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Actions of a separately strict cpo-monoid
on pointed directed complete posets

H. Moghbeli Damaneh

Abstract. In the present article, we study some categorical properties of
the category CpoSep-S of all separately strict S-cpo’s; cpo’s equipped with
a compatible right action of a separately strict cpo-monoid S which is strict
continuous in each component. In particular, we show that this category is
reflective and coreflective in the category of S-cpo’s, find the free and cofree
functors, characterize products and coproducts. Furthermore, epimorphisms
and monomorphisms in CpoSep-S are studied, and show that CpoSep-S is
not cartesian closed.

1 Introduction

The category Dcpo of directed complete partially ordered sets plays an important
role in Theoretical Computer Science, specially in Domain Theory (see [1, 9, 11]).
This category is complete and cocomplete. The completeness of Dcpo has been
proved, in a constructive way, by Achim Jung [1] but it is stated there that to
describe the colimits is quite difficult. In [8], Fiech characterizes and describes col-
imits in Dcpo, but his construction is rather complicated. The cartesian closedness
of Dcpo has also been proved by Achim Jung (see [11]). It is also shown that the
category Cpo of directed complete partially ordered sets, each with a bottom
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(smallest) element, and continuous maps, preserving bottom elements, between
them is monoidal closed, complete, and cocomplete (see [1, 11]). The free dcpo
over a poset, and free dcpo algebras have been studied in [12].

The action of a monoid on sets is also an important algebraic structure in
mathematics as well as in computer science. For example, computer scientists use
the notion of a projection algebra (sets with an action of the monoid (N∞,min))
as convenient means of the algebraic specification of process algebras (see [7] and
its references).

Combining the notions of a poset and an act, many algebraic and categorical
properties of the category of actions of a pomonoid on a poset have been studied
(see for example [2, 3, 6]).

In this paper, considering the actions of a separately strict cpo-monoid S on a
cpo, we study the properties of the category so obtained. Showing the existence
of limits and colimits, we see that this category is both complete and cocomplete.
We also find the free and cofree objects over cpo’s, and show that this category is
not cartesian closed. Also, monomorphisms and epimorphisms in this category are
studied. We should also mention that, the objects we consider and call separately
strict S-cpo’s are neither a kind of dcpo algebras considered in [12], nor a kind of
modules over a monoid (or algebras for a monad), so their categorical properties
studied here are not known.

2 Preliminaries

In this section, we recall some preliminary notions about the actions of a monoid
on a set and on a poset. For more information see [3, 5, 13].

2.1 The category of S-acts

In this subsection, we briefly recall the preliminary notions about the action of a
monoid on a set. For more information see [5, 13].

Definition 2.1. Let S be a monoid with 1 as its identity. An S-act (also called
S-set, S-polygon, S-system, S-transition system, S-automata) is a set A equipped
with an action A× S → A, (a, s) as, such that a1 = a and a(st) = (as)t.

Remark 2.2. (a) Let A be an S-act with the action A× S → A. Then, we have
the following right and left translations:
(Right translation) For each s ∈ S, Rs : A→ A, Rs(a) = as.
(Left translation) For each a ∈ A, La : S → A, La(t) = at.

(b) Let S be a monoid, A be a set, and A × S → A be a function. Then, A
is an S-act if and only if (A, (Rs)s∈S) is a unary algebra with Rs ◦ Rt = Rts and
R1 = idA.
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(c) Each monoid S can be clearly considered as an S-act with the action given
by its binary operation S × S → S. Note that, the unary algebra related to this
S-act is (S; (Rs)s∈S), where Rs : S → S is defined by Rs(t) = ts.

Definition 2.3. An S-map f : A → B between S-acts is an action-preserving
map, that is, f(as) = f(a)s for each a ∈ A, s ∈ S.

The category of all S-acts and S-maps between them is denoted by Act-S.

An element a of an S-act A is said to be a zero (or a fixed) element of A if
as = a, for all s ∈ S. Note that if S is a monoid with a zero element z, then for
each S-act A and a ∈ A, az is a zero element of A.

We recall that limits (products, equalizers, pullbacks) in Act-S are computed
as in sets endowed with a natural action on them (for more information see [5, 13]),
the same is true for coproducts.

2.2 The category of S-posets

Here we recall the definition, and give some categorical ingredients, of Pos-S needed
in the sequel (for more information see [3]).

Note that, for a monoid S we have the functions: the binary operation S×S →
S, the right and the left translations Rs, Ls : S → S. Using these functions
we have the following ordered monoids (borrowing some terms from topological
semigroups).

Definition 2.4. Let S be a monoid with a partial order ≤. Then:
(a) (S,≤) is a pomonoid if the partial order ≤ is compatible with the monoid

operation; that is, for s, t, s′, t′ ∈ S, s ≤ t, s′ ≤ t′ imply ss′ ≤ tt′. In other words,

(s, s′) ≤ (t, t′) ⇒ ss′ ≤ tt′.

(b) (S,≤) is a separately strict pomonoid if for each s ∈ S, both the right and
the left translations Rs, Ls : S → S are order-preserving.

(c) (S,≤) is a right (left) weak separately strict pomonoid if for each s ∈ S, the
right (left) translation Rs (Ls) is order-preserving.

Note that (S,≤) is a pomonoid if and only if it is a separately strict pomonoid.
This remark also shows that a weak separately strict pomonoid is not necessarily
a pomonoid.

Definition 2.5. Let S be a pomonoid, A be an S-act, and ≤ be a partial order
on A. Then:

(a) (A,≤) is an S-poset if the action on A is order-preserving; that is,

(a, s) ≤ (b, t) ⇒ as ≤ bt.
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(b) (A,≤) is a separately strict S-poset if for each s ∈ S and a ∈ A, both
Rs : A→ A, La : S → A are order-preserving.

(c) (A,≤) is a weak separately strict S-poset if for each s ∈ S, the right trans-
lation Rs : A→ A is order-preserving.

Remark 2.6. (a) Let S be a pomonoid, A be an S-act, and ≤ be a partial order
on A. Then A is an S-poset if and only if it is a separately strict S-poset.

(b) Let S be a pomonoid, A be an S-act, and ≤ be a partial order on A. Then,
A is a weak separately strict S-poset if and only if (A, (Rs)s∈S) is a unary algebra
in the category Pos of posets, satisfying Rs ◦Rt = Rts and R1 = idA.

(c) Note that if (S,≤) is a left or right separately strict pomonoid or (A,≤) has
some extra properties, then some of the above remarks may change accordingly.
For example, as in this paper, each S-act A may have a smallest element ⊥A, in
which case the action may preserve the smallest element (⊥S ,⊥A) but the right
translations may not preserve ⊥A, and vice versa (see Example 3.2).

Definition 2.7. An S-poset map f : A → B between S-posets is an action-
preserving monotone map.

The category of all S-posets with action-preserving monotone maps between
them is denoted by Pos-S.

