# Pre-image of functions in $C(L)$ 

Ali Rezaei Aliabad* and Morad Mahmoudi


#### Abstract

Let $C(L)$ be the ring of all continuous real functions on a frame $L$ and $S \subseteq \mathbb{R}$. An $\alpha \in C(L)$ is said to be an overlap of $S$, denoted by $\alpha \longleftarrow S$, whenever $u \cap S \subseteq v \cap S$ implies $\alpha(u) \leqslant \alpha(v)$ for every open sets $u$ and $v$ in $\mathbb{R}$. This concept was first introduced by A. Karimi-Feizabadi, A.A. Estaji, M. Robat-Sarpoushi in Pointfree version of image of real-valued continuous functions (2018). Although this concept is a suitable model for their purpose, it ultimately does not provide a clear definition of the range of continuous functions in the context of pointfree topology. In this paper, we will introduce a concept which is called pre-image, denoted by pim, as a pointfree version of the image of real-valued continuous functions on a topological space $X$. We investigate this concept and in addition to showing $\operatorname{pim}(\alpha)=\bigcap\{S \subseteq \mathbb{R}: \alpha \hookrightarrow S\}$, we will see that this concept is a good surrogate for the image of continuous real functions. For instance, we prove, under some achievable conditions, we have $\operatorname{pim}(\alpha \vee \beta) \subseteq \operatorname{pim}(\alpha) \vee \operatorname{pim}(\beta)$, $\operatorname{pim}(\alpha \wedge \beta) \subseteq \operatorname{pim}(\alpha) \wedge \operatorname{pim}(\beta), \operatorname{pim}(\alpha \beta) \subseteq \operatorname{pim}(\alpha) \operatorname{pim}(\beta)$ and $\operatorname{pim}(\alpha+\beta) \subseteq$ $\operatorname{pim}(\alpha)+\operatorname{pim}(\beta)$.


[^0]
## 1 Introduction and preliminaries

A complete lattice $L$ is said to be a frame if for any $a \in L$ and $B \subseteq L$, we have $a \wedge \bigvee B=\bigvee_{b \in B}(a \wedge b)$. We denote the top element and the bottom element of a frame $L$ by Top and $\perp$, respectively. For every element $a$ of a frame $L$ the pseudocomplement of $a$ is $a^{*}=\bigvee\{x \in L: x \wedge a=\perp\}$. Let $L$ be a frame. The set of all prime ideals (respectively, maximal ideals) of $L$ is denoted by $\operatorname{Spec}(L)$ (respectively, $(\operatorname{Max}(L))$. An element $p \in L$ is called prime if $p<$ Top, and $a \wedge b \leqslant p$ implies $a \leqslant p$ or $b \leqslant p$. Clearly, $a \in L$ is a prime element if and only if $\downarrow a=\{x \in L: x \leqslant a\}$ is a prime ideal of $L$. We denote by $\operatorname{Sp} L$ the set of all prime element of $L$. For every $a \in L$, define $\mathfrak{h}^{c}(a)=\{p \in \operatorname{Sp} L: a \nless p\}$. It is easily seen that $\left\{\mathfrak{h}^{c}(a): a \in L\right\}$ is a topology on $\operatorname{Sp} L$. Here after we use $\operatorname{Sp} L$ equipped with this topology.

Let $X$ and $Y$ be two partial ordered sets and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two increasing maps. We say $f$ is left adjoint of $g$ (respectively, $g$ is right adjoint of $f$ ) if $f g \leqslant I_{Y}$ and $g f \geqslant I_{X}$. It is easy to see that $g$ is uniquely determined by $f$ and vice versa. The right adjoint of a map $f: X \rightarrow Y$ (respectively, left adjoint of a map $g: Y \rightarrow X$ ), if there exists, is denoted by $f_{*}$ (resp., $g^{*}$ ). Supposing $X$ and $Y$ are complete lattices, one can easily see that $f: X \rightarrow Y$ is a left adjoint map if and only if $f$ preserves arbitrary joins and in this case $f_{*}(y)=\bigvee\{x \in X: f(x) \leqslant y\}$ for every $y \in Y$. A frame homomorphism is a map from a frame $L$ to a frame $L^{\prime}$ such that it preserves finite meets and arbitrary joins; clearly in this case we have $f(\perp)=\perp$ and $f($ Top $)=$ Top. Obviously, every frame homomorphism is a left adjoint map. We denote by $\mathcal{O} X$ and $\mathcal{O}_{x}$ the frames of all open subsets of a topological space $X$ and the set of all open neighborhoods of $x \in X$, respectively. If $X$ and $Y$ are two topological spaces, then for every continuous function $f: X \rightarrow Y$ we define $\mathcal{O} f: \mathcal{O} Y \rightarrow \mathcal{O} X$ with $(\mathcal{O} f)(w)=f^{-1}(w)$ for every $w \in \mathcal{O} Y$. It is obvious that $\mathcal{O}$ is a contravariant functor from the category Top to the category Frm. Let $L$ and $L^{\prime}$ be two frames. For every frame homomorphism $f: L \rightarrow L^{\prime}$ we can define $\operatorname{Sp} f: \operatorname{Sp} L^{\prime} \rightarrow \operatorname{Sp} L$ with $(\operatorname{Sp} f)(q)=f_{*}(q)$. For any $a \in L$, we can write

$$
\begin{aligned}
(\operatorname{Sp} f)^{-1}\left(\mathfrak{h}^{c}(a)\right) & =\left\{q \in \operatorname{Sp} L^{\prime}: f_{*}(q) \in \mathfrak{h}^{c}(a)\right\} \\
& =\left\{q \in \operatorname{Sp} L^{\prime}: a \nless f_{*}(q)\right\} \\
& =\left\{q \in \operatorname{Sp} L^{\prime}: f(a) \nless q\right\}=\mathfrak{h}^{c}(f(a)) .
\end{aligned}
$$

Therefore, $\operatorname{Sp} f$ is a continuous map. It is easy to see that $\operatorname{Sp} I_{L}=I_{\operatorname{Sp} L}$ and $\operatorname{Sp} f g=\operatorname{Sp} g \operatorname{Sp} f$ whenever $f g$ means the composition of $f$ and $g$. Thus, $\mathrm{Sp}:$ Frm $\rightarrow$ Top is a contravariant functor. In fact the functor $S p$ is a right adjoint of the functor $\mathcal{O}$.

Recall that an ordered ring is a ring A with a partial order $\leqslant$ such that for every $a, b, c \in A$, from $a \leqslant b$ it follows that $a+c \leqslant b+c$ and if $a, b \geqslant 0$, then $a b \geqslant 0$. An ordered ring is called a lattice-ordered ring if $A$ is a lattice under the partial order on $A$. By an $f$-ring we mean a lattice-ordered ring $R$ with this property that $a(b \wedge c)=a b \wedge a c$ and $(b \wedge c) a=b a \wedge c a$ for every $a \in R^{+}$and every $b, c \in R$. An algebra (over a field $F$ ) is a structure consisting of a set $A$ with two operations "+" and ".", and also a scaler multiplication such that $(A,+,$.$) is a ring and A$ with addition and scaler multiplication is a vector space (over F ), and in addition, for every $x, y \in A$ and every $c \in F$, we have

$$
1_{F} x=x \quad, \quad c(x y)=(c x) y=x(c y)
$$

Finally, an $f$-algebra (over an ordered field) is an algebra with a partial order $\leqslant$ such that $(A,+, ., \leqslant)$ is an $f$-ring, and $A$ with " + " and the scaler multiplication is a vector space (over F ) in which $c x \geqslant 0$ for every $c \in F^{+}$ and every $x \in A^{+}$.

Suppose that $A$ is a lattice-ordered ring and $a \in A$. The positive part of $a$, negative part of $a$, and $|a|$ are defined as $a^{+}=a \vee 0, a^{-}=-a \vee 0$ and $|a|=a \vee-a$, respectively. Clearly, if $A$ is an $f$-ring, then $a=a^{+}-a^{-}$, $|a|=a^{+}+a^{-}, a^{+} a^{-}=0$ and $|a|^{2}=a^{2}$ for any $a \in A$.

In the present part of this paper, for convenience of readers, we give a short review of $C(L)$, at a slightly different perspective from what is stated in the main texts.

A frame homomorphism $\alpha: \mathcal{O} \mathbb{R} \rightarrow L$ is called continuous real function on a frame $L$ and the set of all continuous real function on a frame $L$ is denoted by $C(L)$. Although, this concept was first introduced by R.N. Ball and A.W. Hager in [1], B. Banaschewski studied this concept deeply in [2]; he also showed in [3] that $C(L)$ is a class which strictly contains $C(X)$. Note that we work under the axiomatic system of $Z F C$ and in this system, we have $L(\mathbb{R}) \simeq \mathcal{O} \mathbb{R}$. In this axiomatic system $C(L)$ has a simpler representation.

Supposing that $A, S \subseteq L$, we denote by $\downarrow A$ the set $\{x \in L: \exists a \in$
$A, x \leqslant a\}$; we use $\downarrow x$ instead of $\downarrow\{x\}$ and $\downarrow_{S} A$ instead of $S \cap \downarrow A$. Clearly, for any $S \subseteq L$, the map $\downarrow_{S}: L \rightarrow P(S)$ is a meet-homomorphism but not a join-homomorphism, see [15]. A subset $B$ of $L$ is said to be a base for $L$ if $x=\bigvee \downarrow_{B} x$ for every $x \in L$. Let $L$ and $L^{\prime}$ be two frames and $B$ be a base for $L$. A map $f: B \rightarrow L^{\prime}$ is said to be conditional homomorphism if for every $A \subseteq B$ and every finite $F \subseteq B$ we have $f(\bigvee A)=\bigvee f(A)$ and $f(\bigwedge F)=\bigwedge f(F)$, provided that $\bigvee A \in B$ and $\bigwedge F \in B$. Supposing that $B$ is a base for a frame $L$, we call $B$ a homomorphism maker if every conditional homomorphism from $B$ to a frame $L^{\prime}$ has an extension homomorphism from $L$ to $L^{\prime}$.

Proposition 1.1. Let $B$ be a base for $L$ closed under finite meets. Then $B$ is homomorphism maker.

