributive 4-cells of a C1-diagram of a slim rectangular lattice L. Let
C = {u, a, b, v} with u ≺ a ≺ v and u ≺ b ≺ v be a 4-cell of a C1-diagram.
We use the notations 1C = v and 0C = u for the top and the bottom of
this 4-cell. Following G. Czédli [2], C is a distributive 4-cell if the principal
ideal ↓ 1C is a distributive lattice. In this case, C is a normal 4-cell in the
sense that its four edges are of normal slopes, and so is every 4-cell in ↓ 1C
since ↓ 1C is a grid by G. Czédli [5, Lemma 5.8]; by definition, a grid is (the
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C1-diagram of) the direct product of two finite chains. In particular, ↓ 1C is
a slim rectangular lattice.

Next, let C1 = {u1, a1, b1, v1} and C2 = {u2, a2, b2, v2} be distinct dis-
tributive 4-cells of a C1-diagram of a slim rectangular lattice L. The notation
is chosen so that, for i ∈ {1, 2} ui = 0Ci , vi = 1Ci , and ai is to the left of
bi. Although [a1, v1] is not a neon tube in (the diagram of) L in general, it
becomes a neon tube and a boundary lamp in the subdiagram ↓ 1C1 . We
write C1 ↘ C2 to denote that C2 belongs to the subdiagram ↓ 1C1 and
it is included in the area RightLit([a1, v1]) in this subdiagram; see Defini-
tion 3.4. For example, in Figure 9, E ↘ F and A↘ D. Similarly, C1 ↙ C2

means that C2 belongs to the subdiagram ↓ 1C1 and it is included in the
area LeftLit([b1, v1]) in this subdiagram. For example, in Figure 9, E ↙ A
and G ↙ C. Since ↓ 1C1 is a grid, if C1 ↘ C2, then v1, b1, v2, b2 lie on the
same geometrical line of slope (1,−1), and analogously in case C1 ↙ C2.
Note that in case of C1 ↘ C2, the 4-cells C1 and C2 can be adjacent (that
is, u1 = a2 and b1 = v2), but they can be distant from each other; we are
not interested in their geometrical distance now. We say that the 4-cells C1

and C2 are geometrically parallel, in notation C1 ‖g C2, if they are distinct
and none of C1 ↙ C2, C2 ↙ C1, C1 ↘ C2, and C2 ↘ C1 holds. For exam-
ple, if v2 ≤ u1, then C1 ‖g C2 and, in Figure 9, B ‖g H. The geometrical
parallelism is a symmetrical relation. Clearly,

for any two distinct distributive 4-cells of L, exactly
one of the alternatives C1 ↙ C2, C2 ↙ C1, C1 ↘ C2,
C2 ↘ C1, and C1 ‖g C2 holds.

(6.1)

A translation of the plane is a map R2 → R2 defined by (x, y) 7→ (x +
a, y + b) where (a, b) ∈ R2 is a constant. We need the following definition.

Definition 6.1. Let L and L′ be slim rectangular lattices, with a fixed C1-
diagram each. Let Z and Z ′ be sets of pairwise disjoint distributive 4-cells
of L and of L′, respectively. We say that Z and Z ′ have the same distance-
free geometry if there is a bijective map f : Z → Z ′ with action denoted by
C 7→ C ′ := f(C) such that

— for every C ∈ Z, there is a translation of the plane that maps C to
C ′ (in particular, C and C ′ are congruent with respect to the usual
Euclidean metric), and
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Figure 9: Z and Z ′ have the same distance-free geometry

— for any two distinct C1 and C2 in Z, the same alternative of (6.1)
holds for (C1, C2) as for (C ′1, C

′
2).

For example, in Figure 9, Z = {A,B, . . . ,H} and Z ′ = {A′, B′, . . . ,H ′}
have the same distant-free geometry.

By G. Czédli [2, Theorem 3.7], L is obtained from a grid G by a sequence
of multifork extensions at distributive 4-cells. Furthermore, we know from
(2.10) of G. Czédli [7] that each internal lamp comes to existence by a
multifork extension while G is changing to L in several steps. This is why
the following lemma will be important later.

Lemma 6.2. Let Z and Z ′ be as in Definition 6.1, t ∈ N+ := {1, 2, 3, . . . },
and E ∈ Z. Insert a t-fold multifork into E (in other words, take a t-fold
multifork extension of L at E) to obtain a larger slim rectangular lattice K.
Denote by Y the collection of 4-cells of (the C1-diagram of ) K that are in
the areas determined by the 4-cells of Z. (In other words, Y consist of those
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Figure 10: Illustrating Lemma 6.2

4-cells of Z that are 4-cells of K and those 4-cells of K that have come
to existence by dividing 4-cells of Z at the multifork extension.) Then it is
possible to perform a t-fold multifork extension of L′ at E′ to obtain K ′ such
that with the analogously defined Y ′, Y and Y ′ have the same distance-free
geometry.

