Categories and General Algebraic Structures with Applications

Using Volume 15, Number 1, July 2021, 35-58. https://doi.org/10.52547/cgasa.15.1.35

Pre-image of functions in C(L)

Ali Rezaei Aliabad* and Morad Mahmoudi

Abstract. Let C(L) be the ring of all continuous real functions on a frame L and $S \subseteq \mathbb{R}$. An $\alpha \in C(L)$ is said to be an overlap of S, denoted by $\alpha \triangleleft S$, whenever $u \cap S \subseteq v \cap S$ implies $\alpha(u) \leq \alpha(v)$ for every open sets u and v in \mathbb{R} . This concept was first introduced by A. Karimi-Feizabadi, A.A. Estaji, M. Robat-Sarpoushi in Pointfree version of image of real-valued continuous functions (2018). Although this concept is a suitable model for their purpose, it ultimately does not provide a clear definition of the range of continuous functions in the context of pointfree topology. In this paper, we will introduce a concept which is called pre-image, denoted by pim, as a pointfree version of the image of real-valued continuous functions on a topological space X. We investigate this concept and in addition to showing $pim(\alpha) = \bigcap \{ S \subseteq \mathbb{R} : \alpha \triangleleft S \}$, we will see that this concept is a good surrogate for the image of continuous real functions. For instance, we prove, under some achievable conditions, we have $pim(\alpha \lor \beta) \subseteq pim(\alpha) \lor pim(\beta)$, $\operatorname{pim}(\alpha \wedge \beta) \subseteq \operatorname{pim}(\alpha) \wedge \operatorname{pim}(\beta), \operatorname{pim}(\alpha\beta) \subseteq \operatorname{pim}(\alpha) \operatorname{pim}(\beta) \text{ and } \operatorname{pim}(\alpha + \beta) \subseteq \operatorname{pim}(\alpha) \cap \operatorname{pim}(\beta)$ $pim(\alpha) + pim(\beta).$

^{*} Corresponding author

Keywords: Frame, pointfree topology, C(L), pre-image, prime ideal and maximal ideal in frames, f-algebra.

Mathematics Subject Classification [2010]: Primary: 06D22, Secondary: 54C05, 54C30. Received: 24 February 2020, Accepted: 5 April 2020.

ISSN: Print 2345-5853, Online 2345-5861.

[©] Shahid Beheshti University

1 Introduction and preliminaries

A complete lattice L is said to be a frame if for any $a \in L$ and $B \subseteq L$, we have $a \land \bigvee B = \bigvee_{b \in B} (a \land b)$. We denote the top element and the bottom element of a frame L by **Top** and \bot , respectively. For every element a of a frame L the pseudocomplement of a is $a^* = \bigvee \{x \in L : x \land a = \bot\}$. Let Lbe a frame. The set of all prime ideals (respectively, maximal ideals) of Lis denoted by $\operatorname{Spec}(L)$ (respectively, $(\operatorname{Max}(L))$). An element $p \in L$ is called prime if $p < \operatorname{Top}$, and $a \land b \leq p$ implies $a \leq p$ or $b \leq p$. Clearly, $a \in L$ is a prime element if and only if $\downarrow a = \{x \in L : x \leq a\}$ is a prime ideal of L. We denote by $\operatorname{Sp}L$ the set of all prime element of L. For every $a \in L$, define $\mathfrak{h}^c(a) = \{p \in \operatorname{Sp}L : a \leq p\}$. It is easily seen that $\{\mathfrak{h}^c(a) : a \in L\}$ is a topology on $\operatorname{Sp}L$. Here after we use $\operatorname{Sp}L$ equipped with this topology.

Let X and Y be two partial ordered sets and $f: X \to Y$ and $g: Y \to X$ be two increasing maps. We say f is left adjoint of g (respectively, g is right adjoint of f) if $fg \leq I_Y$ and $gf \geq I_X$. It is easy to see that g is uniquely determined by f and vice versa. The right adjoint of a map $f: X \to Y$ (respectively, left adjoint of a map $q: Y \to X$), if there exists, is denoted by f_* (resp., q^*). Supposing X and Y are complete lattices, one can easily see that $f: X \to Y$ is a left adjoint map if and only if f preserves arbitrary joins and in this case $f_*(y) = \bigvee \{x \in X : f(x) \leq y\}$ for every $y \in Y$. A frame homomorphism is a map f from a frame L to a frame L' such that it preserves finite meets and arbitrary joins; clearly in this case we have $f(\perp) = \perp$ and $f(\mathbf{Top}) = \mathbf{Top}$. Obviously, every frame homomorphism is a left adjoint map. We denote by $\mathcal{O}X$ and \mathcal{O}_x the frames of all open subsets of a topological space X and the set of all open neighborhoods of $x \in X$, respectively. If X and Y are two topological spaces, then for every continuous function $f: X \to Y$ we define $\mathcal{O}f: \mathcal{O}Y \to \mathcal{O}X$ with $(\mathcal{O}f)(w) = f^{-1}(w)$ for every $w \in \mathcal{O}Y$. It is obvious that \mathcal{O} is a contravariant functor from the category **Top** to the category **Frm**. Let L and L' be two frames. For every frame homomorphism $f: L \to L'$ we can define $\operatorname{Sp} f: \operatorname{Sp} L' \to \operatorname{Sp} L$ with $(\operatorname{Sp} f)(q) = f_*(q)$. For any $a \in L$, we can write

$$(\operatorname{Sp} f)^{-1}(\mathfrak{h}^{c}(a)) = \{q \in \operatorname{Sp} L' : f_{*}(q) \in \mathfrak{h}^{c}(a)\}$$
$$= \{q \in \operatorname{Sp} L' : a \not\leq f_{*}(q)\}$$
$$= \{q \in \operatorname{Sp} L' : f(a) \not\leq q\} = \mathfrak{h}^{c}(f(a))$$

Therefore, $\operatorname{Sp} f$ is a continuous map. It is easy to see that $\operatorname{Sp} I_L = I_{\operatorname{Sp} L}$ and $\operatorname{Sp} f g = \operatorname{Sp} g \operatorname{Sp} f$ whenever f g means the composition of f and g. Thus, $\operatorname{Sp} : \operatorname{Frm} \to \operatorname{Top}$ is a contravariant functor. In fact the functor Sp is a right adjoint of the functor \mathcal{O} .

Recall that an ordered ring is a ring A with a partial order \leq such that for every $a, b, c \in A$, from $a \leq b$ it follows that $a + c \leq b + c$ and if $a, b \geq 0$, then $ab \geq 0$. An ordered ring is called a lattice-ordered ring if A is a lattice under the partial order on A. By an f-ring we mean a lattice-ordered ring R with this property that $a(b \wedge c) = ab \wedge ac$ and $(b \wedge c)a = ba \wedge ca$ for every $a \in R^+$ and every $b, c \in R$. An algebra (over a field F) is a structure consisting of a set A with two operations "+" and ".", and also a scaler multiplication such that (A, +, .) is a ring and A with addition and scaler multiplication is a vector space (over F), and in addition, for every $x, y \in A$

$$1_F x = x$$
, $c(xy) = (cx)y = x(cy)$.

Finally, an f-algebra (over an ordered field) is an algebra with a partial order \leq such that $(A, +, ., \leq)$ is an f-ring, and A with "+" and the scaler multiplication is a vector space (over F) in which $cx \geq 0$ for every $c \in F^+$ and every $x \in A^+$.

Suppose that A is a lattice-ordered ring and $a \in A$. The positive part of a, negative part of a, and |a| are defined as $a^+ = a \lor 0$, $a^- = -a \lor 0$ and $|a| = a \lor -a$, respectively. Clearly, if A is an f-ring, then $a = a^+ - a^-$, $|a| = a^+ + a^-$, $a^+a^- = 0$ and $|a|^2 = a^2$ for any $a \in A$.

In the present part of this paper, for convenience of readers, we give a short review of C(L), at a slightly different perspective from what is stated in the main texts.

A frame homomorphism $\alpha : \mathcal{O}\mathbb{R} \to L$ is called continuous real function on a frame L and the set of all continuous real function on a frame L is denoted by C(L). Although, this concept was first introduced by R.N. Ball and A.W. Hager in [1], B. Banaschewski studied this concept deeply in [2]; he also showed in [3] that C(L) is a class which strictly contains C(X). Note that we work under the axiomatic system of ZFC and in this system, we have $L(\mathbb{R}) \simeq \mathcal{O}\mathbb{R}$. In this axiomatic system C(L) has a simpler representation.

Supposing that $A, S \subseteq L$, we denote by $\downarrow A$ the set $\{x \in L : \exists a \in$

A, $x \leq a$; we use $\downarrow x$ instead of $\downarrow \{x\}$ and $\downarrow_S A$ instead of $S \cap \downarrow A$. Clearly, for any $S \subseteq L$, the map $\downarrow_S \colon L \to P(S)$ is a meet-homomorphism but not a join-homomorphism, see [15]. A subset B of L is said to be a base for L if $x = \bigvee \downarrow_B x$ for every $x \in L$. Let L and L' be two frames and B be a base for L. A map $f \colon B \to L'$ is said to be conditional homomorphism if for every $A \subseteq B$ and every finite $F \subseteq B$ we have $f(\bigvee A) = \bigvee f(A)$ and $f(\bigwedge F) = \bigwedge f(F)$, provided that $\bigvee A \in B$ and $\bigwedge F \in B$. Supposing that B is a base for a frame L, we call B a homomorphism maker if every conditional homomorphism from B to a frame L' has an extension homomorphism from L to L'.