Proof. Let $f: B \rightarrow L^{\prime}$ be a conditional homomorphism. We define $\bar{f}: L \rightarrow$ $L^{\prime}$ with $\bar{f}(x)=\bigvee f\left(\downarrow_{B}(x)\right)$ and prove that $\bar{f}$ is a homomorphism extension of $f$. Clearly, $\bar{f}$ is order preserving, $\left.\bar{f}\right|_{B}=f, f(\perp)=\perp$ and $f($ Top $)=$ Top. Assuming that $x_{\lambda} \in L$ for every $\lambda \in \Lambda$, since $\bar{f}$ is order preserving, we have $\bigvee_{\lambda \in \Lambda} \bar{f}\left(x_{\lambda}\right) \leqslant \bar{f}\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)$. Conversely, for every $b \in \downarrow_{B}\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)$,

$$
b=\bigvee_{\lambda \in \Lambda} b \wedge x_{\lambda}=\bigvee_{\lambda \in \Lambda} \bigvee\left\{c \in B: c \leqslant b \wedge x_{\lambda}\right\}
$$

which implies that

$$
\begin{aligned}
f(b) & =\bigvee_{\lambda \in \Lambda} \bigvee\left\{f(c): c \in B, c \leqslant b \wedge x_{\lambda}\right\} \\
& \leqslant \bigvee_{\lambda \in \Lambda} \bigvee\left\{f(c): c \in B, c \leqslant x_{\lambda}\right\} \\
& =\bigvee_{\lambda \in \Lambda} \bar{f}\left(x_{\lambda}\right)
\end{aligned}
$$

and this shows that

$$
\bar{f}\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)=\bigvee\left\{f(b): b \in \downarrow \bigvee_{\lambda \in \Lambda} x_{\lambda}\right\} \leqslant \bigvee_{\lambda \in \Lambda} \bar{f}\left(x_{\lambda}\right)
$$

Therefore, $\bar{f}\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)=\bigvee_{\lambda \in \Lambda} \bar{f}\left(x_{\lambda}\right)$. Now, supposing that $x, y \in L$, clearly

$$
\begin{aligned}
\bar{f}(x \wedge y) & =\bigvee\{f(c): c \in B, c \leqslant x \wedge y\} \\
& =\bigvee\left\{f\left(c_{1} \wedge c_{2}\right): c_{1}, c_{2} \in B, c_{1} \leqslant x, c_{2} \leqslant y\right\} \\
& =\bigvee\left\{f\left(c_{1}\right) \wedge f\left(c_{2}\right): c_{1}, c_{2} \in B, c_{1} \leqslant x, c_{2} \leqslant y\right\} \\
& =\bigvee\left\{f\left(c_{1}\right): c_{1} \in B, c_{1} \leqslant x\right\} \wedge \bigvee\left\{f\left(c_{2}\right): c_{2} \in B, c_{2} \leqslant y\right\} \\
& =\bar{f}(x) \wedge \bar{f}(y)
\end{aligned}
$$

In the above proposition, the condition "closedness under finite meets" cannot be omitted. For example, suppose that $B=\{(a, b): a, b \in \mathbb{Q}, a<b\}$ and $f: B \rightarrow L$ with $f(a, b)=$ Top for every $(a, b) \in B$. Obviously, $B$ is a base for $\mathcal{O} \mathbb{R}, f$ is conditional homomorphism and $B$ is not homomorphism maker.

Corollary 1.2. Let $B=\{(r, s): r, s \in \mathbb{Q}\} \cup\{\mathbb{R}\}$. Clearly, $B$ is a base for $\mathcal{O} \mathbb{R}$ and closed under finite meets. Hence, $B$ is a homomorphism maker. In other words, a map $f: B \rightarrow L$ has an extension homomorphism $\alpha \in C(L)$ if and only if $f$ has the following properties.
(R1) $f((p, q) \wedge(r, s))=f(p, q) \wedge f(r, s)$, whenever $p, q, r, s \in \mathbb{Q}$ and $(p, q) \wedge(r, s) \neq \emptyset$.
(R2) $f((p, q) \vee(r, s))=f(p, q) \vee f(r, s)$, whenever $p, q, r, s \in \mathbb{Q}$ and $p \leqslant r<q \leqslant s$.
(R3) $f(p, q)=\bigvee\{f(r, s): r, s \in \mathbb{Q}, p<r<s<q\}$ for every $p, q \in \mathbb{Q}$.
$(\mathrm{R} 4) \operatorname{Top}=f(\mathbb{Q})=\bigvee\{f(p, q): p, q \in \mathbb{Q}\}$.

Suppose that $\diamond$ is an operation such as " + ", ".", " $\vee$ " and " $\wedge$ ". For every $\alpha, \beta \in C(L)$ and every $p, q \in \mathbb{Q}$, we define

$$
(\alpha \diamond \beta)(p, q)=\bigvee\{\alpha(r, s) \wedge \beta(t, u): r, s, t, u \in \mathbb{Q},(r, s) \diamond(t, u) \subseteq(p, q)\}
$$

where $(r, s) \diamond(t, u)=\{a \diamond b: a \in(r, s), b \in(t, u)\}$. It can be proved that $\alpha \diamond \beta$ is a conditional homomorphism on $B=\{(r, s): r, s \in \mathbb{Q}\} \cup\{\mathbb{R}\}$ and hence $\alpha \diamond \beta \in C(L)$, see [2] and [14]. Also, for every $r \in \mathbb{R}$ it is defined that
$\mathbf{r}(w)=\mathbf{T o p}$ if $r \in w$ and $\mathbf{r}(w)=\perp$ if $r \notin w$. It is clear to see that $\mathbf{r} \in C(L)$. Now, r. $\alpha$ is defined by $\mathbf{r} \alpha$. Consequently $C(L)$ is an $f$-algebra with these operations.

Proposition 1.3. For every $\alpha, \beta \in C(L)$ and every $w \in \mathcal{O} \mathbb{R}$, we have

$$
\begin{aligned}
(\alpha \diamond \beta)(w) & =\bigvee\{\alpha(r, s) \wedge \beta(t, u): r, s, t, u \in \mathbb{Q},(r, s) \diamond(t, u) \subseteq w\} \\
& =\bigvee\left\{\alpha\left(w_{1}\right) \wedge \beta\left(w_{2}\right): w_{1}, w_{2} \in \mathcal{O} \mathbb{R}, w_{1} \diamond w_{2} \subseteq w\right\}
\end{aligned}
$$

where $w_{1} \diamond w_{2}=\left\{a \diamond b: a \in w_{1}, b \in w_{2}\right\}$.
Proof. Assume that

$$
\begin{gathered}
A_{a, b}=\{\alpha(r, s) \wedge \beta(t, u): r, s, t, u \in \mathbb{Q},(r, s) \diamond(t, u) \subseteq(a, b)\} \\
A_{w}=\{\alpha(r, s) \wedge \beta(t, u): r, s, t, u \in \mathbb{Q},(r, s) \diamond(t, u) \subseteq w\}
\end{gathered}
$$

and

$$
B_{w}=\left\{\alpha\left(w_{1}\right) \wedge \beta\left(w_{2}\right): w_{1}, w_{2} \in \mathcal{O} \mathbb{R}, \quad w_{1} \diamond w_{2} \subseteq w\right\}
$$

Since $(\alpha \diamond \beta) \in C(L)$, it follows that

$$
\begin{aligned}
(\alpha \diamond \beta)(w) & =(\alpha \diamond \beta)(\bigcup\{(a, b) \in \mathcal{O} \mathbb{R}: a, b \in \mathbb{Q},(a, b) \subseteq w\}) \\
& =\bigvee\{(\alpha \diamond \beta)(a, b): a, b \in \mathbb{Q},(a, b) \subseteq w\} \\
& =\bigvee\left\{\bigvee A_{a, b}:(a, b) \subseteq w\right\}
\end{aligned}
$$

Therefore, clearly, $(\alpha \diamond \beta)(w) \leqslant \bigvee A_{w} \leqslant \bigvee B_{w}$. Now, suppose that $\alpha(r, s) \wedge$ $\beta(t, u) \in A_{w}$. Obviously, there exist $a, b \in \mathbb{Q}$ such that $(r, s) \diamond(t, u) \subseteq(a, b) \subseteq$ $w$. Hence, $\alpha(r, s) \wedge \beta(t, u) \in A_{a, b}$ and consequently $\bigvee A_{w} \leqslant \bigvee A_{a, b} \leqslant(\alpha \diamond$ $\beta)(w)$ and so $\bigvee A_{w}=(\alpha \diamond \beta)(w)$. Finally, assume that $\alpha\left(w_{1}\right) \wedge \beta\left(w_{2}\right) \in B_{w}$, where $w_{1} \diamond w_{2} \subseteq w$. Clearly, $w_{1}=\bigcup_{i \in I}\left(r_{i}, s_{i}\right)$ and $w_{2}=\bigcup_{j \in J}\left(t_{j}, u_{j}\right)$, where $r_{i}, s_{i}, t_{j}, u_{j} \in \mathbb{Q}$ for every $i \in I$ and every $j \in J$. Thus,

$$
\bigcup_{i \in I} \bigcup_{j \in J}\left(r_{i}, s_{i}\right) \diamond\left(t_{j}, u_{j}\right)=\bigcup_{i \in I}\left(r_{i}, s_{i}\right) \diamond \bigcup_{j \in J}\left(t_{j}, u_{j}\right)=w_{1} \diamond w_{2} \subseteq w
$$

and so $\left(r_{i}, s_{i}\right) \diamond\left(t_{j}, u_{j}\right) \subseteq w$ for every $i \in I$ and every $j \in J$. Therefore, it is easy to see that $\alpha\left(w_{1}\right) \wedge \beta\left(w_{2}\right)=\bigvee_{i \in I} \bigvee_{j \in J} \alpha\left(r_{i}, s_{i}\right) \wedge \beta\left(t_{j}, u_{j}\right) \leqslant \bigvee A_{w}$. Hence, $\bigvee B_{w} \leqslant \bigvee A_{w}$ and so $\bigvee B_{w}=\bigvee A_{w}$

Throughout the paper, the notations $L$ and $C(L)$ stand for a frame and the $f$-algebra of all continuous real functions on the frame $L$, respectively. The reader is referred to [2], [14], and [12], for more information about frames and $C(L)$. Also, see [4], [5], [11], [15], and [10] for more information about general lattice theory and rings of continuous functions, respectively.