Products, terminal object, equalizers, pullbacks, and coproducts of S-posets
are as in Act-S with the obvious order.

2.3 The category of directed complete posets

In the following, we recall the category Cpo of cpo’s (see [11]).

Recall that a non-empty subset D of a partially ordered set is called directed,
denoted by D ⊆d P , if for every a, b ∈ D there exists c ∈ D such that a, b ≤ c, and
P is called a directed complete poset, or briefly a dcpo, if for every D ⊆d P , the
directed join

∨d
D exists in P . A dcpo which has a bottom element ⊥P is said to

be a cpo.

Also, recall that a continuous map f : P → Q between dcpo’s is a map with
the property that for every D ⊆d P , f(D) is a directed subset of Q and f(

∨d
D) =∨d

f(D). By a cpo map between cpo’s, we mean a continuous map which is strict;
that is, preserves the bottom element. We denote the category of all cpo’s with
cpo maps between them by Cpo.

Recall from [1] that the product of a family of cpo’s is their cartesian product,
with componentwise order and ordinary projection maps. In particular, the termi-
nal object of Cpo is the one element poset. Also, the coproduct of a family of cpo’s
is their coalesced sum. Recall that the coalesced sum of the family {Ai | i ∈ I} of
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cpo’s is defined to be

⊎

i∈I
Ai = ⊥⊕

⋃̇
i∈I

(Ai \ {⊥Ai}).

In particular, the initial object of Cpo is the singleton poset {θ}.
The final reminder is the following lemma which is used frequently in this paper.

Lemma 2.8. [11] Let P , Q, and R be dcpo’s, and f : P ×Q→ R be a function of
two variables. Then f is continuous if and only if f is continuous in each variable;
which means that for all a ∈ P, b ∈ Q, fa : Q → R (b 7→ f(a, b)) and fb : P → R
(a 7→ f(a, b)) are continuous.

3 The category of separately strict S-cpo’s

In this section, after introducing the category of separately strict S-cpo’s, we study
the reflection and coreflection of CpoSep-S in Cpo-S.

Definition 3.1. (a) A dcpo (cpo)-monoid is a monoid which is also a dcpo (cpo)
whose binary operation is a (strict) continuous map.

(b) Let S be a (cpo) dcpo-monoid. By an S-dcpo (S-cpo) we mean a dcpo
(cpo) A which is also an S-act whose action A×S → A is (strict) continuous. The
category of all S-dcpo’s (cpo’s) with action-preserving (strict) continuous maps,
namely S-dcpo (cpo) maps, between them is denoted by Dcpo-S (Cpo-S).

(c) A separately strict cpo-monoid is a monoid which is also a cpo whose binary
operation is strict continuous map in each component; that is, each Rs, Ls is strict
continuous.

(d) Let S be a separately strict cpo-monoid. By a separately strict S-cpo we
mean a cpo A which is also an S-act whose action A× S → A is strict continuous
in each component; that is, each Rs, La is strict continuous.

The category of all separately strict S-cpo’s with action-preserving strict con-
tinuous maps between them is denoted by CpoSep-S.

In the following example we see that a cpo-monoid is not necessarily a sepa-
rately strict cpo-monoid.

Example 3.2. Consider the pomonoid {0 < 1} with the binary operation max. It
is clear that max is strict continuous. So {0 < 1} is a cpo-monoid. But {0 < 1} is
not a separately strict cpo-monoid because the continuous map R1 : S → S is not
strict, in fact max{1, 0} = 1 6= 0.
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Remark 3.3. (1) Considering a dcpo-monoid S, if we define the notion of a sepa-
rately strict S-dcpo similar to a separately strict S-cpo, then applying Lemma 2.8
we get that the notions of separately strict S-dcpo and S-dcpo coincide, which is
studied in [14].

(2) Applying Lemma 2.8, it is clear that for a cpo-monoid S, a separately strict
S-cpo is an S-cpo. In fact the category of separately strict S-cpo is a subcategory
of the category of S-cpo’s.

(3) Again by Lemma 2.8, for a separately strict cpo-monoid S, an S-cpo P is
a separately strict S-cpo if and only if p⊥S = ⊥P and ⊥P s = ⊥P for all p ∈ P and
s ∈ S.

Lemma 3.4. For a separately strict cpo-monoid S, every separately strict S-cpo
A has exactly one zero element, ⊥A.

Proof. Assuming the contrary, let p ∈ A be a zero different from ⊥A. Then the
continuous map Lp : S → A is not strict (ps = p 6= ⊥A), which is a contradiction.

In the following, we show that the category CpoSep-S is both a reflective and
a coreflective subcategory of the category Cpo-S.

Theorem 3.5. The category CpoSep-S is a coreflective subcategory of the category
Cpo-S.

Proof. We show that for every S-cpo there exists a coreflection. To see this, for
an S-cpo P , let P [S] be the set of all S-cpo maps from S to P with the pointwise
order and the action defined by (fs)(t) = f(st), for s, t ∈ S and f ∈ P [S]. Then,
we show that P [S] is a separately strict S-cpo and the map σ : P [S] → P defined
by σ(f) = f(1) is a coreflection.

First, we show that the map f⊥ : S → P , s 7→ ⊥P , is an S-cpo map. It is
clearly a cpo map, also for s, t ∈ S, we have f⊥(st) = ⊥P = ⊥P t = f⊥(s)t, where
the second equality is because ⊥S is a zero element, and so is ⊥P . In fact, f⊥ is the
bottom element of P [S]. Now, let F ⊆d P [S]. Then

∨d
F exists, which is defined

by (
∨d

F )(s) =
∨d
f∈F f(s). First notice that

∨d
F is a cpo map (See [11]). To

show that
∨d

F is action-preserving, let s, t ∈ S. Then

(
d∨
F )(st) =

d∨

f∈F
f(st) =

d∨

f∈F
(f(s)t) = (

d∨

f∈F
f(s))t = ((

d∨
F )(s))t.

Therefore, P [S] is a cpo. Now, we show that the action is well-defined. Take
f ∈ P [S], s ∈ S. We have (fs)(⊥S) = f(s⊥S) = f(⊥S) = ⊥P . To prove continuity
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of fs, let T ⊆d S. Then

(fs)(
d∨
T ) = f(s(

d∨
T )) = f(

d∨

t∈T
st) =

d∨

t∈T
f(st) =

d∨

t∈T
(fs)(t).

To show that fs is action-preserving, let t, t′ ∈ S. Then

(fs)(tt′) = f(s(tt′)) = f((st)t′) = f(st)t′ = (fs)(t)t′.