Proposition 1.1. Let B be a base for L closed under finite meets. Then B is homomorphism maker.

Proof. Let $f: B \to L'$ be a conditional homomorphism. We define $\bar{f}: L \to L'$ with $\bar{f}(x) = \bigvee f(\downarrow_B(x))$ and prove that \bar{f} is a homomorphism extension of f. Clearly, \bar{f} is order preserving, $\bar{f}|_B = f$, $f(\bot) = \bot$ and $f(\mathbf{Top}) = \mathbf{Top}$. Assuming that $x_{\lambda} \in L$ for every $\lambda \in \Lambda$, since \bar{f} is order preserving, we have $\bigvee_{\lambda \in \Lambda} \bar{f}(x_{\lambda}) \leq \bar{f}(\bigvee_{\lambda \in \Lambda} x_{\lambda})$. Conversely, for every $b \in \downarrow_B (\bigvee_{\lambda \in \Lambda} x_{\lambda})$,

$$b = \bigvee_{\lambda \in \Lambda} b \wedge x_{\lambda} = \bigvee_{\lambda \in \Lambda} \bigvee \{ c \in B : \ c \leqslant b \wedge x_{\lambda} \},$$

which implies that

$$f(b) = \bigvee_{\lambda \in \Lambda} \bigvee \{ f(c) : c \in B, c \leq b \land x_{\lambda} \}$$
$$\leq \bigvee_{\lambda \in \Lambda} \bigvee \{ f(c) : c \in B, c \leq x_{\lambda} \}$$
$$= \bigvee_{\lambda \in \Lambda} \bar{f}(x_{\lambda}),$$

and this shows that

$$\bar{f}(\bigvee_{\lambda\in\Lambda}x_{\lambda}) = \bigvee\{f(b): b\in \downarrow\bigvee_{\lambda\in\Lambda}x_{\lambda}\} \leqslant \bigvee_{\lambda\in\Lambda}\bar{f}(x_{\lambda}).$$

Therefore, $\bar{f}(\bigvee_{\lambda \in \Lambda} x_{\lambda}) = \bigvee_{\lambda \in \Lambda} \bar{f}(x_{\lambda})$. Now, supposing that $x, y \in L$, clearly

$$\begin{split} \bar{f}(x \wedge y) &= \bigvee \{ f(c) : \ c \in B, \ c \leqslant x \wedge y \} \\ &= \bigvee \{ f(c_1 \wedge c_2) : \ c_1, c_2 \in B, \ c_1 \leqslant x, \ c_2 \leqslant y \} \\ &= \bigvee \{ f(c_1) \wedge f(c_2) : \ c_1, c_2 \in B, \ c_1 \leqslant x, \ c_2 \leqslant y \} \\ &= \bigvee \{ f(c_1) : \ c_1 \in B, \ c_1 \leqslant x \} \wedge \bigvee \{ f(c_2) : \ c_2 \in B, \ c_2 \leqslant y \} \\ &= \bar{f}(x) \wedge \bar{f}(y). \end{split}$$

In the above proposition, the condition "closedness under finite meets" cannot be omitted. For example, suppose that $B = \{(a, b) : a, b \in \mathbb{Q}, a < b\}$ and $f : B \to L$ with f(a, b) =**Top** for every $(a, b) \in B$. Obviously, B is a base for $\mathcal{O}\mathbb{R}$, f is conditional homomorphism and B is not homomorphism maker.

Corollary 1.2. Let $B = \{(r, s) : r, s \in \mathbb{Q}\} \cup \{\mathbb{R}\}$. Clearly, B is a base for $\mathcal{O}\mathbb{R}$ and closed under finite meets. Hence, B is a homomorphism maker. In other words, a map $f : B \to L$ has an extension homomorphism $\alpha \in C(L)$ if and only if f has the following properties.

(R1) $f((p,q) \land (r,s)) = f(p,q) \land f(r,s)$, whenever $p,q,r,s \in \mathbb{Q}$ and $(p,q) \land (r,s) \neq \emptyset$.

(R2) $f((p,q) \lor (r,s)) = f(p,q) \lor f(r,s)$, whenever $p,q,r,s \in \mathbb{Q}$ and $p \leq r < q \leq s$.

 $\begin{array}{l} (\mathrm{R3}) \ f(p,q) = \bigvee \{f(r,s): \ r,s \in \mathbb{Q}, \ p < r < s < q\} \ for \ every \ p,q \in \mathbb{Q}. \\ (\mathrm{R4}) \ \mathbf{Top} = f(\mathbb{Q}) = \bigvee \{f(p,q): \ p,q \in \mathbb{Q}\}. \end{array}$

Suppose that \diamond is an operation such as "+", ".", " \lor " and " \land ". For every $\alpha, \beta \in C(L)$ and every $p, q \in \mathbb{Q}$, we define

$$(\alpha \diamond \beta)(p,q) = \bigvee \{ \alpha(r,s) \land \beta(t,u) : r,s,t,u \in \mathbb{Q}, (r,s) \diamond (t,u) \subseteq (p,q) \},\$$

where $(r, s) \diamond (t, u) = \{a \diamond b : a \in (r, s), b \in (t, u)\}$. It can be proved that $\alpha \diamond \beta$ is a conditional homomorphism on $B = \{(r, s) : r, s \in \mathbb{Q}\} \cup \{\mathbb{R}\}$ and hence $\alpha \diamond \beta \in C(L)$, see [2] and [14]. Also, for every $r \in \mathbb{R}$ it is defined that

 $\mathbf{r}(w) = \mathbf{Top}$ if $r \in w$ and $\mathbf{r}(w) = \perp$ if $r \notin w$. It is clear to see that $\mathbf{r} \in C(L)$. Now, $r.\alpha$ is defined by $\mathbf{r}\alpha$. Consequently C(L) is an *f*-algebra with these operations.

Proposition 1.3. For every $\alpha, \beta \in C(L)$ and every $w \in \mathcal{O}\mathbb{R}$, we have

$$(\alpha \diamond \beta)(w) = \bigvee \left\{ \alpha(r,s) \land \beta(t,u) : r, s, t, u \in \mathbb{Q}, (r,s) \diamond (t,u) \subseteq w \right\}$$
$$= \bigvee \left\{ \alpha(w_1) \land \beta(w_2) : w_1, w_2 \in \mathcal{O}\mathbb{R}, w_1 \diamond w_2 \subseteq w \right\},$$

where $w_1 \diamond w_2 = \{a \diamond b : a \in w_1, b \in w_2\}.$

Proof. Assume that

$$A_{a,b} = \{ \alpha(r,s) \land \beta(t,u) : r, s, t, u \in \mathbb{Q}, (r,s) \diamond (t,u) \subseteq (a,b) \} ,$$
$$A_w = \{ \alpha(r,s) \land \beta(t,u) : r, s, t, u \in \mathbb{Q}, (r,s) \diamond (t,u) \subseteq w \}$$

and

$$B_w = \{ \alpha(w_1) \land \beta(w_2) : w_1, w_2 \in \mathcal{O}\mathbb{R}, \quad w_1 \diamond w_2 \subseteq w \}.$$

Since $(\alpha \diamond \beta) \in C(L)$, it follows that

$$(\alpha \diamond \beta)(w) = (\alpha \diamond \beta) \left(\bigcup \left\{ (a, b) \in \mathcal{O}\mathbb{R} : a, b \in \mathbb{Q}, (a, b) \subseteq w \right\} \right)$$
$$= \bigvee \left\{ (\alpha \diamond \beta)(a, b) : a, b \in \mathbb{Q}, (a, b) \subseteq w \right\}$$
$$= \bigvee \left\{ \bigvee A_{a,b} : (a, b) \subseteq w \right\}.$$

Therefore, clearly, $(\alpha \diamond \beta)(w) \leq \bigvee A_w \leq \bigvee B_w$. Now, suppose that $\alpha(r, s) \land \beta(t, u) \in A_w$. Obviously, there exist $a, b \in \mathbb{Q}$ such that $(r, s)\diamond(t, u) \subseteq (a, b) \subseteq w$. Hence, $\alpha(r, s) \land \beta(t, u) \in A_{a,b}$ and consequently $\bigvee A_w \leq \bigvee A_{a,b} \leq (\alpha \diamond \beta)(w)$ and so $\bigvee A_w = (\alpha \diamond \beta)(w)$. Finally, assume that $\alpha(w_1) \land \beta(w_2) \in B_w$, where $w_1 \diamond w_2 \subseteq w$. Clearly, $w_1 = \bigcup_{i \in I} (r_i, s_i)$ and $w_2 = \bigcup_{j \in J} (t_j, u_j)$, where $r_i, s_i, t_j, u_j \in \mathbb{Q}$ for every $i \in I$ and every $j \in J$. Thus,

$$\bigcup_{i\in I}\bigcup_{j\in J}(r_i,s_i)\diamond(t_j,u_j)=\bigcup_{i\in I}(r_i,s_i)\diamond\bigcup_{j\in J}(t_j,u_j)=w_1\diamond w_2\subseteq w$$

and so $(r_i, s_i) \diamond (t_j, u_j) \subseteq w$ for every $i \in I$ and every $j \in J$. Therefore, it is easy to see that $\alpha(w_1) \land \beta(w_2) = \bigvee_{i \in I} \bigvee_{j \in J} \alpha(r_i, s_i) \land \beta(t_j, u_j) \leqslant \bigvee A_w$. Hence, $\bigvee B_w \leqslant \bigvee A_w$ and so $\bigvee B_w = \bigvee A_w$

Throughout the paper, the notations L and C(L) stand for a frame and the *f*-algebra of all continuous real functions on the frame L, respectively. The reader is referred to [2], [14], and [12], for more information about frames and C(L). Also, see [4], [5], [11], [15], and [10] for more information about general lattice theory and rings of continuous functions, respectively.