We need the following proposition which can be found in the literature.
Proposition 1.4. Let $\alpha, \beta \in C(L)$ and $a \in \mathbb{R}$. The following statements hold.
(a) If $\alpha \geqslant 0$, then $\alpha(-\infty, x)=\perp$ for every $x \leqslant 0$.
(b) If $\alpha \geqslant 0$, then $\alpha(x,+\infty)=$ Top for every $x<0$.
(c) $(\alpha \vee \beta)(x,+\infty)=\alpha(x,+\infty) \vee \beta(x,+\infty)$ for every $x \in \mathbb{R}$.
(d) $(\alpha \vee \beta)(-\infty, x)=\alpha(-\infty, x) \wedge \beta(-\infty, x)$ for every $x \in \mathbb{R}$.
(e) $(\alpha \wedge \beta)(x,+\infty)=\alpha(x,+\infty) \wedge \beta(x,+\infty)$ for every $x \in \mathbb{R}$.
(f) $(\alpha \wedge \beta)(-\infty, x)=\alpha(-\infty, x) \vee \beta(-\infty, x)$ for every $x \in \mathbb{R}$.
(g) $(\mathbf{c} \alpha)(w)=\alpha\left(\frac{1}{c} w\right)$ for every $w \in \mathcal{O} \mathbb{R}$ and each $c \neq 0$, where $b w=$ $\{b x: x \in w\}$.
(h) $(\mathbf{c}+\alpha)(w)=\alpha(w-c)$ for each $w \in \mathcal{O} \mathbb{R}$ and each $c \in \mathbb{R}$, where $w+b=\{x+b: x \in w\}$.

## 2 Pre-image of a continuous real function on $L$

In [13], although it does not introduce a determined definition for pointfree version of the "image" of continuous real functions, using a concept, called "overlap", an attempt has been made to fill the vacuum of the concept of image of continuous real functions in pointfree topology. In this main section, we give a determined version of the image of continuous real functions on a topological space $X$ in the pointfree topology and we show that this is independent of what we see in [13].

Definition 2.1. For every $\alpha \in C(L)$, we define $\operatorname{pim}(\alpha)$, called pre-image of $\alpha$, as

$$
\operatorname{pim}(\alpha)=\bigcap\{w \in O \mathbb{R}: \alpha(w)=\mathbf{T o p}\}
$$

At below we provide an example in which we demonstrate that $\operatorname{pim}(\alpha)$ is an appropriate model of image of the real-valued functions in pointfree topology.

Example 2.2. Let $C(X)$ be the ring of real-valued continuous functions on a topological space $X$. We know that for all $f \in C(X)$ we have $\mathcal{O} f \in C(\mathcal{O} X)$ and clearly, we can write

$$
\begin{aligned}
\operatorname{Im}(f)=f(X) & =\bigcap_{f(X) \subseteq w} w=\bigcap\left\{w \in \mathcal{O} \mathbb{R}: f^{-1}(w)=X\right\} \\
& =\bigcap\{w \in \mathcal{O} \mathbb{R}: \mathcal{O} f(w)=\mathbf{T o p}\}
\end{aligned}
$$

Therefore, $\operatorname{Im}(f)=\operatorname{pim}(\mathcal{O} f)$.
Hereinafter, by $\mathbb{R}_{x}$, we mean $\mathbb{R} \backslash\{x\}$.
Proposition 2.3. For every $\alpha \in C(L)$, the following statements hold:
(a) $\operatorname{pim}(\alpha)=\bigcap\left\{\mathbb{R}_{x}: \alpha\left(\mathbb{R}_{x}\right)=\mathbf{T o p}\right\}$.
(b) $x \notin \operatorname{pim}(\alpha)$ if and only if $\alpha\left(\mathbb{R}_{x}\right)=$ Top.

Proof. (a): Suppose that $\mathcal{B}=\left\{\mathbb{R}_{x}: \alpha\left(\mathbb{R}_{x}\right)=\mathbf{T o p}\right\}$. Obviously pim $(\alpha) \subseteq$ $\bigcap \mathcal{B}$. Now, assuming $x \notin \operatorname{pim}(\alpha)$, there exists $w \in \mathcal{O} \mathbb{R}$ such that $x \notin w$ and $\alpha(w)=$ Top. Hence, $w \subseteq \mathbb{R}_{x}$, consequently $\alpha\left(\mathbb{R}_{x}\right)=$ Top and so $x \notin \mathbb{R}_{x} \in \mathcal{B}$. Therefore, $\bigcap \mathcal{B} \subseteq \operatorname{pim}(\alpha)$ and subsequently $\operatorname{pim}(\alpha)=\bigcap \mathcal{B}$.
(b): According to (a), it is obvious that we can write

$$
x \notin \operatorname{pim}(\alpha) \Rightarrow \exists \mathbb{R}_{y}, \quad \alpha\left(\mathbb{R}_{y}\right)=\mathbf{T o p}, \quad x \notin \mathbb{R}_{y}
$$

Since $x \notin \mathbb{R}_{y}, x=y$ and consequently $\alpha\left(\mathbb{R}_{x}\right)=$ Top. Conversely, assume that $\alpha\left(\mathbb{R}_{x}\right)=$ Top. Thus, $\operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x}$ and so $x \notin \operatorname{pim}(\alpha)$.

Estaji and at al. in [8], put

$$
R_{\alpha}=\{r \in \mathbb{R}: \operatorname{coz}(\alpha-r) \neq \mathbf{T o p}\}
$$

for every $\alpha \in C(L)$, and they studied some of its properties. By Proposition 2.3 , it is evident that $R_{\alpha}=\operatorname{pim}(\alpha)$.

Recall that $w^{*}=\mathbb{R} \backslash \bar{w}$ and $\bar{w}=\bigcap_{x \in w^{*}} \mathbb{R}_{x}$ for every $w \in \mathcal{O} \mathbb{R}$.
Proposition 2.4. For every $w \in \mathcal{O} \mathbb{R}$ and every $\alpha \in C(L)$, the following statements hold:
(a) If $\alpha\left(w^{*}\right)=\perp$, then $\alpha\left(\mathbb{R}_{x}\right)=\mathbf{T o p}$ for all $x \in w^{*}$.
(b) If $\alpha\left(w^{*}\right)=\perp$, then $\operatorname{pim}(\alpha) \subseteq \bar{w}$.
(c) If $r \in \overline{\operatorname{pim}(\alpha)}$ and $w \in \mathcal{O}_{r}$, then $\alpha(w) \neq \perp$.

Proof. (a): Suppose that $w \in \mathcal{O} \mathbb{R}$ and $\alpha \in C(L)$. Then for every $x \in w^{*}$, we can write

$$
\mathbb{R}_{x} \cup w^{*}=\mathbb{R} \Rightarrow \alpha\left(\mathbb{R}_{x}\right)=\alpha\left(\mathbb{R}_{x}\right) \vee \alpha\left(w^{*}\right)=\alpha\left(\mathbb{R}_{x} \cup w^{*}\right)=\alpha(\mathbb{R})=\text { Top. }
$$

(b): Since $\alpha\left(w^{*}\right)=\perp$, by part (a), for all $x \in w^{*}$, we have $\alpha\left(\mathbb{R}_{x}\right)=$ Top and so

$$
\operatorname{pim}(\alpha)=\bigcap\left\{\mathbb{R}_{x}: \alpha\left(\mathbb{R}_{x}\right)=\mathbf{T o p}\right\} \subseteq \bigcap_{x \in w^{*}} \mathbb{R}_{x}=\bar{w}
$$

(c): Suppose that $r \in \overline{\operatorname{pim}(\alpha)}$ and $w \in \mathcal{O}_{r}$. Thus, there exists $y \in$ $w \cap \operatorname{pim}(\alpha)$ and therefore

$$
\mathbf{T o p}=\alpha(\mathbb{R})=\alpha\left(\mathbb{R}_{y} \vee w\right)=\alpha\left(\mathbb{R}_{y}\right) \vee \alpha(w)
$$

On the other hand, since $y \in \operatorname{pim}(\alpha), \alpha\left(\mathbb{R}_{y}\right) \neq \operatorname{Top}$ and so $\alpha(w) \neq \perp$.

By Example 2.2, it is easy to see that if $\operatorname{pim}(\mathcal{O} f) \subseteq w \in \mathcal{O} \mathbb{R}$, then $\mathcal{O} f(w)=$ Top. Also, if $\mathcal{O} f(w) \neq \perp$, for every $w \in \mathcal{O}_{r}, r \in \overline{\operatorname{pim}(\alpha)}$. So here are two natural question.

Question 1: Suppose that $\alpha \in C(L)$ and $w \in \mathcal{O} \mathbb{R}$. Can we imply $\alpha(w)=$ Top from $\operatorname{pim}(\alpha) \subseteq w ?$

Question 2: Suppose that $\alpha(w) \neq \perp$, for every $w \in \mathcal{O}_{r}$. Can we conclude that $r \in \overline{\operatorname{pim}(\alpha)}$ ?

Example 2.8 shows that the answer to these two questions is generally negative (in the first question, even if $w$ is an unbounded interval in $\mathbb{R}$ ). But, in the following proposition, we will find that the answer to the first question is positive under some conditions.

Proposition 2.5. Let $\alpha \in C(L), w \in \mathcal{O} \mathbb{R}$ and $\operatorname{pim}(\alpha) \subseteq w$, then the following statements hold:
(a) If $w$ is dense in $\mathbb{R}$ and the boundary of $w$ is finite, then $\alpha(w)=$ Top.
(b) Let $\mathcal{U} \subseteq \mathcal{O} \mathbb{R}$ be such that one of these families is bounded, $\operatorname{pim}(\alpha) \subseteq$ $\bigcap \mathcal{U}$ and $\alpha(u)=$ Top for every $u \in \mathcal{U}$. If $\bigcap_{u \in \mathcal{U}} \bar{u} \subseteq w$, then it follows that $\alpha(w)=$ Top.