Hence the action is well-defined. Recall that this action is continuous (see [15]),
and so by Lemma 2.8 it is continuous in each component. Now, we show that it is
strict in each component. This is because (f⊥s)(t) = f⊥(st) = ⊥P = f⊥(t) for all
s, t ∈ S and (f⊥S)(t) = f(⊥St) = f(⊥S) = ⊥P = f⊥(t), for all f ∈ P [S] and t ∈ S.
Consequently P [S] is a separately strict S-cpo. Moreover, the map σ : P [S] → P
defined by σ(f) = f(1) is continuous. This is because directed suprema of functions
are pointwise. Also, it is strict and action-preserving, since σ(f⊥) = f⊥(1) = ⊥P ,
and σ(fs) = fs(1) = f(s1) = f(s) = f(1s) = f(1)s = (σ(f))s, for all s ∈ S and
f ∈ P [S]. Finally, it is a coreflection, because for a given S-cpo map α : A→ P from
a separately strict S-cpo A, the map α : A→ P [S], defined by α(a)(s) = α(as), is
a unique S-cpo map satisfying σ ◦α = α. We also have that α is strict, because for
s ∈ S, α(⊥A)(s) = α(⊥As) = α(⊥A) = ⊥P = f⊥(s). Also, α is continuous, since
taking D ⊆d A and s ∈ S, we get

α(
∨d

D)(s) = α((
∨d

D)s) = α(
∨d
x∈D xs)

=
∨d
x∈D α(xs) =

∨d
x∈D α(x)(s) = (

∨d
x∈D α(x))(s).

Further, α is action-preserving, because for s, t ∈ S and a ∈ A we have

α(as)(t) = α((as)t) = α(a(st)) = α(a)(st) = (α(a)s)(t).

Finally, the uniqueness of α is because taking an S-cpo map h : A → P [S] with
σ ◦ h = α, it follows that

h(a)(s) = h(a)(s1) = (h(a)s)(1) = σ(h(a)s)
= σ(h(as)) = α(as) = α(a)(s)

for a ∈ A and s ∈ S.

Before giving the left adjoint to the above inclusion functor, we need some
lemmas and remarks.

Remark 3.6. (1) Recall that for a dcpo P , a subset A ⊆ P is said to be a Scott-

closed subset of P if it is a down-closed subset of P and if D ⊆d A then
∨d

D ∈ A.
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(2) For an S-cpo P , take Z to be the set of all zero elements of P and Z be
the smallest Scott-closed subact of P containing Z. We know from Lemma 3.4
that any separately strict S-cpo B has only one zero element, ⊥B , and so every
S-cpo map from P to a separately strict S-cpo B, takes Z to ⊥B (this is because
every action-preserving map preserves the zero elements and B has just one zero
element).

In the following lemma, we show that every S-cpo map from an S-cpo P to a
separately strict S-cpo B takes Z to ⊥B .

Lemma 3.7. Let P be an S-cpo and f : P → B be an S-cpo map to a separately
strict S-cpo B. Then f(Z) = ⊥B where Z is the set of all zero elements of P .

Proof. We show that f(Z) = ⊥B . We know ↓ ⊥B = {⊥B} is a Scott-closed subset
of B. Then f−1(⊥B) is a Scott-closed subset of A containing Z. Also, for all
a ∈ f−1(⊥B) and s ∈ S, as ∈ f−1(⊥B). This is because ⊥B is a zero element.
Hence f−1(⊥B) is a Scott-closed subact of A containing Z, and so Z ⊆ f−1(⊥B)
as required.

Lemma 3.8. Let B be an S-cpo and I a Scott-closed subset of B which is also a
subact of B. Then B∗ = (B \ I) ∪ {⊥B} is an S-cpo.

Proof. First we show that B∗ with the order of B is a cpo. To show that the
supremum of every directed subset in B∗ exists, take D ⊆d B∗. If D = {⊥B}, then∨d

D = ⊥B ∈ B∗. If D 6= {⊥B}, then D is a directed subset of B and so
∨d

D

exists in B. Also
∨d

D /∈ I, since D is not a subset of I, and so
∨d

D ∈ B∗ as
required. Hence B∗ is a cpo. Now, we show that B∗ with the action defined by

a · s =

{
as if as /∈ I
⊥B if as ∈ I

for all a ∈ B∗ and s ∈ S, is an S-cpo. First we show a · (st) = (a ·s) · t. We consider
two cases:

Case (1): a(st) ∈ I. In this case, a · (st) = ⊥B and if as ∈ I, then (a · s) · t =
⊥B · t = ⊥B ; also if as /∈ I, then a · s = as and (a · s) · t = (as) · t = ⊥B (since
(as)t = a(st) ∈ I).

Case (2): a(st) /∈ I. In this case, a · (st) = a(st) = (as)t = (a · s) · t (as /∈ I
otherwise (as)t = a(st) ∈ I which is a contradiction).

Now we show that the action is strict continuous. First notice that it is strict.
This is true because ⊥B ·⊥S = ⊥B , by the definition. The action is also continuous.
Applying Lemma 2.8, we show that it is continuous in each component. First we
show that the action is continuous in the first component. To see this, let D ⊆d B∗
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and s ∈ S. Then (
∨d

D) · s =
∨d
y∈D y · s. To see this, take

∨d
D = x and consider

two cases:
Case (1): xs ∈ I. In this case, x · s = ⊥B . Also xs ∈ I and since the action is

order-preserving, ys ∈ I for all y ∈ D. Then x · s = ⊥B =
∨d
y∈D y · s, as required.

Case (2): xs /∈ I. In this case, x · s = xs. But for all y ∈ D, xs is an upper
bound for the set {y · s | y ∈ D}. This is because y · s = ys or y · s = ⊥B . Also,
if b ∈ B∗ is an upper bound of the mentioned set, then we show that xs ≤ b. Let
K = {y ∈ D | ys /∈ I}. Then:

(1) K 6= ∅, because if K = ∅, then ys ∈ I, for all y ∈ D and so
∨d
y∈D ys ∈ I.

This gives xs = (
∨d

D)s =
∨d
y∈D ys ∈ I, which is a contradiction.

(2) For every y /∈ K, there exists y′ ∈ K with y ≤ y′. This is because for y /∈ K
and y0 ∈ K (such element exists because K 6= ∅) there exists an element y′ ∈ K
such that y, y0 ≤ y′ since D is directed. But then, y0s ≤ y′s, and hence y′ ∈ K,
since y ∈ K.

Therefore, for all y ∈ K, ys = y · s ≤ b, and for every y /∈ K by (2) there exists

y′ ∈ K such that ys ≤ y′s = y′ · s ≤ b. Thus, since xs =
∨d
y∈D ys, we get xs ≤ b

as required.
The continuity in the second component is proved similarly. Consequently, B∗

with the action and the order defined above is an S-cpo.

Remark 3.9. Let B be a separately strict S-cpo and I a Scott-closed subset of
B which is also a subact of B. Then B∗ = (B \ I) ∪ {⊥B} with the action and
order defined in the above lemma is a separately strict S-cpo. In fact, by the above
lemma, B∗ is an S-cpo. Furthermore, by the definition of the action, we have
⊥B · s = ⊥B , for all s ∈ S. Also a⊥S = ⊥B ∈ I (B is a separately strict S-cpo and
then a⊥S = ⊥B , for all a ∈ B) gives a · ⊥S = ⊥B for all a ∈ B∗. Consequently, by
part (3) of Remark 3.3, B∗ = (B \ I) ∪ {⊥B} is a separately strict S-cpo.