We need the following proposition which can be found in the literature.

Proposition 1.4. Let $\alpha, \beta \in C(L)$ and $a \in \mathbb{R}$. The following statements hold.

(a) If α ≥ 0, then α(-∞, x) =⊥ for every x ≤ 0.
(b) If α ≥ 0, then α(x, +∞) = Top for every x < 0.
(c) (α ∨ β)(x, +∞) = α(x, +∞) ∨ β(x, +∞) for every x ∈ ℝ.
(d) (α ∨ β)(-∞, x) = α(-∞, x) ∧ β(-∞, x) for every x ∈ ℝ.
(e) (α ∧ β)(x, +∞) = α(x, +∞) ∧ β(x, +∞) for every x ∈ ℝ.
(f) (α ∧ β)(-∞, x) = α(-∞, x) ∨ β(-∞, x) for every x ∈ ℝ.
(g) (cα)(w) = α(¹/_cw) for every w ∈ Oℝ and each c ≠ 0, where bw = {bx : x ∈ w}.

(h) $(\mathbf{c} + \alpha)(w) = \alpha(w - c)$ for each $w \in \mathcal{O}\mathbb{R}$ and each $c \in \mathbb{R}$, where $w + b = \{x + b : x \in w\}$.

2 Pre-image of a continuous real function on L

In [13], although it does not introduce a determined definition for pointfree version of the "image" of continuous real functions, using a concept, called "overlap", an attempt has been made to fill the vacuum of the concept of image of continuous real functions in pointfree topology. In this main section, we give a determined version of the image of continuous real functions on a topological space X in the pointfree topology and we show that this is independent of what we see in [13].

Definition 2.1. For every $\alpha \in C(L)$, we define $pim(\alpha)$, called pre-image of α , as

$$pim(\alpha) = \bigcap \{ w \in O\mathbb{R} : \alpha(w) = \mathbf{Top} \}.$$

At below we provide an example in which we demonstrate that $pim(\alpha)$ is an appropriate model of image of the real-valued functions in pointfree topology.

Example 2.2. Let C(X) be the ring of real-valued continuous functions on a topological space X. We know that for all $f \in C(X)$ we have $\mathcal{O}f \in C(\mathcal{O}X)$ and clearly, we can write

$$Im(f) = f(X) = \bigcap_{f(X) \subseteq w} w = \bigcap \{ w \in \mathcal{O}\mathbb{R} : f^{-1}(w) = X \}$$
$$= \bigcap \{ w \in \mathcal{O}\mathbb{R} : \mathcal{O}f(w) = \mathbf{Top} \}.$$

Therefore, $Im(f) = pim(\mathcal{O}f)$.

Hereinafter, by \mathbb{R}_x , we mean $\mathbb{R} \setminus \{x\}$.

Proposition 2.3. For every $\alpha \in C(L)$, the following statements hold:

- (a) $pim(\alpha) = \bigcap \{ \mathbb{R}_x : \alpha(\mathbb{R}_x) = \mathbf{Top} \}.$
- (b) $x \notin pim(\alpha)$ if and only if $\alpha(\mathbb{R}_x) = \mathbf{Top}$.

Proof. (a): Suppose that $\mathcal{B} = \{\mathbb{R}_x : \alpha(\mathbb{R}_x) = \mathbf{Top}\}$. Obviously $\operatorname{pim}(\alpha) \subseteq \bigcap \mathcal{B}$. Now, assuming $x \notin \operatorname{pim}(\alpha)$, there exists $w \in \mathcal{O}\mathbb{R}$ such that $x \notin w$ and $\alpha(w) = \mathbf{Top}$. Hence, $w \subseteq \mathbb{R}_x$, consequently $\alpha(\mathbb{R}_x) = \mathbf{Top}$ and so $x \notin \mathbb{R}_x \in \mathcal{B}$. Therefore, $\bigcap \mathcal{B} \subseteq \operatorname{pim}(\alpha)$ and subsequently $\operatorname{pim}(\alpha) = \bigcap \mathcal{B}$.

(b): According to (a), it is obvious that we can write

$$x \notin \operatorname{pim}(\alpha) \Rightarrow \exists \mathbb{R}_y, \ \alpha(\mathbb{R}_y) = \operatorname{Top}, \ x \notin \mathbb{R}_y.$$

Since $x \notin \mathbb{R}_y$, x = y and consequently $\alpha(\mathbb{R}_x) = \text{Top.}$ Conversely, assume that $\alpha(\mathbb{R}_x) = \text{Top.}$ Thus, $pim(\alpha) \subseteq \mathbb{R}_x$ and so $x \notin pim(\alpha)$. \Box

Estaji and at al. in [8], put

$$R_{\alpha} = \{ r \in \mathbb{R} : coz(\alpha - r) \neq \mathbf{Top} \}$$

for every $\alpha \in C(L)$, and they studied some of its properties. By Proposition 2.3, it is evident that $R_{\alpha} = \text{pim}(\alpha)$.

Recall that $w^* = \mathbb{R} \setminus \overline{w}$ and $\overline{w} = \bigcap_{x \in w^*} \mathbb{R}_x$ for every $w \in \mathcal{OR}$.

Proposition 2.4. For every $w \in O\mathbb{R}$ and every $\alpha \in C(L)$, the following statements hold:

- (a) If $\alpha(w^*) = \perp$, then $\alpha(\mathbb{R}_x) = \text{Top for all } x \in w^*$.
- (b) If $\alpha(w^*) = \perp$, then $pim(\alpha) \subseteq \overline{w}$.
- (c) If $r \in pim(\alpha)$ and $w \in \mathcal{O}_r$, then $\alpha(w) \neq \perp$.

Proof. (a): Suppose that $w \in \mathcal{O}\mathbb{R}$ and $\alpha \in C(L)$. Then for every $x \in w^*$, we can write

$$\mathbb{R}_x \cup w^* = \mathbb{R} \Rightarrow \alpha(\mathbb{R}_x) = \alpha(\mathbb{R}_x) \lor \alpha(w^*) = \alpha(\mathbb{R}_x \cup w^*) = \alpha(\mathbb{R}) = \mathbf{Top}.$$

(b): Since $\alpha(w^*) = \bot$, by part (a), for all $x \in w^*$, we have $\alpha(\mathbb{R}_x) = \mathbf{Top}$ and so

$$\operatorname{pim}(\alpha) = \bigcap \{ \mathbb{R}_x : \ \alpha(\mathbb{R}_x) = \operatorname{Top} \} \subseteq \bigcap_{x \in w^*} \mathbb{R}_x = \overline{w}.$$

(c): Suppose that $r \in pim(\alpha)$ and $w \in \mathcal{O}_r$. Thus, there exists $y \in w \cap pim(\alpha)$ and therefore

$$\mathbf{Top} = \alpha(\mathbb{R}) = \alpha(\mathbb{R}_y \lor w) = \alpha(\mathbb{R}_y) \lor \alpha(w).$$

On the other hand, since $y \in pim(\alpha)$, $\alpha(\mathbb{R}_y) \neq \mathbf{Top}$ and so $\alpha(w) \neq \bot$. \Box

By Example 2.2, it is easy to see that if $pim(\mathcal{O}f) \subseteq w \in \mathcal{O}\mathbb{R}$, then $\mathcal{O}f(w) = \mathbf{Top}$. Also, if $\mathcal{O}f(w) \neq \bot$, for every $w \in \mathcal{O}_r$, $r \in pim(\alpha)$. So here are two natural question.

Question 1: Suppose that $\alpha \in C(L)$ and $w \in \mathcal{OR}$. Can we imply $\alpha(w) = \text{Top from pim}(\alpha) \subseteq w$?

Question 2: Suppose that $\alpha(w) \neq \perp$, for every $w \in \mathcal{O}_r$. Can we conclude that $r \in \overline{\text{pim}(\alpha)}$?

Example 2.8 shows that the answer to these two questions is generally negative (in the first question, even if w is an unbounded interval in \mathbb{R}). But, in the following proposition, we will find that the answer to the first question is positive under some conditions.

Proposition 2.5. Let $\alpha \in C(L)$, $w \in O\mathbb{R}$ and $pim(\alpha) \subseteq w$, then the following statements hold:

(a) If w is dense in \mathbb{R} and the boundary of w is finite, then $\alpha(w) = \text{Top}$.

(b) Let $\mathcal{U} \subseteq \mathcal{O}\mathbb{R}$ be such that one of these families is bounded, $pim(\alpha) \subseteq \bigcap \mathcal{U}$ and $\alpha(u) = \mathbf{Top}$ for every $u \in \mathcal{U}$. If $\bigcap_{u \in \mathcal{U}} \overline{u} \subseteq w$, then it follows that $\alpha(w) = \mathbf{Top}$.