Proof. (a): It is clear.
(b): Without loss of generality, we can suppose that $\bar{u}$ is compact for all $u \in \mathcal{U}$. Now, it is easy to see that there exist $u_{1}, \cdots, u_{n} \in \mathcal{U}$ such that $\bigcap_{i=1}^{n} \overline{u_{i}} \subseteq w$. Therefore,

$$
\mathbf{T o p}=\bigwedge_{i=1}^{n} \alpha\left(u_{i}\right)=\alpha\left(\bigcap_{i=1}^{n} u_{i}\right) \leqslant \alpha(w) \Rightarrow \alpha(w)=\mathbf{T o p}
$$

Suppose that $\alpha \in C(L)$ and $S \subseteq \mathbb{R}$. We recall from [13] that $\alpha$ is an overlap of $S$, denoted by $\alpha<S$, whenever $i(u) \subseteq i(v)$ implies $\alpha(u) \leqslant \alpha(v)$; that is, $u \cap S \subseteq v \cap S$ implies $\alpha(u) \leqslant \alpha(v)$. In the following propositions and example, we will see that although this concept and $\operatorname{pim}(\alpha)$ are closely related, but they are different from each other.

Proposition 2.6. Suppose that $\alpha \in C(L)$ and $O V(\alpha)=\{S \subseteq \mathbb{R}: \alpha \longleftarrow S\}$. Then $\operatorname{pim}(\alpha)=\bigcap_{S \in O V(\alpha)} S$.

Proof. Let $S \in O V(\alpha)$ and $x \notin S$. Thus, $\mathbb{R}_{x} \cap S=\mathbb{R} \cap S$ and so Top $=$ $\alpha(\mathbb{R})=\alpha\left(\mathbb{R}_{x}\right)$; that,$x \notin \operatorname{pim}(\alpha)$. Therefore, $\operatorname{pim}(\alpha) \subseteq \bigcap_{S \in O V(\alpha)} S$. Conversely, suppose $x \notin \operatorname{pim}(\alpha)$; it suffices to show that $\mathbb{R}_{x} \in O V(\alpha)$. To see this, for every $u, v \in \mathcal{O} \mathbb{R}$, we can write

$$
\begin{gathered}
u \cap \mathbb{R}_{x} \subseteq v \cap \mathbb{R}_{x} \Rightarrow \alpha(u)=\alpha(u) \wedge \mathbf{T o p}=\alpha(u) \wedge \alpha\left(\mathbb{R}_{x}\right) \\
=\alpha\left(u \cap \mathbb{R}_{x}\right) \leqslant \alpha(v \cap \mathbb{R})=\alpha(v)
\end{gathered}
$$

Proposition 2.7. Suppose that $\alpha \in C(L), w \in \mathcal{O} \mathbb{R}$ and $\alpha(w)=$ Top, then $\alpha 4 w$.

Proof. Let $u, v \in \mathcal{O} \mathbb{R}$ and $u \cap w \subseteq v \cap w$. Hence

$$
\begin{gathered}
\alpha(u)=\alpha(u) \wedge \mathbf{T o p}=\alpha(u) \wedge \alpha(w) \\
=\alpha(u \cap w) \leqslant \alpha(v \cap w)=\alpha(v) \wedge \alpha(w)=\alpha(v) \wedge \mathbf{T o p}=\alpha(v)
\end{gathered}
$$

In this way, it turns out that the following equality is in place, too.

$$
\operatorname{pim}(\alpha)=\bigcap\{w \in \mathcal{O} \mathbb{R}: \alpha \longleftarrow w\}
$$

Example 2.8. There is a frame $L$ and $\beta \in C(L)$ such that $\beta \not \operatorname{pim}(\beta)$. To see this, let $L, \beta$ and the family $\left\{S_{c}\right\}_{c \in \mathcal{I}}$ be same as in [13, Example 3.18]. Then, $\operatorname{pim}(\beta) \subseteq \bigcap_{c \in \mathcal{I}} S_{c}=\emptyset$. Thus, $\beta \longleftarrow \operatorname{pim}(\beta)$ does not hold. Furthermore, since $\beta(\emptyset)=\perp$, there exists $w \in \mathcal{O} \mathbb{R}$ such that $\beta(w) \neq \mathbf{T o p}$. Clearly, $\operatorname{pim}(\beta)=\emptyset \subseteq w$ whereas $\beta(w) \neq$ Top. Thus, the answer to Question 1 is negative. Also, since $\beta(\mathbf{T o p})=\mathbf{T o p}$, there exists an element $r \in \mathbb{R}$ such that for every $w \in \mathcal{O}_{r}$ we have $\beta(w) \neq \perp$, whereas $r \notin \emptyset=\overline{\operatorname{pim}(\beta)}$. Therefore, the answer to Question 2 is also negative.

Now, we want to find the relationship between $\operatorname{pim}(|\alpha|)$ and $\operatorname{pim}(\alpha)$.
Lemma 2.9. For every $\alpha \in C(L)$ and every $x \in \mathbb{R}$, we have

$$
|\alpha|\left(\mathbb{R}_{x}\right)=(\alpha(x,+\infty) \vee \alpha(-\infty,|x|)) \wedge(\alpha(-|x|,+\infty) \vee \alpha(-\infty,-x))
$$

Proof. By Proposition 1.4, the proof is straightforward.
The following corollary is followed from the above lemma immediately.
Corollary 2.10. Assume that $\alpha \in C(L)$ and $x \in \mathbb{R}$. Then the following statements hold:
(a) If $x<0$, then $|\alpha|\left(\mathbb{R}_{x}\right)=$ Top.
(b) If $x \geqslant 0$, then $|\alpha|\left(\mathbb{R}_{x}\right)=\alpha\left(\mathbb{R}_{x}\right) \wedge \alpha\left(\mathbb{R}_{-} x\right)$.
(c) $\operatorname{pim}(|\alpha|) \subseteq \mathbb{R}^{+}$.

Proposition 2.11. $\operatorname{pim}(|\alpha|)=\{|x|: x \in \operatorname{pim}(\alpha)\}$ for every $\alpha \in C(L)$.
Proof. Supposing $A=\{|x|: x \in \operatorname{pim}(\alpha)\}$, clearly, $A=\left\{x \in \mathbb{R}^{+}: x \in\right.$ $\operatorname{pim}(\alpha)$ or $-\mathrm{x} \in \operatorname{pim}(\alpha)\}$. Accordingly to Lemma 2.9, for every $x \geqslant 0$, we can write

$$
\begin{gathered}
x \notin A \Leftrightarrow x,-x \notin \operatorname{pim}(\alpha) \Leftrightarrow \alpha\left(\mathbb{R}_{x}\right)=\alpha\left(\mathbb{R}_{-x}\right)=\mathbf{T o p} \Leftrightarrow|\alpha|\left(\mathbb{R}_{x}\right) \\
=\mathbf{T o p} \Leftrightarrow x \notin \operatorname{pim}(|\alpha|) .
\end{gathered}
$$

Proposition 2.12. The following relations are true for each $\alpha \in C(L)$ and each $r \in \mathbb{R}$ :
(a) $\operatorname{pim}(\mathbf{r})=\{r\}$.
(b) $\operatorname{pim}(\mathbf{r} \alpha)=r \operatorname{pim}(\alpha)$.
(c) $\operatorname{pim}(\mathbf{r}+\alpha)=r+\operatorname{pim}(\alpha)$.

Proof. (a): Clearly, for every $r \in \mathbb{R}$, we can write

$$
\mathbf{r}\left(\mathbb{R}_{x}\right)=\mathbf{T o p} \quad \Leftrightarrow \quad x \neq r . \quad \therefore \quad \operatorname{pim}(\mathbf{r})=\bigcap_{x \neq r} \mathbb{R}_{x}=\{r\}
$$

(b): For every $r \in \mathbb{R}$, we can write (without loss of generality, assume that $r \neq 0$ )

$$
\begin{aligned}
\operatorname{pim}(\mathbf{r} \alpha) \subseteq \mathbb{R}_{x} & \Leftrightarrow(\mathbf{r} \alpha)\left(\mathbb{R}_{x}\right)=\mathbf{T o p} \quad \Leftrightarrow \quad \alpha\left(\frac{1}{r} \mathbb{R}_{x}\right)=\alpha\left(\mathbb{R}_{\frac{x}{r}}\right)=\text { Top } \\
& \Leftrightarrow \operatorname{pim}(\alpha) \subseteq \mathbb{R}_{\frac{x}{r}} \Leftrightarrow \quad r \cdot \operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x} \\
& \Leftrightarrow \operatorname{pim}(\mathbf{r}) \cdot \operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x}
\end{aligned}
$$

(c): For every $r \in \mathbb{R}$, we can write

$$
\begin{aligned}
\operatorname{pim}(\mathbf{r}+\alpha) \subseteq \mathbb{R}_{x} & \Leftrightarrow(\mathbf{r}+\alpha)\left(\mathbb{R}_{x}\right)=\text { Top } \Leftrightarrow \alpha\left(-r+\mathbb{R}_{x}\right)=\alpha\left(\mathbb{R}_{x-r}\right)=\text { Top } \\
& \Leftrightarrow \operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x-r}=-r+\mathbb{R}_{x} \Leftrightarrow r+\operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x} \\
& \Leftrightarrow \operatorname{pim}(\mathbf{r})+\operatorname{pim}(\alpha) \subseteq \mathbb{R}_{x}
\end{aligned}
$$

Now, we state the relation between $\operatorname{pim}(\alpha), \operatorname{pim}\left(\alpha^{+}\right)$, and $\operatorname{pim}\left(\alpha^{-}\right)$in the following.

Proposition 2.13. For every $\alpha \in C(L)$, the following relations hold:
(a) $\operatorname{pim}(\alpha) \cap(0,+\infty)=\operatorname{pim}\left(\alpha^{+}\right) \backslash\{0\}$.
(b) $\operatorname{pim}(\alpha) \cap(-\infty, 0)=\operatorname{pim}\left(-\alpha^{-}\right) \backslash\{0\}$.
(c) $\operatorname{pim}(\alpha) \backslash\{0\}=\left(\left(\operatorname{pim}\left(\alpha^{+}\right) \cup \operatorname{pim}\left(-\alpha^{-}\right)\right) \backslash\{0\}\right.$.