Lemma 3.10. Let B be a separately strict S-cpo and I be a Scott-closed subset
of B which is also a subact of B, and B∗ be as in the above remark. Then, the
mappings h : B → B∗ defined by h(b) = ⊥B for all b ∈ B, and γ : B → B∗ defined
by γ(x) = ⊥B for all x ∈ I and γ(x) = x for all x /∈ I are S-cpo maps.

Proof. It is clear that the mapping h is an S-cpo map. For γ, it is strict by its
definition. For continuity, let D ⊆d B. We consider two cases:
Case (1):

∨d
D ∈ I. Then γ(

∨d
D) = ⊥B =

∨d
γ(D). The last equality is because

D ⊆ I.
Case (2):

∨d
D /∈ I. Then γ(

∨d
D) =

∨d
D and the set

K = {y ∈ D | y /∈ I} is non-empty and for each y /∈ K there exists y′ ∈ K

such that y ≤ y′. Now, we show
∨d
y∈D γ(y) =

∨d
D. It is clear that

∨d
D is an

upper bound of the set {γ(y) | y ∈ D} (since γ(y) = y or γ(y) = ⊥B). Let b ∈ B∗
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be any upper bound for the set {γ(y) | y ∈ D}. Then, for all y ∈ K, y = γ(y) ≤ b
and also for every y /∈ K, y ≤ y′ ≤ b where y′ ∈ K. Hence y ≤ b for all y ∈ D
and so

∨d
D ≤ b, as required. To show that γ is action-preserving, let b ∈ B and

s ∈ S. We consider two cases:
Case (1): bs ∈ I. Then γ(bs) = ⊥B . If b /∈ I, then γ(b) · s = b · s = ⊥B . Also if,
b ∈ I, then γ(b) · s = ⊥B · s = ⊥B . Hence γ(bs) = γ(b) · s for all b ∈ B and s ∈ S.
Case (2): bs /∈ I. This gives b /∈ I and γ(bs) = bs. Also γ(b) · s = b · s = bs. Hence
γ(bs) = γ(b) · s for all b ∈ B and s ∈ S. Therefor γ is an S-cpo map.

Theorem 3.11. The category CpoSep-S is a reflective subcategory of the category
Cpo-S.

Proof. Let P be an S-cpo, Z be the set of all zero elements of P , and Z be the
smallest Scott-closed subact of P . Then by Lemma 3.8, P ∗ = (P \Z)∪{⊥P } is an
S-cpo. Now we show that P ∗ is a separately strict S-cpo. By part (3) of Remark
3.3, it is sufficient to show that the action is strict in each of its components. Note
that it is strict in the first component by its definition (⊥P · s = ⊥P , for all s ∈ S).
Also it is strict in the second component. In fact, p⊥S is a zero element of P
(notice that S is a separately strict cpo-monoid and so ⊥S is a zero element of S).
This gives p⊥S ∈ Z and so p · ⊥S = ⊥P for all p ∈ P ∗, as required. Consequently
P ∗ is a separately strict S-cpo. Define the reflection map τ : P → P ∗ by

τ(p) =

{
p if p /∈ Z
⊥P if p ∈ Z

We show that τ is an S-cpo map. First notice that τ is strict, since ⊥P is a zero
element. To show that it is continuous, let D ⊆d P . We consider two cases:
Case (1):

∨d
D /∈ Z, then τ(

∨d
D) =

∨d
D. We show

∨d
x∈D τ(x) =

∨d
D. Let

K = {x ∈ D| x /∈ Z}. The set K is non-empty (If K = ∅, then D ⊆d Z

and so
∨d

D ∈ Z). For all x ∈ K, τ(x) = x ≤ ∨dD and also for all x /∈ K,

τ(x) = ⊥P ≤
∨d

D. Let b ∈ P ∗ be any upper bound for the set {τ(x) | x ∈ D}.
For x ∈ K, x = τ(x) ≤ b. Also for x /∈ K and x′ ∈ K (because K 6= ∅) there
exists x′′ ∈ K such that x < x′′ and x′ ≤ x′′ (since D is directed, such x′′ exists.
Also, since Z is a lower set and x′ /∈ Z, we have x′′ /∈ Z and so x′′ ∈ K). Hence

x < x′′ = τ(x′′) ≤ b. Consequently
∨d

D ≤ b, as required.

Case (2):
∨d

D ∈ Z; then D ⊆ Z (because Z is a lower set). Hence τ(
∨d

D) =

⊥P =
∨d
x∈D τ(x).

To see that τ is action-preserving, let p ∈ P and s ∈ S. Then, consider two
cases:
Case (1): bs ∈ Z, then τ(bs) = ⊥P . If b ∈ Z, then τ(b) · s = ⊥B · s = ⊥P . If b /∈ Z,
then τ(b) · s = b · s = ⊥B (the last equality is because bs ∈ Z).
Case (2): bs /∈ Z, then b /∈ Z and so τ(bs) = bs = b · s = τ(b) · s. Hence τ is an
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S-cpo map. Further, given an S-cpo map α : P → B to a separately strict S-cpo
B, the map α : P ∗ → B, given by α(p) = α(p), for all p ∈ P ∗, is a unique S-cpo
map satisfying α ◦ τ = α. Notice that α is strict. This is because α is strict. To
prove continuity, let D ⊆d P ∗. Then

α(
d∨
D) = α(

d∨
D) =

d∨

x∈D
α(x) =

d∨

x∈D
α(x).

The second equality is because D is also a directed subset of P and α is continuous.

To show that α is action-preserving, let p 6= ⊥P ∈ P ∗ and s ∈ S. We consider
two cases:
Case (1): If ps ∈ Z, then

α(p · s) = α(⊥P ) = ⊥B = α(ps) = α(p)s = α(p)s

where the third equality holds by Lemma 3.7.
Case (2): If ps /∈ Z, then p /∈ Z and so

α(p · s) = α(ps) = α(ps) = α(p)s = α(p)s

Hence α is an S-cpo map.

Now, we show α ◦ τ = α. For p ∈ P we consider two cases:
Case (1): p ∈ Z, then

(α ◦ τ)(p) = α(τ(p)) = α(⊥P ) = ⊥B = α(p)

The last equality holds by Lemma 3.7.
Case (2): p /∈ Z, then

(α ◦ τ)(p) = α(τ(p)) = α(p) = α(p)

To establish the uniqueness of α, suppose that h : P ∗ → B is also an S-cpo map
such that h ◦ τ = α. Notice that h(⊥P ) = ⊥B = α(⊥P ). Also for all p 6= ⊥P ∈ P ∗,
h(p) = h(τ(p)) = α(p) = α(p), where the second equality is because p ∈ P ∗ and so
τ(p) = p (p /∈ Z).