Proof. (a): It is clear.

(b): Without loss of generality, we can suppose that \overline{u} is compact for all $u \in \mathcal{U}$. Now, it is easy to see that there exist $u_1, \dots, u_n \in \mathcal{U}$ such that $\bigcap_{i=1}^n \overline{u_i} \subseteq w$. Therefore,

$$\mathbf{Top} = \bigwedge_{i=1}^{n} \alpha(u_i) = \alpha \big(\bigcap_{i=1}^{n} u_i \big) \leqslant \alpha(w) \implies \alpha(w) = \mathbf{Top}.$$

Suppose that $\alpha \in C(L)$ and $S \subseteq \mathbb{R}$. We recall from [13] that α is an overlap of S, denoted by $\alpha \blacktriangleleft S$, whenever $i(u) \subseteq i(v)$ implies $\alpha(u) \leq \alpha(v)$; that is, $u \cap S \subseteq v \cap S$ implies $\alpha(u) \leq \alpha(v)$. In the following propositions and example, we will see that although this concept and pim(α) are closely related, but they are different from each other.

Proposition 2.6. Suppose that $\alpha \in C(L)$ and $OV(\alpha) = \{S \subseteq \mathbb{R} : \alpha \blacktriangleleft S\}$. Then $pim(\alpha) = \bigcap_{S \in OV(\alpha)} S$.

Proof. Let $S \in OV(\alpha)$ and $x \notin S$. Thus, $\mathbb{R}_x \cap S = \mathbb{R} \cap S$ and so **Top** = $\alpha(\mathbb{R}) = \alpha(\mathbb{R}_x)$; that , $x \notin pim(\alpha)$. Therefore, $pim(\alpha) \subseteq \bigcap_{S \in OV(\alpha)} S$. Conversely, suppose $x \notin pim(\alpha)$; it suffices to show that $\mathbb{R}_x \in OV(\alpha)$. To see this, for every $u, v \in \mathcal{O}\mathbb{R}$, we can write

$$u \cap \mathbb{R}_x \subseteq v \cap \mathbb{R}_x \quad \Rightarrow \quad \alpha(u) = \alpha(u) \wedge \mathbf{Top} = \alpha(u) \wedge \alpha(\mathbb{R}_x)$$
$$= \alpha(u \cap \mathbb{R}_x) \leqslant \alpha(v \cap \mathbb{R}) = \alpha(v).$$

Proposition 2.7. Suppose that $\alpha \in C(L)$, $w \in \mathcal{O}\mathbb{R}$ and $\alpha(w) = \text{Top}$, then $\alpha \blacktriangleleft w$.

Proof. Let $u, v \in \mathcal{O}\mathbb{R}$ and $u \cap w \subseteq v \cap w$. Hence

$$\alpha(u) = \alpha(u) \wedge \mathbf{Top} = \alpha(u) \wedge \alpha(w)$$
$$= \alpha(u \cap w) \leqslant \alpha(v \cap w) = \alpha(v) \wedge \alpha(w) = \alpha(v) \wedge \mathbf{Top} = \alpha(v).$$

In this way, it turns out that the following equality is in place, too.

$$pim(\alpha) = \bigcap \{ w \in \mathcal{O}\mathbb{R} : \alpha \blacktriangleleft w \}.$$

Example 2.8. There is a frame L and $\beta \in C(L)$ such that $\beta \not = \operatorname{pim}(\beta)$. To see this, let L, β and the family $\{S_c\}_{c \in \mathcal{I}}$ be same as in [13, Example 3.18]. Then, $\operatorname{pim}(\beta) \subseteq \bigcap_{c \in \mathcal{I}} S_c = \emptyset$. Thus, $\beta \blacktriangleleft \operatorname{pim}(\beta)$ does not hold. Furthermore, since $\beta(\emptyset) = \bot$, there exists $w \in \mathcal{O}\mathbb{R}$ such that $\beta(w) \neq \operatorname{Top}$. Clearly, $\operatorname{pim}(\beta) = \emptyset \subseteq w$ whereas $\beta(w) \neq \operatorname{Top}$. Thus, the answer to Question 1 is negative. Also, since $\beta(\operatorname{Top}) = \operatorname{Top}$, there exists an element $r \in \mathbb{R}$ such that for every $w \in \mathcal{O}_r$ we have $\beta(w) \neq \bot$, whereas $r \notin \emptyset = \operatorname{pim}(\beta)$. Therefore, the answer to Question 2 is also negative.

Now, we want to find the relationship between $pim(|\alpha|)$ and $pim(\alpha)$.

Lemma 2.9. For every $\alpha \in C(L)$ and every $x \in \mathbb{R}$, we have

$$|\alpha|(\mathbb{R}_x) = \Big(\alpha(x, +\infty) \lor \alpha(-\infty, |x|)\Big) \land \Big(\alpha(-|x|, +\infty) \lor \alpha(-\infty, -x)\Big).$$

Proof. By Proposition 1.4, the proof is straightforward.

The following corollary is followed from the above lemma immediately.

Corollary 2.10. Assume that $\alpha \in C(L)$ and $x \in \mathbb{R}$. Then the following statements hold:

(a) If x < 0, then $|\alpha|(\mathbb{R}_x) = \mathbf{Top}$.

- (b) If $x \ge 0$, then $|\alpha|(\mathbb{R}_x) = \alpha(\mathbb{R}_x) \wedge \alpha(\mathbb{R}_x)$.
- (c) $pim(|\alpha|) \subseteq \mathbb{R}^+$.

Proposition 2.11. $pim(|\alpha|) = \{|x|: x \in pim(\alpha)\}$ for every $\alpha \in C(L)$.

Proof. Supposing $A = \{|x| : x \in pim(\alpha)\}$, clearly, $A = \{x \in \mathbb{R}^+ : x \in pim(\alpha) \text{ or } -x \in pim(\alpha)\}$. Accordingly to Lemma 2.9, for every $x \ge 0$, we can write

$$\begin{aligned} x \notin A &\Leftrightarrow x, -x \notin \operatorname{pim}(\alpha) &\Leftrightarrow \alpha(\mathbb{R}_x) = \alpha(\mathbb{R}_{-x}) = \mathbf{Top} &\Leftrightarrow |\alpha|(\mathbb{R}_x) \\ &= \mathbf{Top} &\Leftrightarrow x \notin \operatorname{pim}(|\alpha|). \end{aligned}$$

Proposition 2.12. The following relations are true for each $\alpha \in C(L)$ and each $r \in \mathbb{R}$:

- (a) $pim(\mathbf{r}) = \{r\}.$
- (b) $pim(\mathbf{r}\alpha) = r pim(\alpha)$.
- (c) $pim(\mathbf{r} + \alpha) = r + pim(\alpha)$.

Proof. (a): Clearly, for every $r \in \mathbb{R}$, we can write

$$\mathbf{r}(\mathbb{R}_x) = \mathbf{Top} \quad \Leftrightarrow \quad x \neq r. \quad \therefore \quad \operatorname{pim}(\mathbf{r}) = \bigcap_{x \neq r} \mathbb{R}_x = \{r\}.$$

(b): For every $r \in \mathbb{R}$, we can write (without loss of generality, assume that $r \neq 0$)

$$\operatorname{pim}(\mathbf{r}\alpha) \subseteq \mathbb{R}_x \quad \Leftrightarrow \quad (\mathbf{r}\alpha)(\mathbb{R}_x) = \mathbf{Top} \quad \Leftrightarrow \quad \alpha(\frac{1}{r} \mathbb{R}_x) = \alpha(\mathbb{R}_{\frac{x}{r}}) = \mathbf{Top}$$
$$\Leftrightarrow \quad \operatorname{pim}(\alpha) \subseteq \mathbb{R}_{\frac{x}{r}} \quad \Leftrightarrow \quad r.\operatorname{pim}(\alpha) \subseteq \mathbb{R}_x$$
$$\Leftrightarrow \quad \operatorname{pim}(\mathbf{r}).\operatorname{pim}(\alpha) \subseteq \mathbb{R}_x.$$

(c): For every $r \in \mathbb{R}$, we can write

$$pim(\mathbf{r} + \alpha) \subseteq \mathbb{R}_x \iff (\mathbf{r} + \alpha)(\mathbb{R}_x) = \mathbf{Top} \iff \alpha(-r + \mathbb{R}_x) = \alpha(\mathbb{R}_{x-r}) = \mathbf{Top}$$
$$\Leftrightarrow pim(\alpha) \subseteq \mathbb{R}_{x-r} = -r + \mathbb{R}_x \iff r + pim(\alpha) \subseteq \mathbb{R}_x$$
$$\Leftrightarrow pim(\mathbf{r}) + pim(\alpha) \subseteq \mathbb{R}_x.$$

Now, we state the relation between $pim(\alpha)$, $pim(\alpha^+)$, and $pim(\alpha^-)$ in the following.

