Actions of a separately strict cpo-monoid on pointed directed complete posets

Document Type: Research Paper


Shahid Beheshti University


‎ In the present article‎, ‎we study some categorical properties of the category {$\bf‎ Cpo_{Sep}$-$S$} of all {separately strict $S$-cpo's}; cpo's equipped with‎ a compatible right action of a separately strict cpo-monoid $S$ which is‎ strict continuous in each component‎. ‎In particular‎, we show that this category is reflective and coreflective in the‎ category of $S$-cpo's‎, ‎find the free and cofree functors‎, characterize products and coproducts‎. ‎Furthermore‎, ‎epimorphisms and‎  monomorphisms in {$\bf Cpo_{Sep}$-$S$} are studied‎, ‎and show that‎ {$\bf Cpo_{Sep}$-$S$} is not cartesian closed‎.     


[1] S. Abramsky and A. Jung,  "Domain Theory", Handbook of Computer Science and logic, 3 (1994), 1-168.
[2]S. Bulman-Fleming, A. Gilmour, and M. Kilp,  Flatness properties of S-posets, Comm. Algebra 34 (2006), 1291-1317.    
[3] S. Bulman-Fleming and M. Mahmoudi, The category of S-posets, Semigroup Forum 71(3) (2005), 443-461.  
[4] B.A. Davey and H.A. Priestley, "Introduction to Lattices and Order", Cambridge University Press, Cambridge, 1990.     
[5] M.M. Ebrahimi and M. Mahmoudi, The category of M-Sets, Ital. J. Pure Appl. Math. 9 (2001), 123-132.
[6] M.M. Ebrahimi, M. Mahmoudi, and H. Rasouli, Banaschewski's theorem for  S-posets: regular injectivity and completeness, Semigroup Forum 80(2) (2010), 313-324.        
[7] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckhoff, C. Dimitrovici, and M. Grobe-Rhode, Algebraic date type and process specifications based on projection spaces, Lect. Notes Comput. Sci. 332 (1988), 23-43.          
[8] A. Fiech, Colimits in the category Dcpo, Math. Structures Comput. Sci. 6 (1996), 455-468.        
[9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, "Continuous Lattices and Domains", Encyclopedia of Mathematics and its Applications 93, Cambridge University Press, Cambridge, 2003.
[10]  H. Herrlich and G.E. Strecker, "Category Theory". Allyn and Bacon, 1973.        
[11] A. Jung, "Cartesian closed categories of Domain", Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 110 pp (1989).    
[12] A. Jung, M.A. Moshier, and S. Vickers, Presenting dcpos and dcpo algebras, Electron. Notes Theore. Comput. Sci. 219 (2008), 209-229.       
[13] M. Kilp, U. Knauer, and A. Mikhalev, "Monoids, Acts and Categories'', Walter de Gruyter, Berlin, New York, 2000.
[14] M. Mahmoudi and H. Moghbeli, The categories of actions of a dcpo-monoid on directed complete posets, to appear in Quasigroups Related Systems.        
[15] M. Mahmoudi and H. Moghbeli, Free and cofree acts of dcpo-monoids on directed complete posets, Bull. Malays. Math. Sci. Soc. Published online May 2015, DOI 10.1007/s40840-015-0127-z.