Lemma 6.2 is illustrated by Figures 9 and 10, where each of Z,Z ′, Y, Y ′

consists of the grey-filled 4-cells of the corresponding diagram. Note that,
say, E is not in Y since it has been split into six 4-cells, three of which are
distributive in K and belong to Y . Lemma 6.2 is a trivial consequence of
definitions.

Let (A, ρ) and (A′, ρ′) be ordered sets. Their cardinal sum will be de-
noted by (A, ρ) ∪̇(A′, ρ′); it is (A t A′, ρ t ρ′) where t stands for disjoint

union. The operation
.
+ for glued sum was defined at the beginning of

Section 2.
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6.2 Proving Theorem 1.2 For arbitrary lattices L1, . . . , Ln with 0

and 1, Con (L1

.
+ . . .

.
+ Ln) is obviously isomorphic to ConL1×· · ·×ConLn;

see (2.1). Since the glued sum of two SPS lattices is clearly an SPS lattice,
we conclude (1.1).

Next, to prove (1.2), Lemma 3.7 allows us to assume that L1, . . . , Ln are
slim rectangular lattices and their diagrams are C2-diagrams. Recall that
the grid of the slim rectangular lattice Li is its sublattice generated by the
upper boundary of Li. This grid will be denoted by Gi; it is a distributive
lattice with all if its edges of normal slopes. We denote by Zi the set of
4-cells of Gi.

For i ∈ {1, . . . , n}, let ti be the number of boundary lamps of Li, and

let t = t1 + · · ·+ tn + 2. We start our construction by taking S
(t)
7 ; see at the

middle right of Figure 11, where n = 2, t1 = 3, t2 = 2, and t = 7. The feet
of the lamps are black-filled in Figure 11. Also, the feet of the internal neon

tubes of S
(7)
7 are indicated by pentagons. We assume that S

(7)
7 is given by

a C2-diagram.

Let U and V be the left boundary lamp and the right boundary lamp,

respectively, of S
(7)
7 , and let W be its unique internal lamp. In Figure 11, the

bottom of a lamp denoted by a capital letter is denoted by the corresponding
lower-case letter.

Let A,B,C, . . . be the list of (t− 2) boundary lamps consisting, in this
order, of the left boundary lamps of L1, the right boundary lamps of L1,
the left boundary lamps of L2, the right boundary lamps of L2, . . . , the left
boundary lamps of Ln, and the right boundary lamps of Ln. Disregarding
the leftmost one and the rightmost one, we label the feet of the neon tubes
of W by a′, b′, c′, . . . , from left to right, in this order.

By G. Czédli [2, Proposition 3.3], S
(t)
7 is a slim patch lattice. All the

elements a′, b′, c′, . . . are the tops of distributive 4-cells as defined in
G. Czédli [2]. Insert a fork (that is, a 1-fold multifork) into each of these
cells; the lattice we obtain is denoted by K; see the upper half of Figure 11;

the elements of K−S(7)
7 (that is, the new elements) are oval. We know that

K is a slim patch lattice, see G. Czédli [2, Proposition 3.3]. The top edges
of the forks just inserted are neon tubes and also 1-tube lamps; let a, b, c, . . .
denote their feet. We can assume that these new neon tubes are vertical. For
each i ∈ {1, . . . , n}, for each left boundary lamp X of Li and for each right
boundary lamp Y of Li, turn the intersection RightLit(X) ∩ LeftLit(Y ),
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Figure 11: Constructing K from L1 and L2 and constructing L from K
apart from a 2-fold multfork
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which is a 4-cell, into grey; see Figure 11 again.

Figure 12: A C2-diagram of L

For a given i, we denote the set of these grey-filled cells by Z ′i. Since we

constructed the diagram of K from a C2-diagram of S
(t)
7 and since the new

neon tubes are vertical, Z ′ := Z ′1∪· · ·∪Z ′n consists of pairwise geometrically
congruent squares. Note that any two normal squares of the same size differ
only up to a translation of the plane. By rescaling the diagrams of Li and,
thus, Gi for i ∈ {1, . . . , n}, we can assume that the 4-cells of Z and those
of Z ′ are all of the same size. By construction, Z and Z ′ have the same
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distance-free geometry. Furthermore,

for all 1 ≤ i < j ≤ n, A ∈ Z ′i, and
B ∈ Z ′j , we have that A ‖g B.

(6.2)

By G. Czédli [2, Theorem 3.7], Li is obtained from Gi by a sequence of
multifork extensions at distributive 4-cells for i ∈ {1, . . . , n}. While doing
so, the set Zi of 4-cells of Gi changes first to Zi,1, then to Zi,2, and so
on. Lemma 6.2 allows us to perform, apart from “distance-free geometric
isomorphism” the same multifork extensions in K (we give more explanation
a bit later). In this way, Z ′i changes to Z ′i,1, then it changes to Z ′i,2, and
so on. Of course, if the first multifork added to Gi is a t1-fold multifork
added to a 4-cell C, then we add a t1-fold multifork to C ′ ∈ Zi. In the
next step, when we add a t2-fold multifork to a distributive 4-cell D of the
lattice diagram just obtained from Gi, then (using that Zi,1 and Z ′i,1 have
the same distance-free geometry) we add a t2-fold multifork at D′ ∈ Z ′i,1,
etc. It follows from (6.2) that

the multifork extensions at 4-cells of Z ′ and its de-
scendants do not interfere with those at 4-cells of Z ′j
and its descendants provided i 6= j.