4 Free and Cofree separately strict S-cpo’s

In this section we give a description of free and cofree separately strict S-cpo’s on
a cpo. The following two lemmas are frequently used in this section.
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Lemma 4.1. [4, 11] Let {Ai | i ∈ I} be a family of dcpo’s. Then the directed join

of a directed subset D ⊆d ∏i∈I Ai is calculated as
∨d

D = (
∨d

Di)i∈I where, for
each i ∈ I,

Di = {a ∈ Ai | ∃d = (dk)k∈I ∈ D, a = di}.

Lemma 4.2. Let A be a dcpo. Then D ⊆ A⊥ = ⊥ ⊕ A is directed if and only if
D ⊆d A, D = {⊥}, or D = {⊥} ∪D′ where D′ ⊆d A.

Proof. It is clear that the directed subsets of A, and subsets D ⊆ A which are of
the forms {⊥} or {⊥}∪D′, where D′ ⊆d A, are directed subsets of A⊥. Conversely,
let D ⊆d A⊥. Then in the case that ⊥ /∈ D we have D ⊆d A, and in the case where
⊥ ∈ D we have D = {⊥} ∪ D′ and D′ ⊆d A, because for x, y ∈ D′ there exists
z ∈ D such that x, y ≤ z, and this gives z 6= ⊥.

Free separately strict S-cpo on a cpo P . By a free separately strict S-cpo on
a cpo P we mean a separately strict S-cpo F together with a strict continuous map
τ : P → F with the universal property that given any separately strict S-cpo A
and a strict continuous map f : P → A there exists a unique S-cpo map f : F → A
such that f ◦ τ = f .

Recall that the smash product of the cpo’s A and B is the cpo A ⊗ B =
⊥⊕ ((A \ {⊥A})× (B \ {⊥B})).

Theorem 4.3. Let S be a separately strict cpo-monoid. Then for a given cpo P ,
the free separately strict S-cpo on P is F = P ⊗ S.

Proof. The action on P ⊗S is defined by (p, t) · s = (p, ts) if ts 6= ⊥S , (p, t) · s = ⊥
if ts = ⊥S , and ⊥·s = ⊥, for all s, t ∈ S, (p, t) ∈ (P \{⊥P })× (S \{⊥S}). First we
check the properties of the action. To show (p, t) · (ss′) = ((p, t) · s) · s′, we consider
two cases:

Case (1): If t(ss′) = ⊥S , then (p, t) · (ss′) = ⊥. Now, if ts = ⊥S then
(p, t) ·s = ⊥ and so ((p, t) ·s) ·s′ = ⊥·s′ = ⊥. If ts 6= ⊥S then (p, t) ·s = (p, ts) and
so ((p, t) · s) · s′ = (p, ts) · s′ = ⊥; the last equality is because (ts)s′ = t(ss′) = ⊥S .

Case (2): If t(ss′) 6= ⊥S , then (p, t) ·(ss′) = (p, tss′) = (p, ts) ·s′ = ((p, t) ·s) ·s′.
The second equality is because ts 6= ⊥S , otherwise t(ss′) = (ts)s′ = ⊥Ss = ⊥S
which is a contradiction, and the last equality is because of the definition of the
action. Hence P ⊗ S with this action is an S-act. Now, we show that it is a
separately strict S-cpo. We know from [1] that P ⊗S is a cpo. Then we show that
the mappings Rs : P ⊗ S → P ⊗ S, x  x · s, and Lx : S → P ⊗ S, s  x · s,
are strict continuous, for all s ∈ S and x ∈ P ⊗ S. Since ⊥ · s = ⊥, Rs is strict
for all s ∈ S and since S is a separately strict cpo-monoid, s⊥S = ⊥S and so
(p, s) · ⊥S = ⊥. Therefore Lx : S → P ⊗ S is strict for all x ∈ P ⊗ S. Now, we
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show that Rs : P ⊗ S → P ⊗ S is continuous for all s ∈ S. To prove continuity, let
D ⊆d A⊗B. Applying Lemma 4.2 we consider two cases:

Case (1): Let D ⊆d (P \ {⊥P }) × (S \ {⊥S}). In this case, by Lemma 4.1,∨d
D = (

∨d
D1,

∨d
D2) where D1 = domD and D2 = codomD. Now we consider

two subcases:
Subcase (1a): (

∨d
D2)s 6= ⊥S . In this subcase, we have

(
d∨
D) · s = (

d∨
D1,

d∨
D2) · s = (

d∨
D1, (

d∨
D2)s) = (

d∨
D1,

d∨

y∈D2

ys).

Then we claim
d∨

(x,y)∈D
(x, y) · s = (

d∨
D1,

d∨

y∈D2

ys) (∗).

Let K = {(a, b) ∈ D | bs 6= ⊥B}. Then K satisfies:

(1) K 6= ∅, because otherwise (
∨d

D2)s = ⊥S which is a contradiction.
(2) For all (a, b) ∈ K, (a, b) · s = (a, bs), by the definition of the action on P ⊗ S.
(3) For all (a, b) ∈ K and (a′, b′) /∈ K, there exists (a′′, b′′) ∈ K with (a, b) ≤ (a′′, b′′)
and (a′, b′) ≤ (a′′, b′′), since D is directed. But, then bs ≤ b′′s, and hence b′s 6= ⊥S
and so (a′′, b′′) ∈ K.

Now to prove (∗), first we see that (
∨d

D1,
∨d
y∈D2

ys) is an upper bound of
the set {(a, b) · s | (a, b) ∈ D}. Also for all (x, y) ∈ K, (x, y) · s = (x, ys) ≤
(
∨d

D1,
∨d
y∈D2

ys). For (a, b) /∈ K, (a, b) · s = ⊥ ≤ (
∨d

D1,
∨d
y∈D2

ys), as required.
Secondly, if (a′, b′) is an upper bound of the set {(a, b) · s | (a, b) ∈ D}, let x ∈ D1.
Then there exists y ∈ D2 such that (x, y) ∈ D. If (x, y) ∈ K, then (x, ys) ≤ (a′, b′)
and so x ≤ a′. If (x, y) /∈ K, then by (3) there exists (x′′, y′′) ∈ K such that
(x, y) < (x′′, y′′). This gives x ≤ x′′ and (x′′, y′′) · s = (x′′, y′′s) ≤ (a′, b′). Then

x ≤ x′′ ≤ a′. So for all x ∈ D1, x ≤ a′ and so
∨d

D1 ≤ a′ (∗∗). Also let y ∈ D2.
Then there exists x ∈ D1 such that (x, y) ∈ D. If (x, y) ∈ K then (x, ys) ≤ (a′, b′)
and so ys ≤ b′. If (x, y) /∈ K then ys = ⊥S and so ys ≤ b′. Hence

∨d
y∈D2

ys ≤ b′

(∗ ∗ ∗). Then, by (∗∗) and (∗ ∗ ∗), we get (
∨d

D1,
∨d
y∈D2

ys) ≤ (a′, b′), as required.