Proof. (a): For every $x>0$, by Proposition 1.4, we have

$$
\alpha^{+}(-\infty, x)=(\alpha \vee \mathbf{0})(-\infty, x)=\alpha(-\infty, x) \wedge \mathbf{0}(-\infty, x)=\alpha(-\infty, x)
$$

and similarly,

$$
\alpha^{+}(x,+\infty)=(\alpha \vee \mathbf{0})(x,+\infty)=\alpha(x,+\infty) \vee \mathbf{0}(x,+\infty)=\alpha(x,+\infty)
$$

Therefore, for every $x>0$, we can deduce that

$$
\alpha\left(\mathbb{R}_{x}\right)=\alpha(-\infty, x) \vee \alpha(x,+\infty)=\alpha^{+}(-\infty, x) \vee \alpha^{+}(x,+\infty)=\alpha^{+}\left(\mathbb{R}_{x}\right)
$$

Hence, $(0,+\infty) \cap \operatorname{pim}(\alpha)=\operatorname{pim}\left(\alpha^{+}\right) \backslash\{0\}$.
(b): For every $x<0$, by part (a), we can write

$$
\begin{aligned}
-\alpha^{-}\left(\mathbb{R}_{x}\right) & =-\alpha^{-}[(-\infty, x) \vee(x,+\infty)] \\
& =-\alpha^{-}(-\infty, x) \vee-\alpha^{-}(x,+\infty) \\
& =\alpha^{-}(-x,+\infty) \vee \alpha^{-}(-\infty,-x) \\
& =(-\alpha)^{+}(-x,+\infty) \vee(-\alpha)^{+}(-\infty,-x) \\
& =-\alpha(-x,+\infty) \vee-\alpha(-\infty,-x) \\
& =\alpha(-\infty, x) \vee \alpha(x,+\infty)=\alpha\left(\mathbb{R}_{x}\right) .
\end{aligned}
$$

Therefore, $(-\infty, 0) \cap \operatorname{pim}(\alpha)=\operatorname{pim}\left(-\alpha^{-}\right) \backslash\{0\}$.
(c): Straightforward from (a) and (b), it is concluded that

$$
\operatorname{pim}(\alpha) \backslash\{0\}=\left(\left(\operatorname{pim}\left(\alpha^{+}\right)\right) \cup \operatorname{pim}\left(-\alpha^{-}\right)\right) \backslash\{0\} .
$$

Question 3: Now, this question arises whether the following relations, similar to what we have for real functions on topological spaces, hold.

$$
\begin{gathered}
\operatorname{pim}(\alpha \vee \beta) \subseteq \operatorname{pim}(\alpha) \cup \operatorname{pim}(\beta), \quad \operatorname{pim}(\alpha \wedge \beta) \subseteq \operatorname{pim}(\alpha) \cap \operatorname{pim}(\beta) \\
\quad \operatorname{pim}(\alpha+\beta) \subseteq \operatorname{pim}(\alpha)+\operatorname{pim}(\beta) \quad, \quad \operatorname{pim}(\alpha \beta) \subseteq \operatorname{pim}(\alpha) \operatorname{pim}(\beta)
\end{gathered}
$$

We show that under some achievable conditions, the answer is positive. But first we need some preparations.

Definition 2.14. An ideal $I$ in a frame $L$ is called $\vee$-complete (countably V-complete) if from $D \subseteq I$ (countable set $D \subseteq I$ ), it follows that $\bigvee D \in I$.

Example 2.15. (a) Every principal ideal is $\vee$-complete.
(b) Suppose that $\omega_{1}$ is the first uncountable ordinal and $L=\downarrow \omega_{1}$. Clearly $L$ is a frame and if we put $P=L \backslash\{\mathbf{T o p}\}$, then $P$ is a countably $\vee$-complete ideal whereas it is not a $\vee$-complete ideal.

Definition 2.16. For every $P \in \operatorname{Spec}(L)$, we define $A_{P}(\alpha)=\{x \in \mathbb{R}: \alpha(x,+\infty) \in$ $P\}$ and $B_{P}(\alpha)=\{x \in \mathbb{R}: \alpha(-\infty, x) \in P\}$.

Because these two sets $A_{P}(\alpha)$ and $B_{P}(\alpha)$ are important in our work, we discuss them briefly.

Lemma 2.17. Let $P \in \operatorname{Spec}(L)$ and $\alpha \in C(L)$. Then
(a) $A_{P}(\alpha) \cup B_{P}(\alpha)=\mathbb{R}$.
(b) Any element of $A_{P}(\alpha)$ is an upper bound of $B_{P}(\alpha)$ and any element of $B_{P}(\alpha)$ is a lower bound of $A_{P}(\alpha)$.
(c) $\uparrow A_{P}(\alpha)=A_{P}(\alpha)$ and $\downarrow B_{P}(\alpha)=B_{P}(\alpha)$.

Proof. (a): Assuming $x \notin A_{P}(\alpha)$, it follows that $\alpha(x,+\infty) \notin P$. Since $P$ is prime and $\alpha(x,+\infty) \wedge \alpha(-\infty, x)=\perp \in P$, we deduce that $\alpha(-\infty, x) \in P$. Hence $x \in B_{P}(\alpha)$.
(b): Assume that $x \in A_{P}(\alpha)$ and, on the contrary, there exists an element $c \in B_{P}(\alpha)$ such that $x<c$. Therefore, $\mathbf{T o p}=\alpha(\mathbb{R})=\alpha(-\infty, c) \vee$ $\alpha(x,+\infty) \in P$ and this is a contradiction. Similarly, any element of $B_{P}(\alpha)$ is a lower bound of $A_{P}(\alpha)$.
(c): Supposing $x \in \uparrow A_{P}(\alpha)$, there exists an element $a \in A_{P}(\alpha)$ such that $a \leqslant x$. Thus, $\alpha(x,+\infty) \leqslant \alpha(a,+\infty) \in P$ and consequently $x \in A_{P}(\alpha)$.

Corollary 2.18. Let $P \in \operatorname{Spec}(L)$ and $\alpha \in C(L)$. Then the following statements are equivalent:
(a) $\inf A_{P}(\alpha) \in \mathbb{R}$
(b) $A_{P}(\alpha) \neq \emptyset \neq B_{P}(\alpha)$.
(c) $\sup B_{P}(\alpha) \in \mathbb{R}$
(d) There exists an element $x \in \mathbb{R}$ such that

$$
\begin{aligned}
& (x,+\infty) \subseteq\left(\inf A_{P}(\alpha),+\infty\right) \subseteq[x,+\infty) \text { and } \\
& \quad(-\infty, x) \subseteq\left(-\infty, \sup B_{P}(\alpha)\right) \subseteq(-\infty, x]
\end{aligned}
$$

$(\mathrm{e}) \inf A_{P}(\alpha)=\sup B_{P}(\alpha) \in \mathbb{R}$.

Proof. (a) $\Rightarrow(\mathrm{b})$ : By hypothesis, clearly, $A_{P}(\alpha) \neq \emptyset$ and there exists an element $x \in \mathbb{R}$ such that $x \notin A_{P}(\alpha)$. By Lemma 2.17, $x \in B_{P}(\alpha)$. Thus, $B_{P}(\alpha)$ is also non-empty.
(b) $\Rightarrow(\mathrm{c})$ : By Lemma 2.17, it is clear.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ : Similar to $(\mathrm{a}) \Rightarrow(\mathrm{b})$, it follows that $A_{P}(\alpha) \neq \emptyset \neq B_{P}(\alpha)$. Hence, by part (b) of Lemma 2.17, $A_{P}(\alpha)$ (respectively, $B_{P}(\alpha)$ ) is nonempty and bounded below (respectively, bounded above). Hence, inf $A_{P}(\alpha)$ and $\sup B_{P}(\alpha)$ exist. It is easy, by using Lemma 2.17 , once again, to see that $\inf A_{P}(\alpha)=x=\sup B_{P}(\alpha)$ and in addition, we have $(x,+\infty) \subseteq$ $\left(\inf A_{P}(\alpha),+\infty\right) \subseteq[x,+\infty)$ and $(-\infty, x) \subseteq\left(-\infty, \sup B_{P}(\alpha)\right) \subseteq(-\infty, x]$.

The implications $(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{a})$ are obvious.

Definition 2.19. $P \in \operatorname{Spec}(L)$ is said to be real with respect to $\alpha \in C(L)$ if $A_{P}(\alpha)$ and $B_{P}(\alpha)$ are non-empty closed subsets in $\mathbb{R}$. If $P$ is real with respect to every $\alpha \in C(L)$, then we say $P$ is real.

Lemma 2.20. Assume that $P \in \operatorname{Spec}(L)$ and $\alpha \in C(L)$. Then, the following statements are equivalent:
(a) $P$ is real with respect to $\alpha$.
(b) $\inf A_{P}(\alpha) \in A_{P}(\alpha)$ and $\sup B_{P}(\alpha) \in B_{P}(\alpha)$.
(c) There is an element $x \in \mathbb{R}$ such that $A_{P}(\alpha) \cap B_{P}(\alpha)=\{x\}$.
(d) There exists an element $x \in \mathbb{R}$ such that $\alpha\left(\mathbb{R}_{x}\right) \in P$.

Proof. By Corollary 2.18, it is clear.

Lemma 2.21. Let $P \in \operatorname{Spec}(L)$ be countably $\vee$-complete. Then $P$ is real.
Proof. Suppose that $\alpha \in C(L)$. Since $P$ is countably $\vee$-complete, it follows that $\inf A_{P}(\alpha) \in \mathbb{R}$ and so, by Corollary 2.18 , there exists an element $x \in \mathbb{R}$ such that

$$
(x,+\infty) \subseteq\left(\inf A_{P}(\alpha),+\infty\right) \subseteq[x,+\infty)
$$

and

$$
(-\infty, x) \subseteq\left(-\infty, \sup B_{P}(\alpha)\right) \subseteq(-\infty, x]
$$

By Lemma 2.20, it is enough to show that $x \in A_{P}(\alpha) \cap B_{P}(\alpha)$. This is obvious, since $P$ is countably $\vee$-complete and $\mathbb{Q}$ is dense in $\mathbb{R}$.