(6.3)

The lower half of Figure 11 shows where we are after insterting one
multifork into each of G1 and G2; the new elements are oval-shaped. To
obtain L from the lattice in the lower half of the figure, one more multifork
extension is only necessary. Note that we have reshaped the diagram of
L into the C2-diagram given in Figure 12, since otherwise the figure would
have been too crowded and unreadable. The role of Lemma 6.2 is to show
by induction that

since Zi and Z ′i have the same distance-free geometry, so have
Zi,1 and Z ′i,1, then so have Zi,2 and Z ′i,2, and so on.

(6.4)

Let L denote the lattice we obtain from K after the multifork extensions
described above. Since Lit(W ) = FulR(K) = FulR(L) gives that (A,W ),
(B,W ), (C,W ), . . . belong to ρfoot, we obtain (by Lemma 3.6) that

the inequalities A < W , B < W , C <
W , . . . hold in Lamp(L).

(6.5)
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Let Hi denote the set of lamps that are (in the geometric sense) in the grey
4-cells of Z ′i, Z

′
i,1, Z ′i,2, . . . , that is in the geometrical area determined by

Z ′i. Then Hi is an ordered subset of Lamp(L). It follows from (6.4) that
Hi
∼= Lamp(Li). Since light only goes in the directions (−1,−1) and (1,−1),

or because of (6.3), we obtain that no lamp of Hi lights up any Foot(Hj)
for i 6= j. Thus we obtain that Lamp(L)−{U, V,W} = H1 ∪̇ · · · ∪̇Hn. This
equality, Hi

∼= Lamp(Li), and (6.5) yield that

Lamp(L) ∼=
(
Lamp(L1) ∪̇ · · · ∪̇Lamp(Ln)

)
+ {U, V,W}, (6.6)

where W ≺ U , W ≺ V , and U ‖ V . Finally, (6.6) and the Representa-
tion Theorem of Finite Distributive Lattices imply the validity of (1.2) and
complete the proof of Theorem 1.2.

6.3 Patch lattices G. Grätzer [19, Problem 3] asks to characterize the
congruence lattices of slim patch lattices. We now summarize what we know
about these congruence lattices but Problem 3 of G. Grätzer [19] remains
open. We start with an observation.

Lemma 6.3. If L is a slim rectangular lattice, then the following three
conditions are equivalent.

(i) L is a slim patch lattice.
(ii) J(ConL) has exactly two maximal elements.
(iii) There is a finite distributive lattice D0 such that ConL ∼= D0

.
+ B2.

Proof. By G. Czédli [7, Lemma 3.2], the maximal elements of Lamp(L) are
exactly the boundary lamps. Hence, Lemma 3.6 implies that (i) is equivalent
to (ii). This equivalence also easily follows from the Swing Lemma, see G.
Grätzer [16]. Also, the fact that (ii) equivalent to (iii) holds by the Structure
Theorem of Finite Distributive Lattices.

The (1.2)-part of Theorem 1.2 establishes a new connection between
slim rectangular lattices and slim patch lattices; other connections have
been explored by G. Czédli [2] and G. Czédli and E. T. Schmidt [14].

The four element boolean lattice B2 and the glued sum construction in
part (iii) of Lemma 6.3 are well understood. So we focus on D0 to describe
the known properties of congruence lattices of slim patch lattices. The next
statement reduces seven known conditions that hold for congruence lattices
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of slim, planar, semimodular lattices by Theorems 1.3–1.4 and the Main
Theorem to four.

Corollary 6.4. Let D = ConL be the congruence lattice of a slim patch
lattice L. Then the following four statements hold.

(i) There exists a unique finite distributive lattice D0 such that D =
D0

.
+ B2.

In the next three statements, D0 refers to the distributive lattice defined
in (6.4).

(ii) Every element of the ordered set J(D0) has at most two covers.

(iii) Two distinct maximal elements of the ordered set J(D0) have no
common lower cover.

(iv) The ordered set J(D0) satisfies the Three-pendant Three-crown Prop-
erty.

Furthermore, if L is a finite lattice, D = ConL, and D satisfies (6.4),
(6.4) and (6.4) above, then L also satisfies all the six properties listed in
Theorems 1.3 and 1.4.

Proof. Part (6.4) follows from Lemma 6.3. Let A2 denote the two element

antichain. Observe that if D = D0

.
+ B2, then J(D) = J(D0)

.
+ A2. Hence,

applying Theorem 1.3(ii), Theorem 1.4(iv), and the Main Theorem, we
obtain parts (6.4), (6.4), and (6.4), respectively. The rest of the corollary is

a trivial consequence of J(D) = J(D0)
.
+ A2.
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