Subcase (1b): (
∨d

D2)s = ⊥S . In this subcase, we have

(
d∨
D) · s = (

d∨
D1,

d∨
D2) · s = ⊥ =

d∨

(x,y)∈D
(x, y) · s

The last equality is because for all (x, y) ∈ D we have y ∈ D2 and so ys ≤
(
∨d

D2)s = ⊥S . This gives ys = ⊥S and so by the definition of the action,
(x, y) · s = ⊥ for all (x, y) ∈ D.
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Case (2): D = D′∪{⊥} where D′ ⊆ (P \{⊥P })× (S \{⊥S}) is directed. Then

by Lemma 4.1,
∨d

D′ = (
∨d

D1,
∨d

D2) where D1 = domD′ and D2 = codomD′.
Then by case (1), (

∨d
D′) · s =

∨d
(x,y)∈D′(x, y) · s and so

(
∨d

D) · s = (
∨d

D′) · s = ((
∨d

D′) · s) ∨ ⊥
= (
∨d

(x,y)∈D′(x, y) · s) ∨ ⊥ · s =
∨d

(x,y)∈D(x, y) · s

as required. Now, we show that Lx : S → P ⊗ S is continuous for all x ∈ P ⊗ S.
For this, let T ⊆d S and x ∈ P ⊗ S. If x = ⊥, then ⊥ · (∨d T ) = ⊥ =

∨d
t∈T ⊥ · t.

If x = (p, s) then we consider two cases:

Case (1): s(
∨d

T ) = ⊥S , then (p, s) ·(∨d T ) = ⊥ =
∨d
t∈T ((p, s) ·t), the last equality

is because s(
∨d

T ) =
∨d
t∈T st = ⊥S and so st = ⊥S for all t ∈ T .

Case (2): s(
∨d

T ) 6= ⊥S , then

(p, s) · (
d∨
T ) = (p, s(

d∨
T )) = (p,

d∨

t∈T
st) =

d∨

t∈T
(p, s) · t

where the second equality is because the action on S is continuous in each compo-
nent. To prove the last equality, let K ′ = {t ∈ T | st 6= ⊥S}. Similar to the proof
in the above for K, we have:
(1) K ′ is non-empty (otherwise,

∨d
t∈T st = s(

∨d
T ) = ⊥B which is a contradiction.)

(2) For t /∈ K ′ and t′ ∈ K ′, there exists t′′ ∈ K ′ with t ≤ t′′ and t′ ≤ t′′, since T is
directed. But, then st′ ≤ st′′ and hence st′′ 6= ⊥S , so t′′ ∈ K ′.
First notice that (p,

∨d
t∈T st) is an upper bound for the set {(p, s) · t | t ∈ T}. In

fact, for every (p, s)·t, if st = ⊥S , then (p, s)·t = ⊥ ≤ (p,
∨d
t∈T st). Also if st 6= ⊥S ,

then (p, s) · t = (p, st) ≤ (p,
∨d
t∈T st). Let (q, s′) be any upper bound of the set

{(p, s) · t | t ∈ T}. Since K ′ is non-empty then for t0 ∈ K ′, (p, st0) = (p, s) · t0 ≤
(q, s′). This gives p ≤ q. Also for t ∈ K ′, (p, st) = (p, s) · t ≤ (q, s′) and so st ≤ s′.
For t /∈ K ′, by (2), there exists t′ ∈ K ′ such that t ≤ t′. This gives st ≤ st′ ≤ s′.
Hence for all t ∈ T , st ≤ s′ and so

∨d
t∈T st ≤ s′. Thus (p,

∨d
t∈T st) ≤ (q, s′), as

required.

Now, we show that the map τ : P → P ⊗ S defined by τ(p) = (p, 1) and
τ(⊥P ) = ⊥ is a universal strict continuous map. It is strict by its definition. To
prove continuity, let D ⊆d P and consider two cases:
Case (1): ⊥P ∈ D, then

τ(

d∨
D) = (

d∨
D, 1) =

d∨

x∈D\{⊥P }
(x, 1) = (

d∨

x∈D\{⊥P }
(x, 1)) ∨ ⊥ =

d∨

x∈D
τ(x)
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Case (2): ⊥P /∈ D, then

τ(
d∨
D) = (

d∨
D, 1) =

d∨

x∈D
(x, 1) =

d∨

x∈D
(x, 1) =

d∨

x∈D
τ(x).

Finally, to prove the universal property of τ : P → P ⊗ S, take a strict continuous
map f : P → B to a separately strict S-cpo B. Then the map f : P ⊗ S → B
defined by f(p, s) = f(p)s and f(⊥) = ⊥B , for all (p, s) ∈ (P \{⊥P })× (S \{⊥S}),
is the unique separately strict S-cpo satisfying f ◦ τ = f . We show that f is strict
continuous and action-preserving. First notice that it is strict by its definition. To
prove continuity, let D ⊆d P ⊗ S. Applying Lemma 4.2, we consider two cases:
Case (1): D ⊆d (P \ {⊥P }) × (S \ {⊥S}). In this case by Lemma 4.1,

∨d
D =

(
∨d

D1,
∨d

D2) where D1 = domD and D2 = codomD. Then

f(
∨d

D) = f((
∨d

D1,
∨d

D2)) = f(
∨d

D1)(
∨d

D2)

= (
∨d
x∈D1

f(x))(
∨d

D2) =
∨d
x∈D1

(f(x)(
∨d

D2))

=
∨d
x∈D1

∨d
t∈D2

(f(x)t) =
∨d

(x,s)∈D f((x, s)).

Case (2): D = D′∪{⊥}, where D′ ⊆d (P \{⊥P })×(S\{⊥S}). Then
∨d

D =
∨d

D′

and by Case (1), f(
∨d

D′) =
∨d

(x,s)∈D′ f((x, s)). Hence

f(
∨d

D) = f(
∨d

D′) = (f(
∨d

D′)) ∨ ⊥B
= (
∨d

(x,s)∈D′ f((x, s))) ∨ f(⊥) =
∨d

f(D).

Now, we show that the mapping f is action-preserving. First notice that f(⊥·s) =
f(⊥) = ⊥B = ⊥Bs = f(⊥)s. Secondly for (p, t) ∈ (P \ {⊥P }) × (S \ {⊥S}) and
s ∈ S, we consider two cases:
Case (1): If ts 6= ⊥S , then

f((p, t) · s) = f((p, ts)) = f(p)(ts) = (f(p)t)s = f((p, t))s.

Case (2): If ts = ⊥S , then

f((p, t) · s) = f(⊥) = ⊥B = f(p)⊥S = f(p)(ts) = (f(p)t)s = (f((p, t)))s.

To establish the uniqueness of f , suppose that h : P⊗S → B is also a separately
strict S-cpo map such that h◦ τ = f . Then for all (p, t) ∈ (P \{⊥P })× (S \{⊥S}),

h((p, t)) = h((p, 1) · t) = h((p, 1))t = ((h ◦ τ)(p))t = f(p)t = f((p, t))

as required.
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Corollary 4.4. The forgetful functor from CpoSep-S to Cpo has a left adjoint.