By the above lemma, $\downarrow p$ is real for each $p \in \operatorname{Sp} L$.
We need the following lemma for the next theorem.
Lemma 2.22. Let $P$ be prime ideal in a frame $L$ and $\alpha \in C(L)$. The following statements hold:
(a) $A_{P}(-\alpha)=-B_{P}(\alpha)$ and $B_{P}(-\alpha)=-A_{P}(\alpha)$.
(b) $B_{P}\left(\alpha^{+}\right)=(-\infty, 0) \cup B_{P}(\alpha)$.
(c) $A_{P}\left(\alpha^{+}\right)=(0,+\infty) \cap A_{P}(\alpha)$.
(d) $B_{P}\left(\alpha^{-}\right)=(-\infty, 0) \cup-A_{P}(\alpha)$.
(e) $A_{P}\left(\alpha^{-}\right)=(0,+\infty) \cap-B_{P}(\alpha)$.

If, in addition, $\hat{P}(\alpha)=\inf A_{P}(\alpha) \in \mathbb{R}$, then
(f) $\hat{P}\left(\alpha^{+}\right)=(\hat{P}(\alpha))^{+}$;
(g) $\hat{P}\left(\alpha^{-}\right)=(\hat{P}(\alpha))^{-}$.

Proof. (a): It is clear that

$$
\begin{aligned}
A_{P}(-\alpha) & =\{x \in \mathbb{R}:-\alpha(x,+\infty) \in P\}=\{x \in \mathbb{R}: \alpha(-\infty,-x) \in P\} \\
& =-\{y \in \mathbb{R}: \alpha(-\infty, y) \in P\}=-B_{P}(\alpha)
\end{aligned}
$$

Similarly, we conclude that $B_{P}(-\alpha)=-A_{P}(\alpha)$.
(b): We can write

$$
\begin{aligned}
B_{P}\left(\alpha^{+}\right) & =\left\{x \in \mathbb{R}: \alpha^{+}(-\infty, x) \in P\right\}=\{x \in \mathbb{R}: \mathbf{0}(-\infty, x) \wedge \alpha(-\infty, x) \in P\} \\
& =\{x \in \mathbb{R}: \mathbf{0}(-\infty, x) \in P\} \cup\{x \in \mathbb{R}: \alpha(-\infty, x) \in P\}=(-\infty, 0) \cup B_{P}(\alpha) .
\end{aligned}
$$

(c): We can write

$$
\begin{aligned}
A_{P}\left(\alpha^{+}\right) & =\left\{x \in \mathbb{R}: \alpha^{+}(x,+\infty) \in P\right\}=\{x \in \mathbb{R}: \mathbf{0}(x,+\infty) \vee \alpha(x,+\infty) \in P\} \\
& =\{x \in \mathbb{R}: \mathbf{0}(x,+\infty) \in P\} \cap\{x \in \mathbb{R}: \alpha(x,+\infty) \in P\}=(0,+\infty) \cap A_{P}(\alpha)
\end{aligned}
$$

(d): By parts (a) and (b), it follows that
$B_{P}\left(\alpha^{-}\right)=B_{P}\left((-\alpha)^{+}\right)=(-\infty, 0) \cup B_{P}(-\alpha)=(-\infty, 0) \cup-A_{P}(\alpha)$.
(e): Using (a) and (c), we do similar to (d).
(f): By part (b) and Corollary 2.18, we can write

$$
(\hat{P}(\alpha))^{+}=0 \vee \hat{P}(\alpha)=\sup (-\infty, 0) \vee \sup B_{P}(\alpha)=\sup B_{P}\left(\alpha^{+}\right)=\hat{P}\left(\alpha^{+}\right)
$$

(g): By part (d) and Corollary 2.18, we can write

$$
(\hat{P}(\alpha))^{-}=0 \vee-\hat{P}(\alpha)=\sup \left((-\infty, 0) \cup-A_{P}(\alpha)\right)=\sup B_{P}\left(\alpha^{-}\right)=\hat{P}\left(\alpha^{-}\right)
$$

The following theorem is an improvement of [6, Proposition 2.3] (also, see [7, Proposition 3.9] and [9, Proposition 2.3]).

Theorem 2.23. Assume that $P \in \operatorname{Spec}(L)$ and is countably $\vee$-complete in L. We define

$$
\hat{P}: C(L) \rightarrow \mathbb{R}, \quad \hat{P}(\alpha)=\inf A_{P}(\alpha)
$$

Then $\hat{P}$ is an $f$-algebra homomorphism; that is,
(a) $\hat{P}(\alpha+\beta)=\hat{P}(\alpha)+\hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$.
(b) $\hat{P}(\alpha \beta)=\hat{P}(\alpha) \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$.
(c) $\hat{P}(r \alpha)=r \hat{P}(\alpha)$ for every $r \in \mathbb{R}$ and every $\alpha \in C(L)$.
(d) $\hat{P}(\alpha \vee \beta)=\hat{P}(\alpha) \vee \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$.
(e) $\hat{P}(\alpha \wedge \beta)=\hat{P}(\alpha) \wedge \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$.

Proof. (a): Let $x=\hat{P}(\alpha+\beta)$. Since $P$ is countably $\vee$-complete, we have $(\alpha+\beta)(x,+\infty) \in P$. Therefore,

$$
\begin{aligned}
(\alpha+\beta)(x,+\infty) & =\bigvee\{\alpha(r, s) \wedge \beta(t, u):(r, s)+(t, u) \subseteq(x,+\infty)\} \\
& =\bigvee\{\alpha(r, s) \wedge \beta(t, u): r+t \geqslant x\} \\
& =\bigvee\{\alpha(r,+\infty) \wedge \beta(t,+\infty): r+t \geqslant x\} \\
& =\bigvee\{\alpha(r,+\infty) \wedge \beta(x-r,+\infty): r \in \mathbb{R}\} \in P
\end{aligned}
$$

Hence

$$
\bigvee\{\alpha(r,+\infty) \wedge \beta(x-r,+\infty): r<\hat{P}(\alpha), r \in \mathbb{Q}\} \in P
$$

Since $\alpha(r,+\infty) \notin P$ for every $r<\hat{P}(\alpha)$, it follows that $\beta(x-r,+\infty) \in P$ for every rational $r<\hat{P}(\alpha)$ and so, by countably $\vee$-completeness of $P$, we can write

$$
\beta(x-\hat{P}(\alpha),+\infty)=\bigvee\{\beta(x-r,+\infty): r<\hat{P}(\alpha), r \in \mathbb{Q}\} \in P
$$

Thus,

$$
\begin{equation*}
\hat{P}(\beta) \leqslant x-\hat{P}(\alpha) \Rightarrow \hat{P}(\alpha)+\hat{P}(\beta) \leqslant x \tag{1}
\end{equation*}
$$

On the other hand, it is clear that for every $s>\sup B_{P}(\alpha)=\hat{P}(\alpha)$, we have $\alpha(-\infty, s) \notin P$. Therefore, similar to the above, it conclude that $\beta(-\infty, x-$ $s) \in P$ for every $s>\hat{P}(\alpha)$. Consequently,

$$
\beta(-\infty, x-\hat{P}(\alpha))=\bigvee\{\beta(-\infty, x-s): s>\hat{P}(\alpha), s \in \mathbb{Q}\} \in P
$$

Hence, we can write

$$
\begin{equation*}
x-\hat{P}(\alpha) \leqslant \hat{P}(\beta) \Rightarrow x \leqslant \hat{P}(\alpha)+\hat{P}(\beta) \tag{2}
\end{equation*}
$$

The desired equality follows from (1) and (2).
(b): Case (1): $\alpha, \beta \geqslant 0$ and $\hat{P}(\alpha \beta)=0$. In this case, we show that $\hat{P}(\alpha)=0$ or $\hat{P}(\beta)=0$. Since $\hat{P}(\alpha \beta)=0,(\alpha \beta)(0,+\infty) \in P$ and since $\alpha(-\infty, 0)=0, \beta(-\infty, 0)=0$, we can write

$$
\begin{aligned}
(\alpha \beta)(0,+\infty) & =\bigvee\{\alpha(r, s) \wedge \beta(t, u):(r, s)(t, u) \in(0,+\infty)\} \\
& =\bigvee\{\alpha(r, s) \wedge \beta(t, u): r, t \geqslant 0\} \\
& =\bigvee\{\alpha(r,+\infty) \wedge \beta(t,+\infty): r, t \geqslant 0\} \\
& =\alpha(0,+\infty) \wedge \beta(0,+\infty) \in P
\end{aligned}
$$

Therefore, $\beta\left(\mathbb{R}_{0}\right)=\beta(0,+\infty) \in P$ or $\alpha\left(\mathbb{R}_{0}\right)=\alpha(0,+\infty) \in P$. Thus, $\hat{P}(\alpha)=0$ or $\hat{P}(\beta)=0$.
Case (2): $\alpha, \beta \geqslant 0$ and $\hat{P}(\alpha \beta)=x>0$. In this case

$$
\alpha \beta(x,+\infty) \in P \Rightarrow \alpha \beta(x,+\infty)=\bigvee_{r>0}\left(\alpha(r,+\infty) \wedge \beta\left(\frac{x}{r},+\infty\right)\right) \in P
$$

Since $\alpha(r,+\infty) \notin P$ for every $0<r<\hat{P}(\alpha)$, it follows that $\beta\left(\frac{x}{r},+\infty\right) \in P$ for every $0<r<\hat{P}(\alpha)$. Therefore, for every $0<r<\hat{P}(\alpha)$, we have $\frac{x}{r} \geqslant \hat{P}(\beta)$ and so $\frac{x}{\hat{P}(\alpha)} \geqslant \hat{P}(\beta)$. This implies that

$$
\begin{equation*}
x \geqslant \hat{P}(\alpha) \hat{P}(\beta) \tag{3}
\end{equation*}
$$

Since $\alpha(-\infty, s) \notin P$ for every $s>\hat{P}(\alpha)$, similar to above, we conclude that $\beta\left(-\infty, \frac{x}{s}\right) \in P$ for every $s>\hat{P}(\alpha)$. Thus, $\frac{x}{s} \leqslant \hat{P}(\beta)$ for every $s>\hat{P}(\alpha)$ and consequently, $\frac{x}{\hat{P}(\alpha)} \leqslant \hat{P}(\beta)$. Hence,

$$
\begin{equation*}
x \leqslant \hat{P}(\alpha) \hat{P}(\beta) \tag{4}
\end{equation*}
$$