Proposition 2.13. For every $\alpha \in C(L)$, the following relations hold:

- (a) $\operatorname{pim}(\alpha) \cap (0, +\infty) = \operatorname{pim}(\alpha^+) \setminus \{0\}.$
- (b) $\operatorname{pim}(\alpha) \cap (-\infty, 0) = \operatorname{pim}(-\alpha^{-}) \setminus \{0\}.$
- (c) $\operatorname{pim}(\alpha) \setminus \{0\} = ((\operatorname{pim}(\alpha^+) \cup \operatorname{pim}(-\alpha^-)) \setminus \{0\}.$

Proof. (a): For every x > 0, by Proposition 1.4, we have

$$\alpha^+(-\infty, x) = (\alpha \lor \mathbf{0})(-\infty, x) = \alpha(-\infty, x) \land \mathbf{0}(-\infty, x) = \alpha(-\infty, x)$$

and similarly,

$$\alpha^+(x, +\infty) = (\alpha \lor \mathbf{0})(x, +\infty) = \alpha(x, +\infty) \lor \mathbf{0}(x, +\infty) = \alpha(x, +\infty).$$

Therefore, for every x > 0, we can deduce that

$$\alpha(\mathbb{R}_x) = \alpha(-\infty, x) \lor \alpha(x, +\infty) = \alpha^+(-\infty, x) \lor \alpha^+(x, +\infty) = \alpha^+(\mathbb{R}_x).$$

Hence, $(0, +\infty) \cap pim(\alpha) = pim(\alpha^+) \setminus \{0\}.$

(b): For every x < 0, by part (a), we can write

$$-\alpha^{-}(\mathbb{R}_{x}) = -\alpha^{-}[(-\infty, x) \lor (x, +\infty)]$$

= $-\alpha^{-}(-\infty, x) \lor -\alpha^{-}(x, +\infty)$
= $\alpha^{-}(-x, +\infty) \lor \alpha^{-}(-\infty, -x)$
= $(-\alpha)^{+}(-x, +\infty) \lor (-\alpha)^{+}(-\infty, -x)$
= $-\alpha(-x, +\infty) \lor -\alpha(-\infty, -x)$
= $\alpha(-\infty, x) \lor \alpha(x, +\infty) = \alpha(\mathbb{R}_{x}).$

Therefore, $(-\infty, 0) \cap pim(\alpha) = pim(-\alpha^{-}) \setminus \{0\}.$

(c): Straightforward from (a) and (b), it is concluded that

$$\operatorname{pim}(\alpha) \setminus \{0\} = \left((\operatorname{pim}(\alpha^+)) \cup \operatorname{pim}(-\alpha^-) \right) \setminus \{0\}.$$

Question 3: Now, this question arises whether the following relations, similar to what we have for real functions on topological spaces, hold.

$$\operatorname{pim}(\alpha \lor \beta) \subseteq \operatorname{pim}(\alpha) \cup \operatorname{pim}(\beta) \quad , \quad \operatorname{pim}(\alpha \land \beta) \subseteq \operatorname{pim}(\alpha) \cap \operatorname{pim}(\beta)$$
$$\operatorname{pim}(\alpha + \beta) \subseteq \operatorname{pim}(\alpha) + \operatorname{pim}(\beta) \quad , \quad \operatorname{pim}(\alpha\beta) \subseteq \operatorname{pim}(\alpha) \operatorname{pim}(\beta).$$

We show that under some achievable conditions, the answer is positive. But first we need some preparations.

Definition 2.14. An ideal I in a frame L is called \lor -complete (countably \lor -complete) if from $D \subseteq I$ (countable set $D \subseteq I$), it follows that $\bigvee D \in I$.

Example 2.15. (a) Every principal ideal is \lor -complete.

(b) Suppose that ω_1 is the first uncountable ordinal and $L = \downarrow \omega_1$. Clearly L is a frame and if we put $P = L \setminus \{\text{Top}\}$, then P is a countably \lor -complete ideal whereas it is not a \lor -complete ideal.

Definition 2.16. For every $P \in \text{Spec}(L)$, we define $A_P(\alpha) = \{x \in \mathbb{R} : \alpha(x, +\infty) \in P\}$ and $B_P(\alpha) = \{x \in \mathbb{R} : \alpha(-\infty, x) \in P\}$.

Because these two sets $A_P(\alpha)$ and $B_P(\alpha)$ are important in our work, we discuss them briefly.

Lemma 2.17. Let $P \in Spec(L)$ and $\alpha \in C(L)$. Then

(a) $A_P(\alpha) \cup B_P(\alpha) = \mathbb{R}$.

(b) Any element of $A_P(\alpha)$ is an upper bound of $B_P(\alpha)$ and any element of $B_P(\alpha)$ is a lower bound of $A_P(\alpha)$.

(c) $\uparrow A_P(\alpha) = A_P(\alpha) \text{ and } \downarrow B_P(\alpha) = B_P(\alpha).$

Proof. (a): Assuming $x \notin A_P(\alpha)$, it follows that $\alpha(x, +\infty) \notin P$. Since P is prime and $\alpha(x, +\infty) \wedge \alpha(-\infty, x) = \bot \in P$, we deduce that $\alpha(-\infty, x) \in P$. Hence $x \in B_P(\alpha)$.

(b): Assume that $x \in A_P(\alpha)$ and, on the contrary, there exists an element $c \in B_P(\alpha)$ such that x < c. Therefore, $\mathbf{Top} = \alpha(\mathbb{R}) = \alpha(-\infty, c) \lor \alpha(x, +\infty) \in P$ and this is a contradiction. Similarly, any element of $B_P(\alpha)$ is a lower bound of $A_P(\alpha)$.

(c): Supposing $x \in \uparrow A_P(\alpha)$, there exists an element $a \in A_P(\alpha)$ such that $a \leq x$. Thus, $\alpha(x, +\infty) \leq \alpha(a, +\infty) \in P$ and consequently $x \in A_P(\alpha)$. \Box

Corollary 2.18. Let $P \in Spec(L)$ and $\alpha \in C(L)$. Then the following statements are equivalent:

(a) $\inf A_P(\alpha) \in \mathbb{R}$

- (b) $A_P(\alpha) \neq \emptyset \neq B_P(\alpha)$.
- (c) $\sup B_P(\alpha) \in \mathbb{R}$
- (d) There exists an element $x \in \mathbb{R}$ such that

 $(x, +\infty) \subseteq (\inf A_P(\alpha), +\infty) \subseteq [x, +\infty)$ and

 $(-\infty, x) \subseteq (-\infty, \sup B_P(\alpha)) \subseteq (-\infty, x].$

(e) $\inf A_P(\alpha) = \sup B_P(\alpha) \in \mathbb{R}.$

Proof. (a) \Rightarrow (b): By hypothesis, clearly, $A_P(\alpha) \neq \emptyset$ and there exists an element $x \in \mathbb{R}$ such that $x \notin A_P(\alpha)$. By Lemma 2.17, $x \in B_P(\alpha)$. Thus, $B_P(\alpha)$ is also non-empty.

(b) \Rightarrow (c): By Lemma 2.17, it is clear.

(c) \Rightarrow (d): Similar to (a) \Rightarrow (b), it follows that $A_P(\alpha) \neq \emptyset \neq B_P(\alpha)$. Hence, by part (b) of Lemma 2.17, $A_P(\alpha)$ (respectively, $B_P(\alpha)$) is nonempty and bounded below (respectively, bounded above). Hence, inf $A_P(\alpha)$ and $\sup B_P(\alpha)$ exist. It is easy, by using Lemma 2.17, once again, to see that $\inf A_P(\alpha) = x = \sup B_P(\alpha)$ and in addition, we have $(x, +\infty) \subseteq$ $(\inf A_P(\alpha), +\infty) \subseteq [x, +\infty)$ and $(-\infty, x) \subseteq (-\infty, \sup B_P(\alpha)) \subseteq (-\infty, x]$. The implications (d) \Rightarrow (e) \Rightarrow (a) are obvious.

Definition 2.19. $P \in \text{Spec}(L)$ is said to be real with respect to $\alpha \in C(L)$ if $A_P(\alpha)$ and $B_P(\alpha)$ are non-empty closed subsets in \mathbb{R} . If P is real with respect to every $\alpha \in C(L)$, then we say P is real.

Lemma 2.20. Assume that $P \in Spec(L)$ and $\alpha \in C(L)$. Then, the following statements are equivalent:

- (a) P is real with respect to α .
- (b) inf $A_P(\alpha) \in A_P(\alpha)$ and $\sup B_P(\alpha) \in B_P(\alpha)$.
- (c) There is an element $x \in \mathbb{R}$ such that $A_P(\alpha) \cap B_P(\alpha) = \{x\}$.
- (d) There exists an element $x \in \mathbb{R}$ such that $\alpha(\mathbb{R}_x) \in P$.

Proof. By Corollary 2.18, it is clear.

Lemma 2.21. Let $P \in Spec(L)$ be countably \lor -complete. Then P is real.

Proof. Suppose that $\alpha \in C(L)$. Since P is countably \lor -complete, it follows that inf $A_P(\alpha) \in \mathbb{R}$ and so, by Corollary 2.18, there exists an element $x \in \mathbb{R}$ such that

$$(x, +\infty) \subseteq (\inf A_P(\alpha), +\infty) \subseteq [x, +\infty)$$

and

$$(-\infty, x) \subseteq (-\infty, \sup B_P(\alpha)) \subseteq (-\infty, x].$$

By Lemma 2.20, it is enough to show that $x \in A_P(\alpha) \cap B_P(\alpha)$. This is obvious, since P is countably \lor -complete and \mathbb{Q} is dense in \mathbb{R} . \Box

By the above lemma, $\downarrow p$ is real for each $p \in \text{Sp}L$.