Cofree separately strict S-cpo over a cpo. By a cofree separately strict S-cpo
on a cpo P we mean a separately strict S-cpo K together with a strict continuous
map σ : K → P with the universal property that given any separately strict S-
cpo A and a strict continuous map g : A → P there exists a unique S-cpo map
g : A→ K such that σ ◦ g = g.

Theorem 4.5. For a given cpo P and separately strict cpo-monoid S, the cofree
separately strict S-cpo on P is the set K = [S → P ], of all strict continuous maps
from S to P , with pointwise order and the action given by (fs)(t) = f(st), for
s, t ∈ S and f ∈ [S → P ].

Proof. We know from [11] that [S → P ] is a cpo. Also the action on [S → P ] is
continuous (see [15]). Then by Lemma 2.8, the mappings Rs : [S → P ]→ [S → P ]
defined by Rs(f) = fs and Lf : S → [S → P ] define by Lf (s) = fs, for all s ∈ S
and f ∈ [S → P ], are continuous. Also, it is an easy computation to show f⊥s = f⊥
and f⊥S = f⊥, for all s ∈ S and f ∈ [S → P ], where f⊥ is the bottom element of
[S → P ]. Hence [S → P ] is a separately strict S-cpo. Now, take the cofree map
σ : [S → P ]→ P defined by σ(f) = f(1). It is continuous (see [15]). Now, we show
that σ is strict. We have σ(f⊥) = f⊥(1) = ⊥P . Then σ is an S-cpo map. Further,
given a strict continuous map α : A→ P from a separately strict S-cpo A, the map
α : A → [S → P ], given by α(a)(s) = α(as), is the unique separately strict S-cpo
map satisfying σ◦α = α. First notice that α is a continuous action-preserving map
(see [15]). Now, we show that it is strict. In fact,

α(⊥A)(s) = α(⊥As) = α(⊥A) = ⊥P = f⊥(s).

Then α is an S-cpo map. To establish the uniqueness of α, suppose that h : A→
[S → P ] is also an S-cpo map such that σ ◦ h = α. Then for all a ∈ A and s ∈ S,

h(a)(s) = h(a)(s1) = (h(a)s)(1) = σ(h(a)s)
= σ(h(as)) = α(as) = α(a)(s).

5 Some categorical properties of Cposep-S

In this section we show that the category CpoSep--S is complete and cocomplete,
and also give a description of products and coproducts in this category. Further, we
study the monomorphisms and epimorphisms. Finally, we show that this category
is not cartesian closed.
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5.1 Limits and coproducts in CpoSep-S

First recall from [1, 14] that the product of a family of dcpo’s, cpo’s, S-dcpo’s, and
S-cpo’s is their cartesian product with the natural order and action. In particular,
the terminal object in these categories and also in the category CpoSep-S is the
singleton {θ}.

Remark 5.1. (1) Since the category of separately strict S-cpo’s is a reflective
subcategory of the category of S-cpo’s, by Theorem 3.11, the category CpoSep-
S is complete and all limits in this category are calculated the same as in the
category of S-cpo’s. Thus, the product of a family of separately strict S-cpo’s is
their cartesian product, and the equalizer of S-cpo maps f, g : A → B between
separately strict S-cpo’s is E = {x ∈ A | f(x) = g(x)}.

(2) Since the inclusion functor from CpoSep-S to Cpo-S has a right adjoint
by Theorem 3.5, it preserves colimits. So, by [14], the initial object in CpoSep-S
is the singleton and the coproduct of the family {Ai | i ∈ I} of separately strict
S-cpo’s is A =

⊎
i∈I Ai.

Following Theorem 23.14 [10], to prove that CpoSep-S is cocomplete, hav-
ing the above remark (1) it is enough to show that it is well-powered and has a
coseparator.

Recall that an object C of a category C is called a coseparator if the functor
hom(−, C) : Cop → Set is faithful. In other words, for each pair of distinct arrows
f, g : A→ B there exists an arrow h : B → C such that h ◦ f 6= h ◦ g.

Theorem 5.2. The category CpoSep-S has a coseparator.

Proof. We show that for each cpo P with |P | ≥ 2, the cofree object [S → P ]
described in Theorem 4.5 is a coseparator. Let f, g : A → B be separately strict
S-cpo maps with f 6= g. To give a separately strict S-cpo map h : B → [S → P ]
with h ◦ f 6= h ◦ g, first we define a cpo map k : B → P such that k ◦ f 6= k ◦ g.

Since f 6= g, there exists a ∈ A with f(a) 6= g(a). We consider three cases

(1) f(a) < g(a) (2) g(a) < f(a) (3) f(a) ‖ g(a)

Let f(a) < g(a). Take B′ = {b ∈ B | b ≤ f(a)}. Define k : B → P by

k(b) =

{
⊥P if b ∈ B′
y otherwise

where y ∈ P and y 6= ⊥P (such y exists since |P | ≥ 2). First we show that k is order-
preserving, and hence it takes directed subsets to directed ones. Let b1, b2 ∈ B with
b1 ≤ b2. If b1 ∈ B′, then for the case where b2 ∈ B′, ⊥P = k(b1) = k(b2); and
for the case where b2 6∈ B′, ⊥P = k(b1) < y = k(b2). Also, if b1 /∈ B′, then
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b2 /∈ B′ and so k(b1) = k(b2) = y. To prove the continuity of k, let D ⊆d B.

Notice that
∨d

D ∈ B′ ⇔ D ⊆ B′. Now, if
∨d

D ∈ B′, then D ⊆ B′ and so

k(
∨d

D) = ⊥P =
∨d
z∈D k(z). Also, if

∨d
D /∈ B′, then k(

∨d
D) = y and D 6⊆ B′.

Thus D \B′ 6= ∅, and

d∨

z∈D
k(z) =

d∨

z∈(D\B′)∪(B′∩D)

k(z) = y ∨ ⊥P = y

as required. Finally, since [S → P ] is the cofree separately strict S-cpo on P , there
exists a unique separately strict S-cpo map h : B → [S → P ] such that σ ◦ h = k,
where σ is the cofree map defined in Theorem 4.5. This gives h ◦ f 6= h ◦ g, and so
[S → P ] is a coseparator.

The case (2) is proved similarly. And for case (3), take B′ = {b ∈ B | b ≤ f(a)}
or B′ = {b ∈ B | b ≤ g(a)} in the proof of case (1).

Theorem 5.3. The category CpoSep-S is well-powered.

Proof. We should prove that the class of isomorphic subobjects of any separately
strict S-cpo is a set. This is true since, by Lemma 5.5, monomorphisms are one-one.

Proposition 5.4. The category CpoSep-S is cocomplete.

Proof. The result follows by completeness of CpoSep-S and by Theorem 23.14 [10]
and Theorems 5.2, 5.3.

