Shahid Beheshti UniversityCategories and General Algebraic Structures with Applications2345-58531120131201Semigroups with inverse skeletons and Zappa-Sz$acute{rm e}$p products59894265ENVictoria GouldDepartment of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom.Rida-e- ZenabDepartment of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom.Journal Article20140118The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^circ$ such that $aa^circ,a^circ a$ lie in $ Esubseteq E(S)$. Where $S$ possesses `enough' (in a precisely defined way) $E$-regular elements, analogues of Green's lemmas and even of Green's theorem hold, where Green's relations ${mathcal R},{mathcal L},{mathcal H}$ and $mathcal D$ are replaced by $widetilde{{mathcal R}}_E,widetilde{{mathcal L}}_E, widetilde{{mathcal H}}_E$ and $widetilde{mathcal{D}}_E$. Note that $S$ itself need not be regular. We also obtain results concerning the extension of (one-sided) congruences, which we apply to (one-sided) congruences on maximal subgroups of regular semigroups. If $S$ has an inverse subsemigroup $U$ of $E$-regular elements, such that $Esubseteq U$ and $U$ intersects every $widetilde{{mathcal H}}_E$-class exactly once, then we say that $U$ is an {em inverse skeleton} of $S$. We give some natural examples of semigroups possessing inverse skeletons and examine a situation where we can build an inverse skeleton in a $widetilde{mathcal{D}}_E$-simple monoid. Using these techniques, we show that a reasonably wide class of $widetilde{mathcal{D}}_E$-simple monoids can be decomposed as Zappa-Sz$acute{rm e}$p products. Our approach can be immediately applied to obtain corresponding results for bisimple inverse monoids.http://cgasa.sbu.ac.ir/article_4265_12a60e203d8dba10858f7e6a02feadc2.pdf