From (3) and (4), it follows that $\hat{P}(\alpha \beta)=\hat{P}(\alpha) \hat{P}(\beta)$.
Final case: Let $\alpha, \beta \in C(L)$ be arbitrary. By previous cases, we can write

$$
\begin{aligned}
\hat{P}(\alpha \beta) & =\hat{P}\left(\left(\alpha^{+}-\alpha^{-}\right)\left(\beta^{+}-\beta^{-}\right)\right) \\
& =\hat{P}\left(\alpha^{+}\right) \hat{P}\left(\beta^{+}\right)-\hat{P}\left(\alpha^{+}\right) \hat{P}\left(\beta^{-}\right)-\hat{P}\left(\alpha^{-}\right) \hat{P}\left(\beta^{+}\right)+\hat{P}\left(\alpha^{-}\right) \hat{P}\left(\beta^{-}\right)
\end{aligned}
$$

On the other hand, by Lemma 2.22, we have $\hat{P}\left(\alpha^{-}\right)=(\hat{P}(\alpha))^{-}$and $\hat{P}\left(\alpha^{+}\right)=$ $(\hat{P}(\alpha))^{+}$. Therefore

$$
\begin{aligned}
\hat{P}(\alpha \beta) & =(\hat{P}(\alpha))^{+}(\hat{P}(\beta))^{+}-(\hat{P}(\alpha))^{+}(\hat{P}(\beta))^{-}-(\hat{P}(\alpha))^{-}(\hat{P}(\beta))^{+}+(\hat{P}(\alpha))^{-}(\hat{P}(\beta))^{-} \\
& =\left(\hat{P}(\alpha)^{+}-\hat{P}(\alpha)^{-}\right)\left(\hat{P}(\beta)^{+}-\hat{P}(\beta)^{-}\right)=\hat{P}(\alpha) \hat{P}(\beta)
\end{aligned}
$$

(c): If $r=0$, the assertion is clear. If $r>0$, then

$$
\begin{aligned}
\hat{P}(\mathbf{r} \alpha) & =\inf \{x: \mathbf{r} \alpha(x,+\infty) \in P\}=\inf \left\{x: \alpha\left(\frac{x}{r},+\infty\right) \in P\right\} \\
& =\inf \{r y: \alpha(y,+\infty) \in P\}=r \hat{P}(\alpha)
\end{aligned}
$$

Finally, if $r<0$, then

$$
\begin{aligned}
\hat{P}(\mathbf{r}(\alpha)) & =\inf \{x: \mathbf{r} \alpha(x,+\infty) \in P\}=\inf \{x:-\mathbf{r} \alpha(-\infty,-x) \in P\} \\
& =\inf \left\{x \in \mathbb{R}: \alpha\left(-\infty, \frac{x}{r}\right) \in P\right\}=\inf \{r y: \alpha(-\infty, y) \in P\} \\
& =r \sup \{y: \alpha(-\infty, y) \in P\}=r \hat{P}(\alpha)
\end{aligned}
$$

Therefore, $\hat{P}(\mathbf{r} \alpha)=r \hat{P}(\alpha)$ for every $r \in \mathbb{R}$.
(d): Clearly, we can write

$$
\begin{aligned}
\hat{P}(\alpha \vee \beta) & =\sup \{x \in \mathbb{R}:(\alpha \vee \beta)(-\infty, x) \in P\} \\
& =\sup \{x: \alpha(-\infty, x) \wedge \beta(-\infty, x) \in P\} \\
& =\sup (\{x: \alpha(-\infty, x) \in P\} \cup\{x: \beta(-\infty, x) \in P\}) \\
& =\sup \{x: \alpha(-\infty, x) \in P\} \vee \sup \{x: \beta(-\infty, x) \in P\} \\
& =\hat{P}(\alpha) \vee \hat{P}(\beta) .
\end{aligned}
$$

(e): It is similar to the proof of the part (d).

Note that, by Lemma 2.20, we obtain the following result, clearly.
Corollary 2.24. Suppose that $P \in \operatorname{Spec}(L)$ is countably $\vee$-complete. Then $\hat{P}(\alpha)=x$ if and only if $\alpha\left(\mathbb{R}_{x}\right) \in P$.

Corollary 2.25. Assume that $p \in \operatorname{Sp} L$ and

$$
\hat{p}: C(L) \rightarrow \mathbb{R}, \quad \hat{p}(\alpha)=\inf \{x \in \mathbb{R}: \alpha(x,+\infty) \leqslant p\}
$$

Then $\hat{p}$ is an $f$-algebra homomorphism.
Proof. It suffices to put $P=\downarrow p$, then, by Theorem 2.23, we are done.

We are now ready to answer the Question 3 which we raised earlier.
Theorem 2.26. Suppose that $L$ is a frame in which every maximal ideal is countable $\vee$-complete. Then for every $\alpha, \beta \in C(L)$, we have the following relations:
(a) $\operatorname{pim}(\alpha+\beta) \subseteq \operatorname{pim}(\alpha)+\operatorname{pim}(\beta)$.
(b) $\operatorname{pim}(\alpha \beta) \subseteq \operatorname{pim}(\alpha) \operatorname{pim}(\beta)$.
(c) $\operatorname{pim}(\alpha \vee \beta) \subseteq \operatorname{pim}(\alpha) \vee \operatorname{pim}(\beta)$.
(d) $\operatorname{pim}(\alpha \wedge \beta) \subseteq \operatorname{pim}(\alpha) \wedge \operatorname{pim}(\beta)$.

Proof. We only prove part (a); other parts are proved by the same manner. Suppose that $x \in \operatorname{pim}(\alpha+\beta)$. Thus, $(\alpha+\beta)\left(\mathbb{R}_{x}\right) \neq$ Top and so there exists an element $M \in \operatorname{Max}(L)$ such that $(\alpha+\beta)\left(\mathbb{R}_{x}\right) \in M$. Therefore, by Theorem 2.23 and Corollary 2.24, $x=\hat{M}(\alpha+\beta)=\hat{M}(\alpha)+\hat{M}(\beta)$. Taking $\hat{M}(\alpha)=a$ and $\hat{M}(\beta)=b$, it is sufficient to show that $a \in \operatorname{pim}(\alpha)$ and $b \in \operatorname{pim}(\beta)$. To see this, by Corollary $2.24, \alpha\left(\mathbb{R}_{a}\right) \in M$ and $\beta\left(\mathbb{R}_{b}\right) \in M$. Hence, $\alpha\left(\mathbb{R}_{a}\right) \neq \operatorname{Top} \neq \beta\left(\mathbb{R}_{b}\right)$, so $a \in \operatorname{pim}(\alpha)$ and $b \in \operatorname{pim}(\beta)$. Therefore, $\operatorname{pim}(\alpha+\beta) \subseteq \operatorname{pim}(\alpha)+\operatorname{pim}(\beta)$.

## 3 Comparing $\operatorname{pim}(\alpha)$ with images of two real functions $\bar{\alpha}$ and $\hat{\alpha}$

In this section, first, for any $\alpha \in C(L)$, we introduce two real functions $\bar{\alpha}$ and $\hat{\alpha}$ induced naturally by $\alpha$, then we compare $\operatorname{pim}(\alpha)$ with the images of these two functions.

Definition 3.1. Suppose that $\alpha \in C(L)$. By Corollary 2.25, we can define $\bar{\alpha}: \operatorname{Sp} L \rightarrow \mathbb{R}$ with $\bar{\alpha}(p)=\hat{p}(\alpha)$. Also, supposing

$$
X_{\alpha}=\{P \in \operatorname{Spec}(L): P \text { is real with respect to } \alpha\}
$$

we can define $\hat{\alpha}: X_{\alpha} \rightarrow \mathbb{R}$ with $\hat{\alpha}(P)=\hat{P}(\alpha)$.
Note that the mapping $p \rightarrow \downarrow p$ is an embedding from $\operatorname{Sp} L$ to $\operatorname{Spec}(L)$, where $\operatorname{Spec}(L)$ is equipped with hall-kernel topology (that is, the Zariski topology). Therefore, we can suppose that $\operatorname{Sp} L$ is a subspace of $\operatorname{Spec}(L)$ and so $\left.\hat{\alpha}\right|_{\mathrm{Sp} L}=\bar{\alpha}$.

Proposition 3.2. For every $\alpha \in C(L), \hat{\alpha}$ is continuous and so is $\bar{\alpha}$.
Proof. Assume that $(x, y)$ is an open interval in $\mathbb{R}$. taking $a=\alpha(x,+\infty)$ and $b=\alpha(-\infty, y)$, it suffices to show that $(\hat{\alpha})^{-1}(x, y)=h_{X_{\alpha}}^{c}(a) \cap h_{X_{\alpha}}^{c}(b)$, where $h_{X_{\alpha}}^{c}(a)=X_{\alpha} \cap h^{c}(a)$. Too see this, for every $P \in X_{\alpha}$, we can write

$$
\begin{aligned}
P \in(\hat{\alpha})^{-1}(x, y) & \Leftrightarrow x<\hat{\alpha}(P)=\hat{P}(\alpha)<y \\
& \Leftrightarrow a=\alpha(x,+\infty) \notin P, b=\alpha(-\infty, y) \notin P \\
& \Leftrightarrow P \in h_{X_{\alpha}}^{c}(a) \cap h_{X_{\alpha}}^{c}(b) .
\end{aligned}
$$

The following remark shows that $\bar{\alpha}$ is not a new concept .
Remark 3.3. Recall that $\operatorname{Sp} \mathcal{O} \mathbb{R}=\left\{\mathbb{R}_{x}: x \in \mathbb{R}\right\}$ and $g: \operatorname{Sp} \mathcal{O} \mathbb{R} \rightarrow \mathbb{R}$ with $g\left(\mathbb{R}_{x}\right)=x$ is a homeomorphism. For every continuous real function $\alpha \in C(L)$, we have $\operatorname{Sp} \alpha: \operatorname{Sp} L \rightarrow \operatorname{Sp} \mathcal{O} \mathbb{R}$ with $(\operatorname{Sp} \alpha)(p)=\alpha^{*}(p)=\bigvee\{w \in$ $\mathcal{O} \mathbb{R}: \alpha(w) \leqslant p\}$. Since $\alpha^{*}(p) \in \operatorname{SpO} \mathbb{R}$, there exists a unique $x \in \mathbb{R}$ such that $(\operatorname{Sp} \alpha)(p)=\alpha^{*}(p)=\mathbb{R}_{x}$. In fact, $(\operatorname{Sp} \alpha)(p)=\mathbb{R}_{x}$ if and only if $\alpha\left(\mathbb{R}_{x}\right) \leqslant p$. Therefore, for every $\alpha \in C(L)$, we have a natural function $\bar{\alpha}=g \operatorname{Sp} \alpha$ from $\operatorname{Sp} L$ to $\mathbb{R}$ with $\bar{\alpha}(p)=x$ such that $\alpha\left(\mathbb{R}_{x}\right) \leqslant p$. Also, according to this fact, for every $p \in \operatorname{Sp} L$, we can define a function $\hat{p}: C(L) \rightarrow \mathbb{R}$ with $\hat{p}(\alpha)=\bar{\alpha}(p)$.