We need the following lemma for the next theorem.

Lemma 2.22. Let P be prime ideal in a frame L and $\alpha \in C(L)$. The following statements hold:

- (a) $A_P(-\alpha) = -B_P(\alpha)$ and $B_P(-\alpha) = -A_P(\alpha)$. (b) $B_P(\alpha^+) = (-\infty, 0) \cup B_P(\alpha)$. (c) $A_P(\alpha^+) = (0, +\infty) \cap A_P(\alpha)$. (d) $B_P(\alpha^-) = (-\infty, 0) \cup -A_P(\alpha)$. (e) $A_P(\alpha^-) = (0, +\infty) \cap -B_P(\alpha)$.
- If, in addition, $\hat{P}(\alpha) = \inf A_P(\alpha) \in \mathbb{R}$, then (f) $\hat{P}(\alpha^+) = (\hat{P}(\alpha))^+;$ (g) $\hat{P}(\alpha^-) = (\hat{P}(\alpha))^-.$

Proof. (a): It is clear that

$$A_P(-\alpha) = \{x \in \mathbb{R} : -\alpha(x, +\infty) \in P\} = \{x \in \mathbb{R} : \alpha(-\infty, -x) \in P\}$$
$$= -\{y \in \mathbb{R} : \alpha(-\infty, y) \in P\} = -B_P(\alpha).$$

Similarly, we conclude that $B_P(-\alpha) = -A_P(\alpha)$.

(b): We can write

$$B_P(\alpha^+) = \{x \in \mathbb{R} : \alpha^+(-\infty, x) \in P\} = \{x \in \mathbb{R} : \mathbf{0}(-\infty, x) \land \alpha(-\infty, x) \in P\}$$
$$= \{x \in \mathbb{R} : \mathbf{0}(-\infty, x) \in P\} \cup \{x \in \mathbb{R} : \alpha(-\infty, x) \in P\} = (-\infty, 0) \cup B_P(\alpha).$$

(c): We can write

$$A_P(\alpha^+) = \{ x \in \mathbb{R} : \alpha^+(x, +\infty) \in P \} = \{ x \in \mathbb{R} : \mathbf{0}(x, +\infty) \lor \alpha(x, +\infty) \in P \}$$
$$= \{ x \in \mathbb{R} : \mathbf{0}(x, +\infty) \in P \} \cap \{ x \in \mathbb{R} : \alpha(x, +\infty) \in P \} = (0, +\infty) \cap A_P(\alpha).$$

(d): By parts (a) and (b), it follows that

$$B_P(\alpha^{-}) = B_P((-\alpha)^{+}) = (-\infty, 0) \cup B_P(-\alpha) = (-\infty, 0) \cup -A_P(\alpha).$$

(e): Using (a) and (c), we do similar to (d).

(f): By part (b) and Corollary 2.18, we can write

$$(\hat{P}(\alpha))^+ = 0 \lor \hat{P}(\alpha) = \sup(-\infty, 0) \lor \sup B_P(\alpha) = \sup B_P(\alpha^+) = \hat{P}(\alpha^+)$$

(g): By part (d) and Corollary 2.18, we can write

$$(\hat{P}(\alpha))^{-} = 0 \lor -\hat{P}(\alpha) = \sup((-\infty, 0) \lor -A_{P}(\alpha)) = \sup B_{P}(\alpha^{-}) = \hat{P}(\alpha^{-}).$$

The following theorem is an improvement of [6, Proposition 2.3] (also, see [7, Proposition 3.9] and [9, Proposition 2.3]).

Theorem 2.23. Assume that $P \in Spec(L)$ and is countably \lor -complete in L. We define

$$\hat{P} : C(L) \to \mathbb{R}$$
, $\hat{P}(\alpha) = \inf A_P(\alpha)$.

Then \hat{P} is an f-algebra homomorphism; that is, (a) $\hat{P}(\alpha + \beta) = \hat{P}(\alpha) + \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$. (b) $\hat{P}(\alpha\beta) = \hat{P}(\alpha)\hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$. (c) $\hat{P}(r\alpha) = r\hat{P}(\alpha)$ for every $r \in \mathbb{R}$ and every $\alpha \in C(L)$. (d) $\hat{P}(\alpha \lor \beta) = \hat{P}(\alpha) \lor \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$. (e) $\hat{P}(\alpha \land \beta) = \hat{P}(\alpha) \land \hat{P}(\beta)$ for every $\alpha, \beta \in C(L)$.

Proof. (a): Let $x = \hat{P}(\alpha + \beta)$. Since P is countably \lor -complete, we have $(\alpha + \beta)(x, +\infty) \in P$. Therefore,

$$\begin{aligned} (\alpha + \beta)(x, +\infty) &= \bigvee \left\{ \alpha(r, s) \land \beta(t, u) : (r, s) + (t, u) \subseteq (x, +\infty) \right\} \\ &= \bigvee \left\{ \alpha(r, s) \land \beta(t, u) : r + t \ge x \right\} \\ &= \bigvee \left\{ \alpha(r, +\infty) \land \beta(t, +\infty) : r + t \ge x \right\} \\ &= \bigvee \left\{ \alpha(r, +\infty) \land \beta(x - r, +\infty) : r \in \mathbb{R} \right\} \in P. \end{aligned}$$

Hence

$$\bigvee \left\{ \alpha(r, +\infty) \land \beta(x - r, +\infty) : r < \hat{P}(\alpha), r \in \mathbb{Q} \right\} \in P$$

Since $\alpha(r, +\infty) \notin P$ for every $r < \hat{P}(\alpha)$, it follows that $\beta(x - r, +\infty) \in P$ for every rational $r < \hat{P}(\alpha)$ and so, by countably \vee -completeness of P, we can write

$$\beta(x - \hat{P}(\alpha), +\infty) = \bigvee \left\{ \beta(x - r, +\infty) : r < \hat{P}(\alpha), r \in \mathbb{Q} \right\} \in P.$$

Thus,

$$\hat{P}(\beta) \leq x - \hat{P}(\alpha) \Rightarrow \hat{P}(\alpha) + \hat{P}(\beta) \leq x.$$
 (1)

On the other hand, it is clear that for every $s > \sup B_P(\alpha) = \hat{P}(\alpha)$, we have $\alpha(-\infty, s) \notin P$. Therefore, similar to the above, it conclude that $\beta(-\infty, x - s) \in P$ for every $s > \hat{P}(\alpha)$. Consequently,

$$\beta(-\infty, x - \hat{P}(\alpha)) = \bigvee \left\{ \beta(-\infty, x - s) : s > \hat{P}(\alpha), s \in \mathbb{Q} \right\} \in P.$$

Hence, we can write

$$x - \hat{P}(\alpha) \leq \hat{P}(\beta) \Rightarrow x \leq \hat{P}(\alpha) + \hat{P}(\beta).$$
 (2)

The desired equality follows from (1) and (2).

(b): Case (1): $\alpha, \beta \ge 0$ and $\hat{P}(\alpha\beta) = 0$. In this case, we show that $\hat{P}(\alpha) = 0$ or $\hat{P}(\beta) = 0$. Since $\hat{P}(\alpha\beta) = 0$, $(\alpha\beta)(0, +\infty) \in P$ and since $\alpha(-\infty, 0) = 0$, $\beta(-\infty, 0) = 0$, we can write

$$\begin{aligned} (\alpha\beta)(0,+\infty) &= \bigvee \left\{ \alpha(r,s) \land \beta(t,u) \, : \, (r,s)(t,u) \in (0,+\infty) \right\} \\ &= \bigvee \left\{ \alpha(r,s) \land \beta(t,u) \, : \, r,t \ge 0 \right\} \\ &= \bigvee \left\{ \alpha(r,+\infty) \land \beta(t,+\infty) \, : \, r,t \ge 0 \right\} \\ &= \alpha(0,+\infty) \land \beta(0,+\infty) \in P. \end{aligned}$$

Therefore, $\beta(\mathbb{R}_0) = \beta(0, +\infty) \in P$ or $\alpha(\mathbb{R}_0) = \alpha(0, +\infty) \in P$. Thus, $\hat{P}(\alpha) = 0$ or $\hat{P}(\beta) = 0$.

Case (2): $\alpha, \beta \ge 0$ and $\hat{P}(\alpha\beta) = x > 0$. In this case

$$\alpha\beta(x,+\infty)\in P \quad \Rightarrow \quad \alpha\beta(x,+\infty) = \bigvee_{r>0} \left(\alpha(r,+\infty)\wedge\beta(\frac{x}{r},+\infty)\right)\in P.$$

Since $\alpha(r, +\infty) \notin P$ for every $0 < r < \hat{P}(\alpha)$, it follows that $\beta(\frac{x}{r}, +\infty) \in P$ for every $0 < r < \hat{P}(\alpha)$. Therefore, for every $0 < r < \hat{P}(\alpha)$, we have $\frac{x}{r} \ge \hat{P}(\beta)$ and so $\frac{x}{\hat{P}(\alpha)} \ge \hat{P}(\beta)$. This implies that

$$x \ge \hat{P}(\alpha)\hat{P}(\beta). \tag{3}$$

Since $\alpha(-\infty, s) \notin P$ for every $s > \hat{P}(\alpha)$, similar to above, we conclude that $\beta(-\infty, \frac{x}{s}) \in P$ for every $s > \hat{P}(\alpha)$. Thus, $\frac{x}{s} \leq \hat{P}(\beta)$ for every $s > \hat{P}(\alpha)$ and consequently, $\frac{x}{\hat{P}(\alpha)} \leq \hat{P}(\beta)$. Hence,

$$x \leqslant \hat{P}(\alpha)\hat{P}(\beta). \tag{4}$$

From (3) and (4), it follows that $\hat{P}(\alpha\beta) = \hat{P}(\alpha)\hat{P}(\beta)$.