5.2 Monomorphisms and Epimorphisms

In this subsection, we study the relation between epimorphisms and onto maps and
between monomorphisms and one-one maps in the category of separately strict S-
cpo’s. First the following less surprising theorem.

Theorem 5.5. A morphism in CpoSep-S is a monomorphism if and only if it is
one-one.

Proof. Let h : A → B be a monomorphism in CpoSep-S, and h(a) = h(a′).
Consider the S-cpo maps f, g : S → A given by f(s) = as and g(s) = a′s, for
a, a′ ∈ A. Then, h ◦ f = h ◦ g, and so we conclude that f = g. Thus, a = a′.

In the following example, we see that an epimorphism is not necessarily an onto
map.
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Example 5.6. (1) We show that (N∞,min,≤) in which the order is the natural
order, is a cpo-monoid. First notice that it is a cpo. In fact for every subset X,
we have

∨d
X = max{X} if X is a finite set and

∨d
X =∞ if X is an infinite set.

Now, we show that the operation min is strict continuous. Since, min(1, 1) = 1,
the operation min is strict. To prove continuity, we show that it is continuous
separately strict in each component. Since the operation min is commutative, it is
enough to show that min(

∨d
X,n) =

∨d
x∈X min(x, n) for all X ⊆ N∞ and n ∈ N∞.

Let X ⊆ N∞ and n ∈ N∞, then we consider two cases:
Case (1): X is a finite set. Then

∨d
X = max{X}. Now we consider two

subcases:
Subcase (1a):

∨d
X ≤ n, then min(

∨d
X,n) =

∨d
X =

∨d
x∈X min(x, n) (the last

equality is because x ≤ ∨dX ≤ n for all x ∈ X).

Subcase (1b):
∨d

X ≥ n, then min(
∨d

X,n) = n and

∨d
x∈X min(x, n) = (

∨d{min(x, n)| x ≤ n}) ∨ (
∨d{min(x, n)| x ≤ n})

= {x, n|x ≤ n} ∨ {n} = n

Case (2): X is an infinite set. Then min(
∨d

X,n) = min(∞, n) = n and

d∨

x∈X
min(x, n) = (

∨

x≤n
min(x, n)) ∨ (

d∨

x>n

min(x, n)) = (
d∨

x≤n
{x}) ∨ {n} = n

(notice that {x| x > n} 6= ∅, because X is an infinite set). Hence (N∞,min,≤) is
a cpo-monoid.
(2) Consider the cpo-monoid S = (N∞,min,≤). Since ⊥N∞ = 1 and min(1, n) =
min(n, 1) = 1 for all n ∈ N∞, by the part (3) of Remark 3.3, it is a separately
strict S-cpo. Now, consider the cpo N with the order defined by n ≤ m if and only
if n = 1 or n = m, for all n,m ∈ N. Then N with the action λ : N × N∞ → N,
(n,m)  min(n,m), is a separately strict N∞-cpo. Since min(1,m) = 1, each
Rm : N → N, n  min(n,m), is strict. To prove continuity, let D ⊆d N. Then

D = {n} or D = {1, n} for n ∈ N. For D = {1, n}, Rm(
∨d

D) = Rm(n) =

min(n,m) and
∨d{Rm(1), Rm(n)} =

∨d{1,min(n,m)} = min(n,m). Also for

D = {n}, Rm(
∨d

D) = Rm(n) =
∨d{Rm(n)}. Hence Rm is strict continuous for

all m ∈ N∞.
Also Ln : N∞ → N, m min(n,m), is strict, because Ln(1) = min(n, 1) = 1.

To prove continuity, let D ⊆d N∞. Then consider two cases:
Case (1): D ⊆d N∞ is infinite. Then

∨d
D =∞ and so Ln(

∨d
D) = Ln(∞) =

min(n,∞) = n and

∨d
Ln(D) = (

∨d{Ln(x) | x ≤ n}) ∨ (
∨d{Ln(x) | n < x})

= (
∨d{x | x ≤ n}) ∨ (

∨d{n | n < x}) = n
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as required.
Case (2): D ⊆d N∞ is finite. Then

∨d
D = maxD. If n ≤ maxD, then

Ln(
∨d

D) = Ln(maxD) = min(n,maxD) = n and
∨d

Ln(D) =
∨d{Ln(x) | x ∈

D} =
∨d{min(n, x) | x ∈ D} =

∨d{n} = n. If maxD < n, then Ln(
∨d

D) =
Ln(maxD) = min(n,maxD) = maxD and

∨d
Ln(D) =

∨d{Ln(x) | x ∈ D} =
∨d{min(n, x) | x ∈ D}

=
∨d{x | x ∈ D} =

∨d
D = maxD

as required. Hence N is a separately strict N∞-monoid. Now consider the in-
clusion h : N → N∞. Then h is clearly action-preserving. In fact h(λ(n,m)) =
h(min(n,m)) = min(n,m) = λ(n,m) = λ(h(n),m), for all n ∈ N and m ∈ N∞.
Also, h is strict continuous. To see this, let D ⊆d N. Then there exists n ∈ N such
that D = {1, n} or D = {n}. For D = {1, n}, we have

h(
d∨
D) = h(n) = n =

d∨
{1, n} =

d∨
{h(1), h(n)} =

d∨
h(D).

The other case is clear. Thus h is a separately strict N∞-cpo map which is not
surjective (∞ is not in the image of h). We show that h is an epimorphism. Let
f1, f2 : N∞ → P be separately strict N∞-cpo maps with f1 ◦ h = f2 ◦ h. Then, we
have

f1(1) = f1(h(1)) = (f1 ◦ h)(1) = (f2 ◦ h)(1) = f2(h(1)) = f2(1),

f1(n) = f1(h(n)) = (f1 ◦ h)(n) = (f2 ◦ h)(n) = f2(h(n)) = f2(n)

for all n ∈ N, and

f1(∞) = f1(
d∨
N) =

d∨

n∈N
f1(n) =

d∨

n∈N
f2(n) = f(

d∨
N) = f2(∞).

Therefore, f1 = f2, and so h is an epimorphism.

Theorem 5.7. Let f : A → B be an epimorphism in CpoSep-S. Then f is
surjective if and only if its image is a Scott-closed subset of B.

Proof. Let f(A) be a Scott-closed subset of B. We consider the mappings h, γ :
B → B∗ in Lemma 3.10, where B∗ is a separately strict S-cpo of Remark 3.9, for
I = f(A). Then h ◦ f = γ ◦ f . Since f is an epimorphism, h = γ and so f(A) = B,
as required. The converse is true because f(A) = B is a Scott-closed subset of
B.

We close the paper with the following result.
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Theorem 5.8. The category CpoSep-S is not cartesian closed.

Proof. For every separately strict S-cpo A, the functor A × − does not preserve
the initial object and so does not have a right adjoint. Note that the initial object
in the category CpoSep-S is the singleton poset. Hence the category CpoSep-S is
not cartesian closed.
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