Proposition 3.4. Assume that $\alpha \in C(L)$. Then $\operatorname{Im}(\bar{\alpha}) \subseteq \operatorname{Im}(\hat{\alpha}) \subseteq \operatorname{pim}(\alpha)$.
Proof. Clearly, $\operatorname{Im}(\bar{\alpha}) \subseteq \operatorname{Im}(\hat{\alpha})$. Now, suppose that $x \in \operatorname{Im}(\hat{\alpha})$. Thus, there exists a $P \in \operatorname{Spec}(L)$ such that $\hat{\alpha}(P)=x$. Hence, $\hat{P}(\alpha)=x$ and by Corollary 2.24 , it follows that $\alpha\left(\mathbb{R}_{x}\right) \in P$. Therefore, $\alpha\left(\mathbb{R}_{x}\right) \neq$ Top and consequently $x \in \operatorname{pim}(\alpha)$.

The first inclusion in the above proposition may be strict. To see this, we need the following lemma.

Lemma 3.5. Suppose that $L$ has no non-trivial complemented element. Then for every $\alpha \in C(L)$, there exists an element $x \in \mathbb{R}$ such that $\alpha\left(\mathbb{R}_{x}\right) \neq$ Top.

Proof. Let $\alpha \in C(L)$ and, on the contrary, for every $x \in \mathbb{R}$, we have $\alpha\left(\mathbb{R}_{x}\right)=$ Top. By hypothesis, for every $x \in \mathbb{R}$, we $\alpha(-\infty, x)=$ Top and $\alpha(x,+\infty)=\perp$ or $\alpha(-\infty, x)=\perp$ and $\alpha(x,+\infty)=$ Top. It is easy to see that there exists an element $c \in \mathbb{R}$ such that $\alpha(c,+\infty)=\perp$ and so $x_{0}=\inf \{x \in \mathbb{R}: \alpha(x,+\infty)=\perp\}$ exists. Thus, $\alpha\left(x_{0},+\infty\right)=\perp$ and $\alpha(t,+\infty)=$ Top for every $t<x_{0}$ and so $\alpha(-\infty, t)=\perp$ for every $t<x_{0}$. Therefore, $\alpha\left(-\infty, x_{0}\right)=\bigvee\left\{\alpha(-\infty, t): t<x_{0}\right\}=\perp$. Hence, $\alpha\left(\mathbb{R}_{x_{o}}\right)=\perp$ and this is a contradiction.

In the following example we introduce a frame $L$ such that $\operatorname{Im}(\bar{\alpha}) \subsetneq$ $\operatorname{pim}(\hat{\alpha})$ for every $\alpha \in C(L)$.

Example 3.6. Suppose $L=[0,1) \times[0,1) \oplus$ Top. Clearly, $L$ is a frame, Top is a $\vee$-prime element of $L$ and $\operatorname{Sp} L=\emptyset$. Therefore, $L$ does not have any nontrivial complemented element and so, by Lemma 3.5, for every $\alpha \in C(L)$ we have $\alpha\left(\mathbb{R}_{x}\right) \neq \mathbf{T o p}$ for some $x \in \mathbb{R}$. We show that $C(L)=\{\mathbf{r}: r \in \mathbb{R}\}$. To see this, assume that $\alpha \in C(L)$. Thus, there exists an element $r \in \mathbb{R}$ such that $\alpha\left(\mathbb{R}_{r}\right) \neq$ Top. Now, for every $w \in \mathcal{O}_{r}$, since Top is $\vee$-prime, we can write

$$
\mathbf{T o p}=\alpha(\mathbb{R})=\alpha\left(w \cup \mathbb{R}_{r}\right)=\alpha(w) \vee \alpha\left(\mathbb{R}_{r}\right) \Rightarrow \alpha(w)=\mathbf{T o p}
$$

This conclude that $\alpha=\mathbf{r}$. On the other hand, it is clear that $\operatorname{Im}(\overline{\mathbf{r}})=\emptyset$,
whereas

$$
\begin{aligned}
x \in \operatorname{Im}(\hat{\mathbf{r}}) & \Leftrightarrow \exists P \in \operatorname{Spec}(L), \quad \hat{\mathbf{r}}(P)=x \\
& \Leftrightarrow \exists P \in \operatorname{Spec}(L), \quad \hat{P}(\mathbf{r})=x \\
& \Leftrightarrow \exists P \in \operatorname{Spec}(L), \quad \mathbf{r}\left(\mathbb{R}_{x}\right) \in P \\
& \Leftrightarrow r=x
\end{aligned}
$$

Therefore, $\operatorname{Im}(\hat{\mathbf{r}})=\{r\}$.
Proposition 3.7. Assume that $\alpha \in C(L)$. Then the following statements hold:
(a) If $\operatorname{Sp} L$ is cofinal in $L \backslash\{\boldsymbol{T o p}\}$, then $\operatorname{Im}(\bar{\alpha})=\operatorname{Im}(\hat{\alpha})=\operatorname{pim}(\alpha)$.
(b) If $\bigcup X_{\alpha}=L \backslash\{\mathbf{T o p}\}$, then $\operatorname{Im}(\hat{\alpha})=\operatorname{pim}(\alpha)$.

Proof. (a): It is enough to prove that $\operatorname{pim}(\alpha) \subseteq \operatorname{Im}(\bar{\alpha})$. Suppose that $x \in \operatorname{pim}(\alpha)$. Thus, $\alpha\left(\mathbb{R}_{x}\right) \neq \mathbf{T o p}$ and by hypothesis, there exists an element $p \in \operatorname{Sp} L$ such that $\alpha\left(\mathbb{R}_{x}\right) \leqslant p$ and this is equivalent to $\bar{\alpha}(p)=\hat{p}(\alpha)=x$. Therefore, $x \in \operatorname{Im}(\bar{\alpha})$.
(b): Suppose that $x \in \operatorname{pim}(\alpha)$. Thus, $\alpha\left(\mathbb{R}_{x}\right) \neq$ Top and by hypothesis, there exists an element $P \in X_{\alpha}$ such that $\alpha\left(\mathbb{R}_{x}\right) \in P$ and this is equivalent to $\hat{\alpha}(P)=\hat{P}(\alpha)=x$. Therefore, $x \in \operatorname{Im}(\hat{\alpha})$.

## Acknowledgement

We would like to appreciate the referee for his/her accurate reading and valuable advices.

## References

[1] Ball, R.N. and Hager, A.W., On the localic Yoshida representation of an archimedean lattice ordered group with weak order unit, J. Pure Appl. Algebra 70 (1991), 17-43.
[2] Banaschewski, B., "The Real Numbers in Pointfree Topology", Textos de Mathematica (Series B), Vol. 12, University of Coimbra, 1997.
[3] Banaschewski, B., On the function rings of pointfree topology, Kyungpook Math. J. 48 (2008), 195-206.
[4] Blyth, T., "Lattices and Ordered Algebraic Structures", Springer, 2005.
[5] Davey, B. and Priestley, H., "Introduction to Lattices and Order", Cambridge University Press, 2002.
[6] Ebrahimi, M.M. and Karimi Feizabadi, A., Prime representation of real Riesz maps, Algebra Universalis 54(3) (2005), 291-299.
[7] Estaji, A.A., Karimi Feizabadi, A. and Emamverdi, B., Representation of real Riesz maps on a strong f-ring by prime elements of a frame, Algebra Universalis 79(14) (2018).
[8] Estaji, A.A., Robat Sarpoushi, M., and Elyasi, M., Further thoughts on the ring $R c(L)$ in frames, Algebra Universalis 80(43) (2019).
[9] Estaji, A.A., Karimi Feizabadi, A., and Abedi, A., Zero sets in pointfree topology and strongly $z$-ideals, Bull. Iranian Math. Soc. 41(5) (2015), 1071-1084.
[10] Gillman, L. and Jerison, M., "Rings of Continuous Functions", Springer-Verlag, 1976.
[11] Grätzer, G., "General Lattice Theory", Birkhäuser, 1998.
[12] Johnstone, P.T., "Stone Spaces", Cambridge University Press, 1982.
[13] Karimi Feizabadi, A., Estaji, A.A., and Robat-Sarpoushi, M., Pointfree version of image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl. 9(1) (2018), 59-75.
[14] Picado, J. and Pultr, A., "Frames and Locales: topology without points", Frontiers in Mathematics, Springer, 2012.
[15] Roman, S., "Lattices and Ordered Sets", Springer, 2008.

Ali Rezaei Aliabad Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Email: aliabady_r@scu.ac.ir

Morad Mahmoudi Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email: moradmahmodi194@gmail.com


[^0]:    * Corresponding author

    Keywords: Frame, pointfree topology, $C(L)$, pre-image, prime ideal and maximal ideal in frames, $f$-algebra.
    Mathematics Subject Classification [2010]: Primary: 06D22, Secondary: 54C05, 54C30.
    Received: 24 February 2020, Accepted: 5 April 2020.
    ISSN: Print 2345-5853, Online 2345-5861.
    (C) Shahid Beheshti University