Final case: Let $\alpha,\beta\in C(L)$ be arbitrary. By previous cases, we can write

$$\hat{P}(\alpha\beta) = \hat{P}\left((\alpha^+ - \alpha^-)(\beta^+ - \beta^-)\right)$$
$$= \hat{P}(\alpha^+)\hat{P}(\beta^+) - \hat{P}(\alpha^+)\hat{P}(\beta^-) - \hat{P}(\alpha^-)\hat{P}(\beta^+) + \hat{P}(\alpha^-)\hat{P}(\beta^-).$$

On the other hand, by Lemma 2.22, we have $\hat{P}(\alpha^{-}) = (\hat{P}(\alpha))^{-}$ and $\hat{P}(\alpha^{+}) = (\hat{P}(\alpha))^{+}$. Therefore

$$\hat{P}(\alpha\beta) = (\hat{P}(\alpha))^{+} (\hat{P}(\beta))^{+} - (\hat{P}(\alpha))^{+} (\hat{P}(\beta))^{-} - (\hat{P}(\alpha))^{-} (\hat{P}(\beta))^{+} + (\hat{P}(\alpha))^{-} (\hat{P}(\beta))^{-} = (\hat{P}(\alpha)^{+} - \hat{P}(\alpha)^{-})(\hat{P}(\beta)^{+} - \hat{P}(\beta)^{-}) = \hat{P}(\alpha)\hat{P}(\beta).$$

(c): If r = 0, the assertion is clear. If r > 0, then

$$\hat{P}(\mathbf{r}\alpha) = \inf \left\{ x : \ \mathbf{r}\alpha(x, +\infty) \in P \right\} = \inf \left\{ x : \ \alpha(\frac{x}{r}, +\infty) \in P \right\}$$
$$= \inf \left\{ ry : \ \alpha(y, +\infty) \in P \right\} = r\hat{P}(\alpha).$$

Finally, if r < 0, then

$$\hat{P}(\mathbf{r}(\alpha)) = \inf \left\{ x : \mathbf{r}\alpha(x, +\infty) \in P \right\} = \inf \left\{ x : -\mathbf{r}\alpha(-\infty, -x) \in P \right\}$$
$$= \inf \left\{ x \in \mathbb{R} : \alpha(-\infty, \frac{x}{r}) \in P \right\} = \inf \left\{ ry : \alpha(-\infty, y) \in P \right\}$$
$$= r \sup \left\{ y : \alpha(-\infty, y) \in P \right\} = r\hat{P}(\alpha).$$

Therefore, $\hat{P}(\mathbf{r}\alpha) = r\hat{P}(\alpha)$ for every $r \in \mathbb{R}$.

(d): Clearly, we can write

$$\begin{split} \hat{P}(\alpha \lor \beta) &= \sup \left\{ x \in \mathbb{R} : \ (\alpha \lor \beta)(-\infty, x) \in P \right\} \\ &= \sup \left\{ x : \ \alpha(-\infty, x) \land \beta(-\infty, x) \in P \right\} \\ &= \sup \left(\left\{ x : \ \alpha(-\infty, x) \in P \right\} \cup \left\{ x : \ \beta(-\infty, x) \in P \right\} \right) \\ &= \sup \left\{ x : \ \alpha(-\infty, x) \in P \right\} \lor \sup \left\{ x : \ \beta(-\infty, x) \in P \right\} \\ &= \hat{P}(\alpha) \lor \hat{P}(\beta). \end{split}$$

(e): It is similar to the proof of the part (d).

Note that, by Lemma 2.20, we obtain the following result, clearly.

Corollary 2.24. Suppose that $P \in Spec(L)$ is countably \lor -complete. Then $\hat{P}(\alpha) = x$ if and only if $\alpha(\mathbb{R}_x) \in P$.

Corollary 2.25. Assume that $p \in \text{SpL}$ and

$$\hat{p}: C(L) \to \mathbb{R}, \quad \hat{p}(\alpha) = \inf\{x \in \mathbb{R}: \alpha(x, +\infty) \leq p\}.$$

Then \hat{p} is an f-algebra homomorphism.

Proof. It suffices to put $P = \downarrow p$, then, by Theorem 2.23, we are done. \Box

We are now ready to answer the Question 3 which we raised earlier.

Theorem 2.26. Suppose that L is a frame in which every maximal ideal is countable \lor -complete. Then for every $\alpha, \beta \in C(L)$, we have the following relations:

- (a) $pim(\alpha + \beta) \subseteq pim(\alpha) + pim(\beta)$.
- (b) $pim(\alpha\beta) \subseteq pim(\alpha)pim(\beta)$.
- (c) $pim(\alpha \lor \beta) \subseteq pim(\alpha) \lor pim(\beta)$.
- (d) $pim(\alpha \land \beta) \subseteq pim(\alpha) \land pim(\beta)$.

Proof. We only prove part (a); other parts are proved by the same manner. Suppose that $x \in pim(\alpha + \beta)$. Thus, $(\alpha + \beta)(\mathbb{R}_x) \neq \mathbf{Top}$ and so there exists an element $M \in Max(L)$ such that $(\alpha + \beta)(\mathbb{R}_x) \in M$. Therefore, by Theorem 2.23 and Corollary 2.24, $x = \hat{M}(\alpha + \beta) = \hat{M}(\alpha) + \hat{M}(\beta)$. Taking $\hat{M}(\alpha) = a$ and $\hat{M}(\beta) = b$, it is sufficient to show that $a \in pim(\alpha)$ and $b \in pim(\beta)$. To see this, by Corollary 2.24, $\alpha(\mathbb{R}_a) \in M$ and $\beta(\mathbb{R}_b) \in M$. Hence, $\alpha(\mathbb{R}_a) \neq \mathbf{Top} \neq \beta(\mathbb{R}_b)$, so $a \in pim(\alpha)$ and $b \in pim(\beta)$. Therefore, $pim(\alpha + \beta) \subseteq pim(\alpha) + pim(\beta)$.

3 Comparing $pim(\alpha)$ with images of two real functions $\overline{\alpha}$ and $\hat{\alpha}$

In this section, first, for any $\alpha \in C(L)$, we introduce two real functions $\overline{\alpha}$ and $\hat{\alpha}$ induced naturally by α , then we compare $pim(\alpha)$ with the images of these two functions.

Definition 3.1. Suppose that $\alpha \in C(L)$. By Corollary 2.25, we can define $\overline{\alpha} : \operatorname{Sp} L \to \mathbb{R}$ with $\overline{\alpha}(p) = \hat{p}(\alpha)$. Also, supposing

$$X_{\alpha} = \{ P \in \operatorname{Spec}(L) : P \text{ is real with respect to } \alpha \},\$$

we can define $\hat{\alpha} : X_{\alpha} \to \mathbb{R}$ with $\hat{\alpha}(P) = \hat{P}(\alpha)$.

Note that the mapping $p \to \downarrow p$ is an embedding from SpL to Spec(L), where Spec(L) is equipped with hall-kernel topology (that is, the Zariski topology). Therefore, we can suppose that SpL is a subspace of Spec(L) and so $\hat{\alpha}|_{SpL} = \overline{\alpha}$.

Proposition 3.2. For every $\alpha \in C(L)$, $\hat{\alpha}$ is continuous and so is $\overline{\alpha}$.

Proof. Assume that (x, y) is an open interval in \mathbb{R} . taking $a = \alpha(x, +\infty)$ and $b = \alpha(-\infty, y)$, it suffices to show that $(\hat{\alpha})^{-1}(x, y) = h_{X_{\alpha}}^{c}(a) \cap h_{X_{\alpha}}^{c}(b)$, where $h_{X_{\alpha}}^{c}(a) = X_{\alpha} \cap h^{c}(a)$. Too see this, for every $P \in X_{\alpha}$, we can write

$$P \in (\hat{\alpha})^{-1}(x, y) \iff x < \hat{\alpha}(P) = \hat{P}(\alpha) < y$$

$$\Leftrightarrow a = \alpha(x, +\infty) \notin P , \ b = \alpha(-\infty, y) \notin P$$

$$\Leftrightarrow P \in h^c_{X_{\alpha}}(a) \cap h^c_{X_{\alpha}}(b).$$

The following remark shows that $\overline{\alpha}$ is not a new concept.

Remark 3.3. Recall that $\operatorname{Sp}\mathcal{O}\mathbb{R} = \{\mathbb{R}_x : x \in \mathbb{R}\}\$ and $g : \operatorname{Sp}\mathcal{O}\mathbb{R} \to \mathbb{R}$ with $g(\mathbb{R}_x) = x$ is a homeomorphism. For every continuous real function $\alpha \in C(L)$, we have $\operatorname{Sp}\alpha : \operatorname{Sp}L \to \operatorname{Sp}\mathcal{O}\mathbb{R}$ with $(\operatorname{Sp}\alpha)(p) = \alpha^*(p) = \bigvee \{w \in \mathcal{O}\mathbb{R} : \alpha(w) \leq p\}$. Since $\alpha^*(p) \in \operatorname{Sp}\mathcal{O}\mathbb{R}$, there exists a unique $x \in \mathbb{R}$ such that $(\operatorname{Sp}\alpha)(p) = \alpha^*(p) = \mathbb{R}_x$. In fact, $(\operatorname{Sp}\alpha)(p) = \mathbb{R}_x$ if and only if $\alpha(\mathbb{R}_x) \leq p$. Therefore, for every $\alpha \in C(L)$, we have a natural function $\overline{\alpha} = g \operatorname{Sp}\alpha$ from $\operatorname{Sp}L$ to \mathbb{R} with $\overline{\alpha}(p) = x$ such that $\alpha(\mathbb{R}_x) \leq p$. Also, according to this fact, for every $p \in \operatorname{Sp}L$, we can define a function $\hat{p} : C(L) \to \mathbb{R}$ with $\hat{p}(\alpha) = \overline{\alpha}(p)$.

Proposition 3.4. Assume that $\alpha \in C(L)$. Then $Im(\overline{\alpha}) \subseteq Im(\hat{\alpha}) \subseteq pim(\alpha)$.

Proof. Clearly, $Im(\overline{\alpha}) \subseteq Im(\hat{\alpha})$. Now, suppose that $x \in Im(\hat{\alpha})$. Thus, there exists a $P \in \text{Spec}(L)$ such that $\hat{\alpha}(P) = x$. Hence, $\hat{P}(\alpha) = x$ and by Corollary 2.24, it follows that $\alpha(\mathbb{R}_x) \in P$. Therefore, $\alpha(\mathbb{R}_x) \neq \text{Top}$ and consequently $x \in \text{pim}(\alpha)$.

The first inclusion in the above proposition may be strict. To see this, we need the following lemma.

Lemma 3.5. Suppose that L has no non-trivial complemented element. Then for every $\alpha \in C(L)$, there exists an element $x \in \mathbb{R}$ such that $\alpha(\mathbb{R}_x) \neq$ **Top**.

Proof. Let $\alpha \in C(L)$ and, on the contrary, for every $x \in \mathbb{R}$, we have $\alpha(\mathbb{R}_x) = \text{Top}$. By hypothesis, for every $x \in \mathbb{R}$, we $\alpha(-\infty, x) = \text{Top}$ and $\alpha(x, +\infty) = \bot$ or $\alpha(-\infty, x) = \bot$ and $\alpha(x, +\infty) = \text{Top}$. It is easy to see that there exists an element $c \in \mathbb{R}$ such that $\alpha(c, +\infty) = \bot$ and so $x_0 = \inf\{x \in \mathbb{R} : \alpha(x, +\infty) = \bot\}$ exists. Thus, $\alpha(x_0, +\infty) = \bot$ and $\alpha(t, +\infty) = \text{Top}$ for every $t < x_0$ and so $\alpha(-\infty, t) = \bot$ for every $t < x_0$. Therefore, $\alpha(-\infty, x_0) = \bigvee\{\alpha(-\infty, t) : t < x_0\} = \bot$. Hence, $\alpha(\mathbb{R}_{x_0}) = \bot$ and this is a contradiction.

In the following example we introduce a frame L such that $Im(\overline{\alpha}) \subsetneq pim(\hat{\alpha})$ for every $\alpha \in C(L)$.

Example 3.6. Suppose $L = [0, 1) \times [0, 1) \oplus$ **Top**. Clearly, L is a frame, **Top** is a \vee -prime element of L and $\operatorname{Sp} L = \emptyset$. Therefore, L does not have any non-trivial complemented element and so, by Lemma 3.5, for every $\alpha \in C(L)$ we have $\alpha(\mathbb{R}_x) \neq$ **Top** for some $x \in \mathbb{R}$. We show that $C(L) = \{\mathbf{r} : r \in \mathbb{R}\}$. To see this, assume that $\alpha \in C(L)$. Thus, there exists an element $r \in \mathbb{R}$ such that $\alpha(\mathbb{R}_r) \neq$ **Top**. Now, for every $w \in \mathcal{O}_r$, since **Top** is \vee -prime, we can write

$$\mathbf{Top} = \alpha(\mathbb{R}) = \alpha(w \cup \mathbb{R}_r) = \alpha(w) \lor \alpha(\mathbb{R}_r) \implies \alpha(w) = \mathbf{Top}.$$

This conclude that $\alpha = \mathbf{r}$. On the other hand, it is clear that $Im(\mathbf{\bar{r}}) = \emptyset$,

whereas

$$x \in Im(\hat{\mathbf{r}}) \iff \exists P \in \operatorname{Spec}(L), \quad \hat{\mathbf{r}}(P) = x$$
$$\Leftrightarrow \quad \exists P \in \operatorname{Spec}(L), \quad \hat{P}(\mathbf{r}) = x$$
$$\Leftrightarrow \quad \exists P \in \operatorname{Spec}(L), \quad \mathbf{r}(\mathbb{R}_x) \in P$$
$$\Leftrightarrow \quad r = x.$$

Therefore, $Im(\hat{\mathbf{r}}) = \{r\}.$

Proposition 3.7. Assume that $\alpha \in C(L)$. Then the following statements hold:

- (a) If SpL is cofinal in $L \setminus \{\text{Top}\}$, then $Im(\overline{\alpha}) = Im(\hat{\alpha}) = pim(\alpha)$.
- (b) If $\bigcup X_{\alpha} = L \setminus \{ \mathbf{Top} \}$, then $Im(\hat{\alpha}) = pim(\alpha)$.

Proof. (a): It is enough to prove that $pim(\alpha) \subseteq Im(\overline{\alpha})$. Suppose that $x \in pim(\alpha)$. Thus, $\alpha(\mathbb{R}_x) \neq \mathbf{Top}$ and by hypothesis, there exists an element $p \in \text{Sp}L$ such that $\alpha(\mathbb{R}_x) \leq p$ and this is equivalent to $\overline{\alpha}(p) = \hat{p}(\alpha) = x$. Therefore, $x \in Im(\overline{\alpha})$.

(b): Suppose that $x \in \text{pim}(\alpha)$. Thus, $\alpha(\mathbb{R}_x) \neq \text{Top}$ and by hypothesis, there exists an element $P \in X_\alpha$ such that $\alpha(\mathbb{R}_x) \in P$ and this is equivalent to $\hat{\alpha}(P) = \hat{P}(\alpha) = x$. Therefore, $x \in Im(\hat{\alpha})$.

Acknowledgement

We would like to appreciate the referee for his/her accurate reading and valuable advices.

References

- Ball, R.N. and Hager, A.W., On the localic Yoshida representation of an archimedean lattice ordered group with weak order unit, J. Pure Appl. Algebra 70 (1991), 17-43.
- [2] Banaschewski, B., "The Real Numbers in Pointfree Topology", Textos de Mathematica (Series B), Vol. 12, University of Coimbra, 1997.
- [3] Banaschewski, B., On the function rings of pointfree topology, Kyungpook Math. J. 48 (2008), 195-206.
- [4] Blyth, T., "Lattices and Ordered Algebraic Structures", Springer, 2005.

- [5] Davey, B. and Priestley, H., "Introduction to Lattices and Order", Cambridge University Press, 2002.
- [6] Ebrahimi, M.M. and Karimi Feizabadi, A., Prime representation of real Riesz maps, Algebra Universalis 54(3) (2005), 291-299.
- [7] Estaji, A.A., Karimi Feizabadi, A. and Emamverdi, B., Representation of real Riesz maps on a strong f-ring by prime elements of a frame, Algebra Universalis 79(14) (2018).
- [8] Estaji, A.A., Robat Sarpoushi, M., and Elyasi, M., Further thoughts on the ring Rc(L) in frames, Algebra Universalis 80(43) (2019).
- [9] Estaji, A.A., Karimi Feizabadi, A., and Abedi, A., Zero sets in pointfree topology and strongly z-ideals, Bull. Iranian Math. Soc. 41(5) (2015), 1071-1084.
- [10] Gillman, L. and Jerison, M., "Rings of Continuous Functions", Springer-Verlag, 1976.
- [11] Grätzer, G., "General Lattice Theory", Birkhäuser, 1998.
- [12] Johnstone, P.T., "Stone Spaces", Cambridge University Press, 1982.
- [13] Karimi Feizabadi, A., Estaji, A.A., and Robat-Sarpoushi, M., Pointfree version of image of real-valued continuous functions, Categ. Gen. Algebr. Struct. Appl. 9(1) (2018), 59-75.
- [14] Picado, J. and Pultr, A., "Frames and Locales: topology without points", Frontiers in Mathematics, Springer, 2012.
- [15] Roman, S., "Lattices and Ordered Sets", Springer, 2008.

Ali Rezaei Aliabad Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email: $aliabady_r@scu.ac.ir$

Morad Mahmoudi Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email: moradmahmodi194@gmail.com